1932

Abstract

Recent strategy updates by the international particle physics community have confirmed strong interest in a next-generation energy frontier collider after completion of the High-Luminosity LHC program and construction of a + Higgs factory. Both hadron and muon colliders provide a path toward the highest energies, and both require significant and sustained development to achieve technical readiness and optimize the design. For hadron colliders, the energy reach is determined by machine circumference and the strength of the guiding magnetic field. To achieve a collision energy of 100 TeV while limiting the circumference to 100 km, a dipole field of 16 T is required and is within the reach of niobium–tin magnets operating at 1.9 K. Magnets based on high-temperature superconductors may enable a range of alternatives, including a more compact footprint, a reduction of the cooling power, or a further increase of the collision energy to 150 TeV. The feasibility and cost of the magnet system will determine the possible options and optimal configurations. In this article, I review the historical milestones and recent progress in superconducting materials, design concepts, magnet fabrication, and test results and emphasize current developments that have the potential to address the most significant challenges and shape future directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102122-022007
2024-09-26
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/nucl/74/1/annurev-nucl-102122-022007.html?itemId=/content/journals/10.1146/annurev-nucl-102122-022007&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Edwards H. Annu. Rev. Nucl. Part. Sci. 35::605 ( 1985.)
    [Crossref] [Google Scholar]
  2. 2.
    Tollestrup A, Todesco E. In Reviews of Accelerator Science and Technology, ed. A Chao, W Chou , Vol. 11, pp. 185210. Singapore:: World Sci. ( 2008.)
    [Google Scholar]
  3. 3.
    Rossi L. IEEE Trans. Appl. Supercond. 12::219 ( 2002.)
    [Crossref] [Google Scholar]
  4. 4.
    Schoerling D, Zlobin AV, eds. Nb3Sn Accelerator Magnets: Designs, Technologies and Performance. Cham, Switz.:: Springer ( 2019.)
    [Google Scholar]
  5. 5.
    Brüning O, Klein M, Rossi L, Spagnolo P, eds. The Future of the Large Hadron Collider. Singapore:: World Sci. ( 2023.)
    [Google Scholar]
  6. 6.
    Schoerling D, et al. IEEE Trans. Appl. Supercond. 29:(5):4003109 ( 2019.)
    [Google Scholar]
  7. 7.
    Abada A, et al. (FCC Collab.) Eur. Phys. J. Spec. Top. 228::755 ( 2019.)
    [Crossref] [Google Scholar]
  8. 8.
    Tang J. Front. Phys. 10::828878 ( 2022.)
    [Crossref] [Google Scholar]
  9. 9.
    Abada A, et al. (FCC Collab.) Eur. Phys. J. Spec. Top. 228::1109 ( 2019.)
    [Crossref] [Google Scholar]
  10. 10.
    Benedikt M, Zimmermann F. FCC feasibility study status. Presented at FCC Week 2023, London:, June 5–9 ( 2023.)
    [Google Scholar]
  11. 11.
    Bruning O, et al. Report 2004-003 , CERN, Geneva: ( 2004.)
  12. 12.
    Todesco E, Zimmermann F, eds. Yellow Report 2011-3 , CERN, Geneva: ( 2011.)
  13. 13.
    Boutboul T, et al. IEEE Trans. Appl. Supercond. 16:(2):1184 ( 2006.)
    [Crossref] [Google Scholar]
  14. 14.
    Kanithi H, et al. IEEE Trans. Appl. Supercond. 24::6000504 ( 2014.)
    [Crossref] [Google Scholar]
  15. 15.
    Parrell JA, et al. IEEE Trans. Appl. Supercond. 13:(2):3470 ( 2003.)
    [Crossref] [Google Scholar]
  16. 16.
    Jiang J, et al. IEEE Trans. Appl. Supercond. 29:(5):6400405 ( 2019.)
    [Google Scholar]
  17. 17.
    Braccini V, et al. Supercond. Sci. Technol. 24::035001 ( 2011.)
    [Crossref] [Google Scholar]
  18. 18.
    Ballarino A, et al. IEEE Trans. Appl. Supercond. 29:(5):6001709 ( 2019.)
    [Crossref] [Google Scholar]
  19. 19.
    Sorbi M, et al. IEEE Trans. Appl. Supercond. 27:(4):4001205 ( 2017.)
    [Crossref] [Google Scholar]
  20. 20.
