1932

Abstract

Historically important in the development of the Standard Model (SM) of particle physics, rare kaon decays are still a privileged tool for looking beyond it. The main reasons to continue the study of rare kaon decays are to test the CKM quark-mixing and -violation paradigm, to make quantitative comparisons with the sector, and to search for explicit violations of the SM. Current research on rare kaon decays focuses mostly on decays, which are predicted with good accuracy within the SM and beyond. Experimentally, these decays, especially that of the charged kaon, have a long history. Their theoretical importance is matched only by their experimental difficulty. This article reviews the progress of the past 10 years, describes the state of the art, and looks toward future perspectives.

Keyword(s): CKMCP violationrare processes
Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102419-054905
2021-09-21
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102419-054905.html?itemId=/content/journals/10.1146/annurev-nucl-102419-054905&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Barbieri R. Int. J. Mod. Phys. A 17:3059 2002.
    [Google Scholar]
  2. 2. 
    Gell-Mann M, Pais A. Phys. Rev. 97:1387 1955.
    [Google Scholar]
  3. 3. 
    Cabibbo N. Phys. Rev. Lett. 10:531 1963.
    [Google Scholar]
  4. 4. 
    Christenson JH, Cronin JW, Fitch VL, Turlay R. Phys. Rev. Lett. 13:138 1964.
    [Google Scholar]
  5. 5. 
    Glashow SL, Iliopoulos J, Maiani L. Phys. Rev. D 2:1285 1970.
    [Google Scholar]
  6. 6. 
    Camerini U, Cline DB, Fry WF, Powell WM. Phys. Rev. Lett. 13:318 1964.
    [Google Scholar]
  7. 7. 
    Fermi E. Z. Phys. 88:161 1934.
    [Google Scholar]
  8. 8. 
    Camerini U et al. Nuovo Cim. 37:1795 1965.
    [Google Scholar]
  9. 9. 
    Bott-Bodenhausen M et al. Phys. Lett. B 24:194 1967. Erratum. Phys. Lett. B 24:352 1967.
    [Google Scholar]
  10. 10. 
    Camerini U, Ljung D, Sheaff M, Cline D. Phys. Rev. Lett. 23:326 1969.
    [Google Scholar]
  11. 11. 
    Glashow SL. Nucl. Phys. 22:579 1961.
    [Google Scholar]
  12. 12. 
    Weinberg S. Phys. Rev. Lett. 19:1264 1967.
    [Google Scholar]
  13. 13. 
    Salam A. Conf. Proc. C 680519:367 1968.
    [Google Scholar]
  14. 14. 
    't Hooft G Nucl. Phys. B 35:167 1971.
    [Google Scholar]
  15. 15. 
    Hasert FJ et al. (Gargamelle Collab.). Phys. Lett. B 46:138 1973.
    [Google Scholar]
  16. 16. 
    Lee TD, Oehme R, Yang CN. Phys. Rev. 106:340 1957.
    [Google Scholar]
  17. 17. 
    Wu TT, Yang CN. Phys. Rev. Lett. 13:380 1964.
    [Google Scholar]
  18. 18. 
    Wolfenstein L. Phys. Rev. Lett. 51:1945 1983.
    [Google Scholar]
  19. 19. 
    Kobayashi M, Maskawa T. Prog. Theor. Phys. 49:652 1973.
    [Google Scholar]
  20. 20. 
    Gaillard MK, Lee BW. Phys. Rev. D 10:897 1974.
    [Google Scholar]
  21. 21. 
    Ellis JR, Gaillard MK, Nanopoulos DV. Nucl. Phys. B 109:213 1976.
    [Google Scholar]
  22. 22. 
    Inami T, Lim CS. Prog. Theor. Phys. 65:297 1981. Erratum. Prog. Theor. Phys. 65:1772 1981.
    [Google Scholar]
  23. 23. 
    Gilman FJ, Wise MB. Phys. Lett. B 83:83 1979.
    [Google Scholar]
  24. 24. 