    Bellafont I, et al. Phys. Rev. Accel. Beams 23::033201 ( 2020.)
    [Crossref] [Google Scholar]
  21. 21.
    Xu Q, et al. IEEE Trans. Appl. Supercond. 25:(3):4000905 ( 2015.)
    [Google Scholar]
  22. 22.
    Buffat X, Schulte D. In Proceedings of IPAC'16, pp. 142629. Geneva:: CERN ( 2016.)
    [Google Scholar]
  23. 23.
    Giovannozzi M. EPJ Tech. Instrum. 9::5 ( 2022.)
    [Crossref] [Google Scholar]
  24. 24.
    Wolf R. Report LHC-M-ES-0001 , CERN, Geneva: ( 2001.)
  25. 25.
    Dalena B, et al. In Proceedings of IPAC'18, pp. 13740. Geneva:: JACoW ( 2018.)
    [Google Scholar]
  26. 26.
    Izquierdo Bermudez S, et al. IEEE Trans. Appl. Supercond. 29:(5):4901705 ( 2019.)
    [Crossref] [Google Scholar]
  27. 27.
    Matthias BT, et al. Phys. Rev. 95:(6):1435 ( 1954.)
    [Crossref] [Google Scholar]
  28. 28.
    Kunzler JE, Buehler E, Hsu FSL, Wernick JH. Phys. Rev. Lett. 6::89 ( 1961.)
    [Crossref] [Google Scholar]
  29. 29.
    Godeke A. Supercond. Sci. Technol. 19::R68 ( 2006.)
    [Crossref] [Google Scholar]
  30. 30.
    Hashimoto Y, Yoshizaki K, Tanaka M. In Proceedings of the 5th International Cryogenic Engineering Conference, ed. K Mendelssohn , pp. 33235. Guildford, UK/Kyoto, Jpn.:: IPC Sci. Technol. Press/Cryog. Assoc. Jpn. ( 1974.)
    [Google Scholar]
  31. 31.
    Rossi L, Zlobin AV. See Ref. 4 , pp. 5384 ( 2019.)
  32. 32.
    Asner A, Perin R, Wenger S, Zerobin F. In 11th International Conference on Magnet Technology (MT-11), ed. T Sekiguchi, S Shimamoto , pp 3641. Dordrecht, Neth.:: Springer ( 1990.)
    [Google Scholar]
  33. 33.
    den Ouden A, Wessel S, Krooshoop E, ten Kate H. IEEE Trans. Appl. Supercond. 7:(2):733 ( 1997.)
    [Crossref] [Google Scholar]
  34. 34.
    McInturff A, et al. In Proceedings of the 1997 Particle Accelerator Conference, Vol. 3, pp. 321214. Piscataway, NJ:: IEEE ( 1997.)
    [Google Scholar]
  35. 35.
    Field M, et al. IEEE Trans. Appl. Supercond. 11:(1):3692 ( 2001.)
    [Crossref] [Google Scholar]
  36. 36.
    Caspi S, et al. IEEE Trans. Appl. Supercond. 11:(1):2272 ( 2001.)
    [Crossref] [Google Scholar]
  37. 37.
    Gourlay SA. See Ref. 4 , pp. 34370 ( 2019.)
  38. 38.
    Sabbi G. See Ref. 4 , pp. 285310 ( 2019.)
  39. 39.
    Gourlay SA, et al. IEEE Trans. Appl. Supercond. 16:(2):324 ( 2006.)
    [Crossref] [Google Scholar]
  40. 40.
    Sabbi G. IEEE Trans. Appl. Supercond. 23:(3):4000707 ( 2013.)
    [Crossref] [Google Scholar]
  41. 41.
    Ambrosio G, et al. IEEE Trans. Appl. Supercond. 33:(5):4003508 ( 2023.)
    [Crossref] [Google Scholar]
  42. 42.
    Izquierdo Bermudez S, et al. IEEE Trans. Appl. Supercond. 33:(5):4001209 ( 2023.)
    [Google Scholar]
  43. 43.
    Bottura L, Prestemon S, Rossi L, Zlobin AV. Front. Phys. 10::935196 ( 2022.)
    [Crossref] [Google Scholar]
  44. 44.
    Gallagher-Daggitt GE. Report RHEL-M-A25 , Rutherford High Energy Lab., Chilton, UK: ( 1973.)
  45. 45.
    Scanlan RM, Dietderich DR. IEEE Trans. Appl. Supercond. 13:(2):1536 ( 2003.)
    [Crossref] [Google Scholar]
  46. 46.
    Boutboul T, et al. J. Phys. Conf. Ser. 97::012211 ( 2008.)
    [Crossref] [Google Scholar]
  47. 47.
    Lindenhovius JH, et al. IEEE Trans. Appl. Supercond. 9:(2):1451 ( 1999.)
    [Crossref] [Google Scholar]
  48. 48.
    Ferracin P, et al. IEEE Trans. Appl. Supercond. 26:(4):4000207 ( 2016.)
    [Crossref] [Google Scholar]
  49. 49.
    Tarantini C, et al. Supercond. Sci. Technol. 27::065013 ( 2014.)
    [Crossref] [Google Scholar]
  50. 50.
    Field MB, et al. IEEE Trans. Appl. Supercond. 24:(3):6001105 ( 2014.)
    [Crossref] [Google Scholar]
  51. 51.
    Todesco E, et al. Supercond. Sci. Technol. 34::053001 ( 2021.)
    [Crossref] [Google Scholar]
  52. 52.
    Ferracin P, et al. IEEE Trans. Appl. Supercond. 29:(5):4001309 ( 2019.)
    [Google Scholar]
  53. 53.
    Swartz PS, Bean CP. J. Appl. Phys. 39:(11):4991 ( 1968.)
    [Crossref] [Google Scholar]
  54. 54.
    Ghosh AK, et al. Supercond. Sci. Technol. 18::L5 ( 2005.)
    [Crossref] [Google Scholar]
  55. 55.
    Bordini B, Rossi L. IEEE Trans. Appl. Supercond. 19:(3):2470 ( 2009.)
    [Crossref] [Google Scholar]
  56. 56.
    Ambrosio G, et al. IEEE Trans. Appl. Supercond. 22:(3):4003804 ( 2012.)
    [Crossref] [Google Scholar]
  57. 57.
    Cheggour N, et al. Sci. Rep. 9::5466 ( 2019.)
    [Crossref] [Google Scholar]
  58. 58.
    Ferradas Troitino J, et al. Supercond. Sci. Technol. 34::035008 ( 2021.)
    [Crossref] [Google Scholar]
  59. 59.
    Ekin JW. Cryogenics 20::611 ( 1980.)
    [Crossref] [Google Scholar]
  60. 60.
    ten Haken B, Godeke A, ten Kate HHJ. J. Appl. Phys. 85:(6):3247 ( 1999.)
    [Crossref] [Google Scholar]
  61. 61.
    Cheggour N, et al. Supercond. Sci. Technol. 23::052002 ( 2010.)
    [Crossref] [Google Scholar]
  62. 62.
    Vallone G, et al. Supercond. Sci. Technol. 34::025002 ( 2021.)
    [Google Scholar]
  63. 63.
    Duvauchelle J-E, Bordini B, Fleiter J, Ballarino A. IEEE Trans. Appl. Supercond. 28:(4):4802305 ( 2018.)
    [Crossref] [Google Scholar]
  64. 64.
    Puthran K, et al. IEEE Trans. Appl. Supercond. 33:(5):8400406 ( 2023.)
    [Crossref] [Google Scholar]
  65. 65.
    Flükiger R, et al. IEEE Trans. Appl. Supercond. 23:(3):8001404 ( 2013.)
    [Crossref] [Google Scholar]
  66. 66.
    Barzi E, Zlobin AV. IEEE Trans. Nucl. Sci. 63:(2):783 ( 2016.)
    [Crossref] [Google Scholar]
  67. 67.
    Dietderich DR. IEEE Trans. Appl. Supercond. 17:(2):1481 ( 2007.)
    [Crossref] [Google Scholar]
  68. 68.
    Borgnolutti F, et al. IEEE Trans. Appl. Supercond. 24:(3):4003005 ( 2014.)
    [Google Scholar]
  69. 69.
    Wang X, et al. IEEE Trans. Appl. Supercond. 24:(3):4002607 ( 2014.)
    [Google Scholar]
  70. 70.
    Collings EW, et al. IEEE Trans. Appl. Supercond. 27:(4):0601305 ( 2017.)
    [Crossref] [Google Scholar]
  71. 71.