    Barr GD et al. (NA31 Collab.). Phys. Lett. B 317:233 1993.
    [Google Scholar]
  25. 25. 
    Gibbons LK et al. (E731 Collab.). Phys. Rev. Lett. 70:1203 1993.
    [Google Scholar]
  26. 26. 
    Abouzaid E et al. (KTeV Collab.). Phys. Rev. D 83:092001 2011.
    [Google Scholar]
  27. 27. 
    Batley JR et al. (NA48 Collab.). Phys. Lett. B 544:97 2002.
    [Google Scholar]
  28. 28. 
    Zyla PA et al. (Part. Data Group). PTEP 8:083C01 2020.
    [Google Scholar]
  29. 29. 
    Littenberg LS. Phys. Rev. D 39:3322 1989.
    [Google Scholar]
  30. 30. 
    Greenlee HB. Phys. Rev. D 42:3724 1990.
    [Google Scholar]
  31. 31. 
    Jarlskog C. Phys. Rev. Lett. 55:1039 1985.
    [Google Scholar]
  32. 32. 
    Buchalla G, Buras AJ, Lautenbacher ME. Rev. Mod. Phys. 68:1125 1996.
    [Google Scholar]
  33. 33. 
    Buras AJ, Gorbahn M, Haisch H, Nierste U. Phys. Rev. Lett. 95:261805 2005.
    [Google Scholar]
  34. 34. 
    Brod J, Gorbahn M, Stamou E. Phys. Rev. D 83:034030 2011.
    [Google Scholar]
  35. 35. 
    Isidori G, Mescia F, Smith C. Nucl. Phys. B 718:319 2005.
    [Google Scholar]
  36. 36. 
    Chau LL, Keung WY. Phys. Rev. Lett. 53:1802 1984.
    [Google Scholar]
  37. 37. 
    Buras AJ, Lautenbacher ME, Ostermaier G. Phys. Rev. D 50:3433 1994.
    [Google Scholar]
  38. 38. 
    Charles J et al. (CKMfitter Group). Eur. Phys. J. C 41:1 2005.
    [Google Scholar]
  39. 39. 
    Marciano WJ KAON99: summary and perspective. Kaon Physics JL Rosner, BD Winstein 603–16 Chicago: Univ. Chicago Press 2001.
    [Google Scholar]
  40. 40. 
    Buras AJ KAON99: theoretical status of ε′/ε. Kaon Physics JL Rosner, BD Winstein 67–87 Chicago: Univ. Chicago Press 2001.
    [Google Scholar]
  41. 41. 
    Buras AJ, Buttazzo D, Girrbach-Noe J, Knegjens R. J. High Energy Phys. 1511:33 2015.
    [Google Scholar]
  42. 42. 
    Blanke M et al. J. High Energy Phys. 0903:108 2009.
    [Google Scholar]
  43. 43. 
    Tanimoto M, Yamamoto K. PTEP 12:123B02 2016.
    [Google Scholar]
  44. 44. 
    Blažek T, Maták P. Int. J. Mod. Phys. A 29:1450162 2014.
    [Google Scholar]
  45. 45. 
    Isidori G et al. J. High Energy Phys. 0608:064 2006.
    [Google Scholar]
  46. 46. 
    Buras AJ, Buttazzo D, Knegjens R. J. High Energy Phys. 1511:166 2015.
    [Google Scholar]
  47. 47. 
    Blanke M, Buras AJ, Recksiegel S. Eur. Phys. J. C 76:182 2016.
    [Google Scholar]
  48. 48. 
    Bordone M, Buttazzo D, Isidori G, Monnard J. Eur. Phys. J. C 77:618 2017.
    [Google Scholar]
  49. 49. 
    Fajfer S, Košnik N, Vale Silva L. Eur. Phys. J. C 78:275 2018.
    [Google Scholar]
  50. 50. 
    Artamonov AV et al. (E949 Collab.). Phys. Rev. Lett. 101:191802 2008.
    [Google Scholar]
  51. 51. 