    Borgnolutti F, et al. IEEE Trans. Appl. Supercond. 25:(3):4002505 ( 2015.)
    [Crossref] [Google Scholar]
  72. 72.
    Rossi L, Todesco E. Phys. Rev. Spec. Top. Accel. Beams 10::112401 ( 2007.)
    [Crossref] [Google Scholar]
  73. 73.
    Caspi S, et al. IEEE Trans. Appl. Supercond. 19:(3):1221 ( 2009.)
    [Crossref] [Google Scholar]
  74. 74.
    Felice H, et al. IEEE Trans. Appl. Supercond. 22:(3):4001904 ( 2012.)
    [Crossref] [Google Scholar]
  75. 75.
    Ambrosio G, et al. IEEE Trans. Appl. Supercond. 19:(3):1231 ( 2009.)
    [Crossref] [Google Scholar]
  76. 76.
    Todesco E, et al. IEEE Trans. Appl. Supercond. 24:(3):4003305 ( 2014.)
    [Google Scholar]
  77. 77.
    Ambrosio G, et al. IEEE Trans. Appl. Supercond. 31:(5):4001105 ( 2021.)
    [Crossref] [Google Scholar]
  78. 78.
    Gupta R. In Proceedings of the 1997 Particle Accelerator Conference, Vol. 3, pp. 334446. Piscataway, NJ:: IEEE ( 1997.)
    [Google Scholar]
  79. 79.
    Sabbi G, et al. IEEE Trans. Appl. Supercond. 10:(1):330 ( 2000.)
    [Crossref] [Google Scholar]
  80. 80.
    Sabbi G, et al. IEEE Trans. Appl. Supercond. 11:(1):2280 ( 2001.)
    [Crossref] [Google Scholar]
  81. 81.
    McInturff A, et al. IEEE Trans. Appl. Supercond. 17:(2):1157 ( 2007.)
    [Crossref] [Google Scholar]
  82. 82.
    Zlobin AV, Kashikhin VV, Novitski I. In Proceedings of IPAC'18, pp. 273841. Geneva:: JACoW ( 2018.)
    [Google Scholar]
  83. 83.
    Caspi S, et al. IEEE Trans. Appl. Supercond. 24:(3):4001804 ( 2014.)
    [Crossref] [Google Scholar]
  84. 84.
    Rudeiros Fernández JL, Ferracin P. Supercond. Sci. Technol. 36::055003 ( 2023.)
    [Crossref] [Google Scholar]
  85. 85.
    Kashikhin VV, Lombardo V, Velev G. In Proceedings of IPAC'19, pp. 430710. Geneva:: JACoW ( 2019.)
    [Google Scholar]
  86. 86.
    Hafalia RR, et al. IEEE Trans. Appl. Supercond. 12:(1):47 ( 2002.)
    [Crossref] [Google Scholar]
  87. 87.
    Strait J, et al. In Conference Record of the 1991 IEEE Particle Accelerator Conference, Vol. 4, pp. 217678. New York:: IEEE ( 1991.)
    [Google Scholar]
  88. 88.
    Ferracin P, et al. IEEE Trans. Appl. Supercond. 16:(2):378 ( 2006.)
    [Crossref] [Google Scholar]
  89. 89.
    Novitski I, et al. IEEE Trans. Appl. Supercond. 26:(4):4001007 ( 2016.)
    [Crossref] [Google Scholar]
  90. 90.
    Hafalia AR, et al. IEEE Trans. Appl. Supercond. 14:(2):283 ( 2004.)
    [Crossref] [Google Scholar]
  91. 91.
    Ambrosio G, et al. IEEE Trans. Appl. Supercond. 21:(3):1858 ( 2011.)
    [Crossref] [Google Scholar]
  92. 92.
    Wanderer P, et al. IEEE Trans. Appl. Supercond. 18:(2):171 ( 2008.)
    [Crossref] [Google Scholar]
  93. 93.
    Bossert RC, et al. IEEE Trans. Appl. Supercond. 19:(3):1226 ( 2009.)
    [Crossref] [Google Scholar]
  94. 94.
    Caspi S, et al. IEEE Trans. Appl. Supercond. 20:(3):144 ( 2010.)
    [Crossref] [Google Scholar]
  95. 95.
    Ambrosio G, Ferracin P. See Ref. 5 , pp. 12133 ( 2023.)
  96. 96.
    Perez JC, et al. IEEE Trans. Appl. Supercond. 26:(4):4004906 ( 2016.)
    [Crossref] [Google Scholar]
  97. 97.
    Perez JC, et al. IEEE Trans. Appl. Supercond. 32:(6):4005105 ( 2022.)
    [Crossref] [Google Scholar]
  98. 98.
    Gautheron E, et al. IEEE Trans. Appl. Supercond. 33:(5):4004108 ( 2023.)
    [Crossref] [Google Scholar]
  99. 99.
    Rochepault E, Ferracin P. See Ref. 4 , pp. 31140 ( 2019.)
  100. 100.
    Willering G, et al. IEEE Trans. Appl. Supercond. 29:(5):4004906 ( 2019.)
    [Crossref] [Google Scholar]
  101. 101.
    Vallone G, et al. IEEE Trans. Appl. Supercond. 31:(5):9500406 ( 2021.)
    [Google Scholar]
  102. 102.
    Bottura L, de Rijk G, Rossi L, Todesco E. IEEE Trans. Appl. Supercond. 22:(3):4002008 ( 2012.)
    [Crossref] [Google Scholar]
  103. 103.
    Zlobin AV. See Ref. 4 , pp. 193222 ( 2019.)
  104. 104.
    Bordini B, et al. See Ref. 4 , pp. 22358 ( 2019.)
  105. 105.
    Novitski I, Zlobin AV. In Proceedings of NAPAC2016, pp. 13739. Geneva:: JACoW ( 2016.)
    [Google Scholar]
  106. 106.
    Zlobin AV, et al. IEEE Trans. Appl. Supercond. 31:(5):4000506 ( 2021.)
    [Google Scholar]
  107. 107.
    Smith PF, Colyer B. Cryogenics 15:(4):201 ( 1975.)
    [Crossref] [Google Scholar]
  108. 108.
    Wilson MN. IEEE Trans. Appl. Supercond. 22:(3):3800212 ( 2012.)
    [Crossref] [Google Scholar]
  109. 109.
    Lietzke A, et al. IEEE Trans. Appl. Supercond. 15:(2):1123 ( 2005.)
    [Crossref] [Google Scholar]
  110. 110.
    Felice H, et al. IEEE Trans. Appl. Supercond. 21:(3):1849 ( 2011.)
    [Crossref] [Google Scholar]
  111. 111.
    Mangiarotti F, et al. Performance of a HL-LHC Nb3Sn quadrupole magnet in the 100-200 MPa range of azimuthal stress. Paper presented at the Applied Superconductivity Conference (ASC 2024), Salt Lake City, UT:, Sept. 1–6 ( 2024.)
    [Google Scholar]
  112. 112.
    Izquierdo Bermudez S, et al. IEEE Trans. Appl. Supercond. 32:(6):4007106 ( 2022.)
    [Google Scholar]
  113. 113.
    Valente R, et al. IEEE Trans. Appl. Supercond. 29:(5):4003005 ( 2019.)
    [Crossref] [Google Scholar]
  114. 114.
    Védrine P, et al. In European Strategy for Particle Physics: Accelerator R&D Roadmap, ed. N Mounet , pp. 959. Geneva:: CERN ( 2022.)
    [Google Scholar]
  115. 115.
    Arbelaez D, et al. IEEE Trans. Appl. Supercond. 32:(6):4003207 ( 2022.)
    [Crossref] [Google Scholar]
  116. 116.
    Otten S, et al. IEEE Trans. Appl. Supercond. 33:(5):4003605 ( 2023.)
    [Crossref] [Google Scholar]
  117. 117.
    Arbelaez D, et al. Supercond. Sci. Technol. 37::065015 ( 2024.)
    [Crossref] [Google Scholar]
  118. 118.
    Barzi E, et al. Supercond. Sci. Technol. 37::045008 ( 2024.)
    [Crossref] [Google Scholar]
  119. 119.
    Felice H, et al. IEEE Trans. Appl. Supercond. 19:(3):2458 ( 2009.)
    [Crossref] [Google Scholar]
  120. 120.
    Ravaioli E, et al. IEEE Trans. Appl. Supercond. 24:(3):0500905 ( 2014.)
    [Crossref] [Google Scholar]
  121. 121.
    Ravaioli E, et al. IEEE Trans. Appl. Supercond. 27:(4):4702107 ( 2017.)
    [Google Scholar]
  122. 122.