    Adler S et al. (E949/E787 Collab.). Phys. Rev. D 77:052003 2008.
    [Google Scholar]
  52. 52. 
    Kronfeld AS et al. arXiv:1306.5009 [hep-ex] 2013.
  53. 53. 
    Cortina Gil E et al. (NA62 Collab.). J. Instrum. 12:P05025 2017.
    [Google Scholar]
  54. 54. 
    Coleman R et al. (CKM Collab.). A proposal for a precision measurement of the decay Κ++and other rare K+ processes at Fermilab using the main injector Proposal, FERMILAB-PROPOSAL-0905 Fermi Natl. Accel. Lab. Batavia, IL: 1998.
    [Google Scholar]
  55. 55. 
    Aglieri Rinella G et al. J. Instrum. 14:P07010 2019.
    [Google Scholar]
  56. 56. 
    Cortina Gil E et al. (NA62 Collab.). Phys. Lett. B 791:156 2019.
    [Google Scholar]
  57. 57. 
    Cortina Gil E et al. (NA62 Collab.). J. High Energy Phys. 2011.42 2020.
    [Google Scholar]
  58. 58. 
    Marchevski R. Evidence for the decay Κ++from the NA62 experiment at CERN. Presented at the 40th International Conference on High Energy Physics (ICHEP2020) Prague: July 28–Aug. 6 2020.
    [Google Scholar]
  59. 59. 
    Klems JH, Hildebrand RH, Stiening R. Phys. Rev. Lett. 24:1086 1970.
    [Google Scholar]
  60. 60. 
    Cable GD, Hildebrand RH, Pang CY, Stiening R. Phys. Rev. D 8:3807 1973.
    [Google Scholar]
  61. 61. 
    Asano Y et al. Phys. Lett. B 107:159 1981.
    [Google Scholar]
  62. 62. 
    Atiya MS et al. (E787 Collab.). Phys. Rev. Lett. 64:21 1990.
    [Google Scholar]
  63. 63. 
    Atiya MS et al. (E787 Collab.). Phys. Rev. Lett. 70:2521 1993.
    [Google Scholar]
  64. 64. 
    Adler S et al. (E787 Collab.). Phys. Rev. Lett. 76:1421 1996.
    [Google Scholar]
  65. 65. 
    NA62/KLEVER Collab. arXiv:2009.10941 [hep-ex] 2020.
  66. 66. 
    Bediaga I et al. (LHCb Collab.). Physics case for an LHCb Upgrade II Rep. CERN-LHCC-2018-027/LHCB-PUB-2018-009 CERN Geneva: 2018.
    [Google Scholar]
  67. 67. 
    Ahn JK et al. (E391a Collab.) Phys. Rev. D 81:072004 2010.
    [Google Scholar]
  68. 68. 
    Ahn JK et al. (KOTO Collab.). Phys. Rev. Lett. 122:021802 2019.
    [Google Scholar]
  69. 69. 
    Shinohara S. (KOTO Collab.). J. Phys. Conf. Ser. 1526:012002 2020.); Shinohara S. Search for the rare decay at J-PARC KOTO experiment. Presented at the International Conference on Kaon Physics Perugia, Italy: Sept. 10–13 2019.
    [Google Scholar]
  70. 70. 
    Shimizu N. Search for New Physics via thedecay at the J-PARC KOTO experiment. Presented at the 40th International Conference on High Energy Physics (ICHEP2020) Prague: July 28–Aug. 6 2020.
    [Google Scholar]
  71. 71. 
    Graham GE et al. (E731 Collab.). Phys. Lett. B 295:169 1992.
    [Google Scholar]
  72. 72. 
    Weaver M et al. (E799 Collab.). Phys. Rev. Lett. 72:3758 1994.
    [Google Scholar]
  73. 73. 
    Adams J et al. (KTeV Collab.). Phys. Lett. B 447:240 1999.
    [Google Scholar]
  74. 74. 
    Halavi-Harati A et al. (E799 II/KTeV Collab.). Phys. Rev. D 61:072006 2000.