    Ravaioli E, et al. IEEE Trans. Appl. Supercond. 27:(4):4000508 ( 2017.)
    [Google Scholar]
  123. 123.
    Vallone G, et al. IEEE Trans. Appl. Supercond. 34:(5):4704006 ( 2024.)
    [Google Scholar]
  124. 124.
    Russenschuck S. Field Computation for Accelerator Magnets: Analytical and Numerical Methods for Electromagnetic Design and Optimization. Weinheim, Ger:.: Wiley-VCH ( 2010.)
    [Google Scholar]
  125. 125.
    Bortot L, et al. IEEE Trans. Appl. Supercond. 28:(3):4900706 ( 2018.)
    [Crossref] [Google Scholar]
  126. 126.
    Maciejewski M, et al. IEEE Trans. Appl. Supercond. 33:(5):4003105 ( 2023.)
    [Crossref] [Google Scholar]
  127. 127.
    Marchevsky M, et al. Cryogenics 69::50 ( 2015.)
    [Crossref] [Google Scholar]
  128. 128.
    Marchevsky M, et al. IEEE Trans. Appl. Supercond. 27:(4):9000505 ( 2017.)
    [Crossref] [Google Scholar]
  129. 129.
    Hoang D, et al. IEEE Trans. Appl. Supercond. 31:(5):4900805 ( 2021.)
    [Crossref] [Google Scholar]
  130. 130.
    Moros A, et al. IEEE Trans. Appl. Supercond. 33:(5):4000208 ( 2023.)
    [Crossref] [Google Scholar]
  131. 131.
    Uglietti D. Supercond. Sci. Technol. 32::053001 ( 2019.)
    [Crossref] [Google Scholar]
  132. 132.
    Larbalestier D, et al. Nat. Mater. 13::375 ( 2014.)
    [Crossref] [Google Scholar]
  133. 133.
    Godeke A, et al. Supercond. Sci. Technol. 23::034022 ( 2010.)
    [Crossref] [Google Scholar]
  134. 134.
    Dietderich DR, et al. Phys. C Supercond. 341–348:(Part 4):2599 ( 2000.)
    [Crossref] [Google Scholar]
  135. 135.
    Jin S, et al. Appl. Phys. Lett. 51::943 ( 1987.)
    [Crossref] [Google Scholar]
  136. 136.
    Hasegawa T, et al. IEEE Trans. Appl. Supercond. 11:(1):3034 ( 2001.)
    [Crossref] [Google Scholar]
  137. 137.
    Hasegawa T, et al. IEEE Trans. Appl. Supercond. 12:(1):1136 ( 2002.)
    [Crossref] [Google Scholar]
  138. 138.
    Marken KR, et al. IEEE Trans. Appl. Supercond. 13:(2):3335 ( 2003.)
    [Crossref] [Google Scholar]
  139. 139.
    Godeke A, et al. IEEE Trans. Appl. Supercond. 17:(2):1149 ( 2007.)
    [Crossref] [Google Scholar]
  140. 140.
    Miao H, et al. AIP Conf. Proc. 986:(1):423 ( 2008.)
    [Crossref] [Google Scholar]
  141. 141.
    Godeke A, et al. IEEE Trans. Appl. Supercond. 18:(2):516 ( 2008.)
    [Crossref] [Google Scholar]
  142. 142.
    Grilli F, Vojenčiak M, Kario A, Zermeño V. IEEE Trans. Appl. Supercond. 26:(4):4803005 ( 2016.)
    [Crossref] [Google Scholar]
  143. 143.
    Mulder T, et al. IEEE Trans. Appl. Supercond. 26:(4):4803705 ( 2016.)
    [Google Scholar]
  144. 144.
    Kametani F, et al. Supercond. Sci. Technol. 24::075009 ( 2011.)
    [Crossref] [Google Scholar]
  145. 145.
    Jiang J, et al. Supercond. Sci. Technol. 24:(8):082001 ( 2011.)
    [Crossref] [Google Scholar]
  146. 146.
    Jiang J, et al. IEEE Trans. Appl. Supercond. 23:(3):6400206 ( 2013.)
    [Crossref] [Google Scholar]
  147. 147.
    Matras MR, et al. Supercond. Sci. Technol. 29::105005 ( 2016.)
    [Crossref] [Google Scholar]
  148. 148.
    Shen T, et al. Sci. Rep. 9::10170 ( 2019.)
    [Crossref] [Google Scholar]
  149. 149.
    Shen T, Garcia Fajardo L. Instruments 4::17 ( 2020.)
    [Crossref] [Google Scholar]
  150. 150.
    Zhang K, et al. Supercond. Sci. Technol. 31::105009 ( 2018.)
    [Crossref] [Google Scholar]
  151. 151.
    Shen T, et al. Phys. Rev. Accel. Beams 25::122401 ( 2022.)
    [Crossref] [Google Scholar]
  152. 152.
    Zlobin AV, Novitski I, Barzi E. Instruments 4::29 ( 2020.)
    [Crossref] [Google Scholar]
  153. 153.
    Senatore C, et al. Supercond. Sci. Technol. 29::014002 ( 2016.)
    [Crossref] [Google Scholar]
  154. 154.
    Selvamanickam V, et al. Supercond. Sci. Technol. 28::104003 ( 2015.)
    [Crossref] [Google Scholar]
  155. 155.
    Wikus P, et al. Supercond. Sci. Technol. 35::033001 ( 2022.)
    [Crossref] [Google Scholar]
  156. 156.
    Bai H, et al. IEEE Trans. Appl. Supercond. 30:(4):4300405 ( 2020.)
    [Google Scholar]
  157. 157.
    Goldacker W, et al. Supercond. Sci. Technol. 27::093001 ( 2014.)
    [Crossref] [Google Scholar]
  158. 158.
    Weiss JD, et al. Supercond. Sci. Technol. 33::044001 ( 2020.)
    [Crossref] [Google Scholar]
  159. 159.
    Kar S, et al. Supercond. Sci. Technol. 33::094001 ( 2020.)
    [Crossref] [Google Scholar]
  160. 160.
    Rossi L, Senatore C. Instruments 5:(1):8 ( 2021.)
    [Crossref] [Google Scholar]
  161. 161.
    Gao P, et al. Supercond. Sci. Technol. 32::055006 ( 2019.)
    [Crossref] [Google Scholar]
  162. 162.
    Durante M, et al. IEEE Trans. Appl. Supercond. 30:(4):4602505 ( 2020.)
    [Crossref] [Google Scholar]
  163. 163.
    Kirby GA, et al. IEEE Trans. Appl. Supercond. 27:(4):4003307 ( 2017.)
    [Google Scholar]
  164. 164.
    Araujo DM, et al. IEEE Trans. Appl. Supercond. 30:(4):4003605 ( 2020.)
    [Google Scholar]
  165. 165.
    Wang X, et al. Supercond. Sci. Technol. 34::015012 ( 2021.)
    [Crossref] [Google Scholar]
  166. 166.
    Wang X, et al. Supercond. Sci. Technol. 35::125011 ( 2022.)
    [Crossref] [Google Scholar]
  167. 167.
    Butler JN, Chivukula RS, Peskin ME, eds. Report FERMILAB-CONF-23-008/SLAC-PUB-17717, Fermi Natl. Accel. Lab./SLAC Natl. Accel. Lab., Batavia, IL/Menlo Park, CA: ( 2023.)
    [Google Scholar]
  168. 168.
    Izquierdo Bermudez S, Sabbi G, Zlobin AV. arXiv:2208.13349 [physics.acc-ph] ( 2022.)
  169. 169.
    Sabbi G, et al. IEEE Trans. Appl. Supercond. 25:(3):4001407 ( 2015.)
    [Crossref] [Google Scholar]
  170. 170.
    Xu X. Supercond. Sci. Technol. 30:(9):093001 ( 2017.)
    [Crossref] [Google Scholar]
  171. 171.
    Xu X, Peng X, Sumption M, Collings EW. IEEE Trans. Appl. Supercond. 27:(4):6000105 ( 2017.)
    [Google Scholar]
  172. 172.
    Balachandran S, et al. Supercond. Sci. Technol. 32::044006 ( 2019.)
    [Crossref] [Google Scholar]
  173. 173.
    Xu X, Zlobin AV, Peng X, Li P. IEEE Trans. Appl. Supercond. 29:(5):6000404 ( 2019.)
    [Google Scholar]
  174. 174.
    Yin S, Arbelaez D, Swanson J, Shen T. IEEE Trans. Appl. Supercond. 29:(5):7800205 ( 2019.)