    [Google Scholar]
  75. 75. 
    Ahn JK et al. (E391a Collab.). Phys. Rev. D 74:051105 2006.
    [Google Scholar]
  76. 76. 
    Ahn JK et al. (E391a Collab.). Phys. Rev. Lett. 100:201802 2008.
    [Google Scholar]
  77. 77. 
    Ahn JK et al. (E391a Collab.). PTEP 2:021C01 2017.
    [Google Scholar]
  78. 78. 
    Tung Y. Status and prospect of KOTO Step-I. Presented at the International Conference on Kaon Physics Perugia, Italy: Sept. 10–13 2019.
    [Google Scholar]
  79. 79. 
    Grossman Y, Nir Y. Phys. Lett. B 398:163 1997.
    [Google Scholar]
  80. 80. 
    Nomura T. A futureexperiment at J-PARC. Presented at the International Conference on Kaon Physics Perugia, Italy: Sept. 10–13 2019.
    [Google Scholar]
  81. 81. 
    Ambrosino F et al. (KLEVER Collab.). arXiv:1901.03099 [hep-ex] 2019.
  82. 82. 
    Cheu E et al. (KAMI Collab.). arXiv:hep-ex/9709026 1997.
  83. 83. 
    Ambrose D et al. (E871 Collab.) Phys. Rev. Lett. 84:1389 2000.
    [Google Scholar]
  84. 84. 
    Martin BR, de Rafael E, Smith J. Phys. Rev. D 2:179 1970.
    [Google Scholar]
  85. 85. 
    Gorbahn M, Haisch U. Phys. Rev. Lett. 97:122002 2006.
    [Google Scholar]
  86. 86. 
    Isidori G, Unterdorfer R. J. High Energy Phys. 0401:009 2004.
    [Google Scholar]
  87. 87. 
    D'Ambrosio G, Kitahara T. Phys. Rev. Lett. 119:201802 2017.
    [Google Scholar]
  88. 88. 
    Ambrose D et al. (E871 Collab.). Phys. Rev. Lett. 81:4309 1998.
    [Google Scholar]
  89. 89. 
    Gomez Dumm D, Pich A. Phys. Rev. Lett. 80:4633 1998.
    [Google Scholar]
  90. 90. 
    Ecker G, Pich A. Nucl. Phys. B 366:189 1991.
    [Google Scholar]
  91. 91. 
    Geisdal S et al. Phys. Lett. B 44:217 1973.
    [Google Scholar]
  92. 92. 
    Aaij R et al. (LHCb Collab.). J. High Energy Phys. 1301:90 2013.
    [Google Scholar]
  93. 93. 
    Aaij R et al. (LHCb Collab.). Strong constraints on thebranching fraction Rep. LHCb-CONF-2019-002 CERN Geneva: 2019.
    [Google Scholar]
  94. 94. 
    Bobeth C, Buras AJ. J. High Energy Phys. 1802:101 2018.
    [Google Scholar]
  95. 95. 
    Gherardi V, Marzocca D, Nardecchia M, Romanino A. J. High Energy Phys. 1910:112 2019.
    [Google Scholar]
  96. 96. 
    Toru ME et al. J. High Energy Phys. 1804:19 2018.
    [Google Scholar]
  97. 97. 
    Chobanova V et al. J. High Energy Phys. 1805:24 2018.
    [Google Scholar]
  98. 98. 
    Alves Junior AA et al. J. High Energy Phys. 1905.48 2019.
    [Google Scholar]
  99. 99. 
    Ambrosino F et al. (KLOE Collab.). Phys. Lett. B 672:203 2009.
    [Google Scholar]
  100. 100. 
    Christ NH et al. Phys. Rev. D 94:114516 2016.
    [Google Scholar]
  101. 101. 
    Batley JR et al. (NA48/1 Collab.). Phys. Lett. B 576:43 2003.
    [Google Scholar]
  102. 102. 
    Batley JR et al. (NA48/1 Collab.). Phys. Lett. B 599:197 2004.
    [Google Scholar]
  103. 103. 
    Ecker G, Pich A, de Rafael E. Nucl. Phys. B 291:692 1987.
    [Google Scholar]
  104. 104. 
    D'Ambrosio G, Ecker G, Isidori G, Portoles J J. High Energy Phys. 9808:004 1998.
    [Google Scholar]
  105. 105. 
    Buchalla G, D'Ambrosio G, Isidori G Nucl. Phys. B 672:387 2003.
    [Google Scholar]
  106. 106. 
    Bauer M, Casagrande S, Haisch U, Neubert M. J. High Energy Phys. 1009:17 2010.
    [Google Scholar]
  107. 107. 
    Diwan MV, Ma H, Trueman TL. Phys. Rev. D 65:054020 2002.
    [Google Scholar]
  108. 108. 
    Alavi-Harati A et al. (KTeV/E799 Collab.). Phys. Rev. Lett 93:021805 2002.
    [Google Scholar]
  109. 109. 
    Alavi-Harati A et al. (KTeV Collab.). Phys. Rev. Lett. 84:5279 2000.
    [Google Scholar]
  110. 110. 
    Gripaios B, Nardecchia M, Renner SA. J. High Energy Phys. 1505:6 2015.
    [Google Scholar]
  111. 111. 
    Babusci D et al. (KLOE Collab.). Phys. Lett. B 723:54 2013.
    [Google Scholar]
  112. 112. 
    Lai A et al. (NA48 Collab.). Phys. Lett. B 610:165 2005.
    [Google Scholar]
  113. 113. 
    Harari H. Phys. Rep. 42:235 1978.
    [Google Scholar]
  114. 114. 
    Baldini AM et al. (MEG Collab.). Eur. Phys. J. C 76:434 2016.
    [Google Scholar]
  115. 115. 
    Cirigliano V, Rosell I. Phys. Rev. Lett. 99:231801 2007.
    [Google Scholar]
  116. 116. 
    Ambrosino F et al. (KLOE Collab.). Eur. Phys. J. C 64:627 2009. Erratum. Eur. Phys. J. 65:703 2010.
    [Google Scholar]
  117. 117. 
    Lazzeroni C et al. (NA62 Collab.). Phys. Lett. B 719:326 2013.
    [Google Scholar]
  118. 118. 
    Crivellin A, D'Ambrosio G, Hoferichter M, Tunstall LC Phys. Rev. D 93:074038 2016.
    [Google Scholar]
  119. 119. 
    Atre A, Han T, Pascoli S, Zhang B. J. High Energy Phys. 0905:030 2009.
    [Google Scholar]
  120. 120. 
    Littenberg LS, Shrock R. Phys. Lett. B 491:285 2000.
    [Google Scholar]
  121. 121. 
    Ambrose D et al. (E871 Collab.). Phys. Rev. Lett. 81:5734 1998.
    [Google Scholar]
  122. 122. 
    Abouzaid E et al. (KTeV Collab.). Phys. Rev. Lett. 100:131803 2008.
    [Google Scholar]
  123. 123. 
    Sher A et al. (E865 Collab.). Phys. Rev. D 72:012005 2005.
    [Google Scholar]
  124. 124. 
    Appel R et al. (E865 Collab.). Phys. Rev. Lett. 85:2877 2000.
    [Google Scholar]
  125. 125. 
    Cortina Gil E et al. (NA62 Collab.). Phys. Lett. B 797:134794 2019.
    [Google Scholar]
  126. 126. 
    Borsato M et al. Phys. Rev. D 99:055017 2019.
    [Google Scholar]
  127. 127. 
    Gasser J, Leutwyler H. Ann. Phys. 158:142 1984.
    [Google Scholar]
  128. 128. 
    Cirigliano V et al. Rev. Mod. Phys. 84:399 2012.
    [Google Scholar]
  129. 129. 
    Dubnickova AZ et al. Phys. Part. Nucl. Lett. 5:76 2008.
    [Google Scholar]
  130. 130. 