    [Crossref] [Google Scholar]
  175. 175.
    Todesco E, Bottura L, De Rijk G, Rossi L. IEEE Trans. Appl. Supercond. 24:(3):4004306 ( 2014.)
    [Google Scholar]
  176. 176.
    Caspi S, et al. IEEE Trans. Appl. Supercond. 25:(3):4000205 ( 2015.)
    [Google Scholar]
  177. 177.
    Xu Q, et al. IEEE Trans. Appl. Supercond. 26:(4):4000404 ( 2016.)
    [Google Scholar]
  178. 178.
    Rochepault E, Ferracin P, Vallone G. IEEE Trans. Appl. Supercond. 32:(6):4003505 ( 2022.)
    [Google Scholar]
  179. 179.
    Marinozzi V, Ferracin P, Vallone G. IEEE Trans. Appl. Supercond. 33:(5):4003805 ( 2023.)
    [Crossref] [Google Scholar]
  180. 180.
    Ferracin P, et al. IEEE Trans. Appl. Supercond. 32:(6):4000906 ( 2022.)
    [Google Scholar]
  181. 181.
    van Nugteren J, et al. IEEE Trans. Appl. Supercond. 28:(4):4008509 ( 2018.)
    [Crossref] [Google Scholar]
  182. 182.
    Wang X, et al. IEEE Trans. Appl. Supercond. 33:(5):4000608 ( 2023.)
    [Google Scholar]
  183. 183.
    Gupta R, et al. IEEE Trans. Appl. Supercond. 28:(3):4002305 ( 2018.)
    [Crossref] [Google Scholar]
  184. 184.
    Velev GV, et al. IEEE Trans. Appl. Supercond. 31:(5):9500304 ( 2021.)
    [Crossref] [Google Scholar]
  185. 185.
    Hosono H, Yamamoto A, Hiramatsu H, Ma Y. Mater. Today 21:(3):278 ( 2018.)
    [Crossref] [Google Scholar]
  186. 186.
    Kametani F, et al. arXiv:2203.07551 [cond-mat.supr-con] ( 2022.)
  187. 187.
    Zhang Z, et al. Supercond. Sci. Technol. 34::035021 ( 2021.)
    [Crossref] [Google Scholar]
  188. 188.
    Schoerling D, et al. IEEE Trans. Appl. Supercond. 27:(4):4003105 ( 2017.)
    [Crossref] [Google Scholar]
  189. 189.
    Devred A, et al. Supercond. Sci. Technol. 27::044001 ( 2014.)
    [Crossref] [Google Scholar]
  190. 190.
    Rochepault E, et al. IEEE Trans. Appl. Supercond. 30:(4):4001005 ( 2020.)
    [Crossref] [Google Scholar]
  191. 191.
    Calvelli V, et al. IEEE Trans. Appl. Supercond. 31:(5):4002706 ( 2021.)
    [Crossref] [Google Scholar]
  192. 192.
    Kumar M, D'Auria V, Uglietti D, Bruzzone P. IEEE Trans. Appl. Supercond. 29:(5):4800805 ( 2019.)
    [Google Scholar]
  193. 193.
    Mulder T, et al. IEEE Trans. Appl. Supercond. 33:(5):4702105 ( 2023.)
    [Crossref] [Google Scholar]
  194. 194.
    Levi F, et al. IEEE Trans. Appl. Supercond. 33:(5):4000805 ( 2023.)
    [Crossref] [Google Scholar]
  195. 195.
    Ambrosio G, et al. arXiv:2203.07654 [physics.acc-ph] ( 2022.)
  196. 196.
    Casarsa M, Lucchesi D, Sestini L. Annu. Rev. Nucl. Part. Sci. 74::233 ( 2024.)
    [Google Scholar]
  197. 197.
    Ambrosio G, et al. arXiv:2203.13985 [physics.acc-ph] ( 2022.)
  198. 198.
    Xu Q. Progress of the high field magnet program for the next-generation accelerators. Presented at the High Field Magnet Collaboration Annual Meeting 2023, Geneva:, Oct. 30–Nov. 2 ( 2023.)
    [Google Scholar]
  199. 199.
    Ogitsu T, et al. arXiv:2203.12118 [physics.acc-ph] ( 2022.)
/content/journals/10.1146/annurev-nucl-102122-022007
Loading
/content/journals/10.1146/annurev-nucl-102122-022007
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error