    Tunstall LC, Crivellin A, D'Ambrosio G, Hoferichter M. J. Phys. Conf. Ser. 800:012014 2017.
    [Google Scholar]
  131. 131. 
    Batley JR et al. (NA48 Collab.). Phys. Lett. B 677:246 2009.
    [Google Scholar]
  132. 132. 
    Batley JR et al. (NA48 Collab.). Phys. Lett. B 697:107 2011.
    [Google Scholar]
  133. 133. 
    Appel R et al. (E865 Collab.). Phys. Rev. Lett. 83:4482 1999.
    [Google Scholar]
  134. 134. 
    Appel R et al. (E865 Collab.). Phys. Rev. Lett. 85:2877 2000.
    [Google Scholar]
  135. 135. 
    D'Ambrosio G, Greynat D, Vulvert V Eur. Phys. J. C 73:2678 2013.
    [Google Scholar]
  136. 136. 
    Alavi-Harati A et al. (KTeV Collab.). Phys. Rev. Lett 90:141801 2003.
    [Google Scholar]
  137. 137. 
    Lai A et al. (NA48 Collab.). Phys. Lett. B 615:31 2005.
    [Google Scholar]
  138. 138. 
    Alavi-Harati A et al. (KTeV Collab.). Phys. Rev. Lett. 90:141801 2003.
    [Google Scholar]
  139. 139. 
    Marin Benito C. J. Phys. Conf. Ser. 800:012031 2017.
    [Google Scholar]
  140. 140. 
    D'Ambrosio G, Ecker G, Isidori G, Neufeld H. arXiv:hep-ph/9411439 1994.
  141. 141. 
    Lai A et al. (NA48 Collab.). Phys. Lett. B 551:7 2003.
    [Google Scholar]
  142. 142. 
    Ambrosino F et al. (KLOE Collab.). J. High Energy Phys. 0805:051 2008.
    [Google Scholar]
  143. 143. 
    Lai A et al. (NA48 Collab.). Phys. Lett. B 536:229 2002.
    [Google Scholar]
  144. 144. 
    Abouzaid E et al. (KTeV Collab.). Phys. Rev. D 77:112004 2008.
    [Google Scholar]
  145. 145. 
    Batley JR et al. (NA48/2 Collab.). Phys. Lett. B 788:552 2019.
    [Google Scholar]
  146. 146. 
    Cappiello L, Cata O, D'Ambrosio G, Gao DN Eur. Phys. J. C 72:1872 2012. Erratum. Eur. Phys. J. C 72:2208 2012.
    [Google Scholar]
  147. 147. 
    Asaka T, Shaposhnikov M. Phys. Lett. B 620:17 2005.
    [Google Scholar]
  148. 148. 
    Asaka T, Blanchet S, Shaposhnikov M. Phys. Lett. B 631:151 2005.
    [Google Scholar]
  149. 149. 
    Aguilar-Arevalo A et al. (PIENU Collab.). Phys. Rev. D 97:072012 2018.
    [Google Scholar]
  150. 150. 
    Artamonov AV et al. (E949 Collab.). Phys. Rev. D 91:052001 2015. Erratum. Phys. Rev. D 91:059903 2015.
    [Google Scholar]
  151. 151. 
    Cortina Gil E et al. (NA62 Collab.). Phys. Lett. B 807:135599 2020.
    [Google Scholar]
  152. 152. 
    Artamonov AV et al. (E949 Collab.). Phys. Rev. D 79:092004 2009.
    [Google Scholar]
  153. 153. 
    Cirigliano V, Gisbert H, Pich A, Rodríguez-Sánchez A. J. High Energy Phys. 2002.32 2020.
    [Google Scholar]
  154. 154. 
    Abbott R et al. (RBC/UKQCD Collab.). Phys. Rev. D 102:054509 2020.
    [Google Scholar]
  155. 155. 
    Aebischer J, Bobeth C, Buras AJ. Eur. Phys. J. C 80:705 2020.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102419-054905
Loading
/content/journals/10.1146/annurev-nucl-102419-054905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error