1932

Abstract

Neutrino–neutrino refraction dominates the flavor evolution in core-collapse supernovae, neutron star mergers, and the early Universe. Ordinary neutrino flavor conversions develop on timescales determined by the vacuum oscillation frequency. However, when the neutrino density is large enough, collective flavor conversions may arise because of pairwise neutrino scattering. Pairwise conversions are deemed fast because they are expected to occur on timescales that depend on the neutrino–neutrino interaction energy (i.e., on the neutrino number density) and are regulated by the angular distributions of electron neutrinos and antineutrinos. The enigmatic phenomenon of fast pairwise conversions has been overlooked for a long time. However, because of the fast conversion rate, pairwise conversions could occur in the proximity of the neutrino decoupling region with yet-to-be-understood implications for the hydrodynamics of astrophysical sources and the synthesis of the heavy elements. We review the physics of this fascinating phenomenon and its implications for neutrino-dense sources.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-102920-050505
2021-09-21
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/nucl/71/1/annurev-nucl-102920-050505.html?itemId=/content/journals/10.1146/annurev-nucl-102920-050505&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Vitagliano E, Tamborra I, Raffelt G. Rev. Mod. Phys. 92:45006 2020.
    [Google Scholar]
  2. 2. 
    Duan H, Fuller GM, Qian YZ. Annu. Rev. Nucl. Part. Sci. 60:569 2010.
    [Google Scholar]
  3. 3. 
    Mirizzi A et al. Riv. Nuovo Cim. 39:1 2016.
    [Google Scholar]
  4. 4. 
    Chakraborty S, Hansen R, Izaguirre I, Raffelt GG. Nucl. Phys. B 908:366 2016.
    [Google Scholar]
  5. 5. 
    Mikheev SP, Smirnov AYu Sov. Phys. JETP 64:4 1986.
    [Google Scholar]
  6. 6. 
    Mikheyev SP, Smirnov AYu Yad. Fiz 42:1441 1985.
    [Google Scholar]
  7. 7. 
    Wolfenstein L. Phys. Rev. D 17:2369 1978.
    [Google Scholar]
  8. 8. 
    Fuller GM, Mayle RW, Wilson JR, Schramm DN. Astrophys. J. 322:795 1987.
    [Google Scholar]
  9. 9. 
    Nötzold D, Raffelt GG. Nucl. Phys. B 307:924 1988.
    [Google Scholar]
  10. 10. 
    Pantaleone JT. Phys. Lett. B 287:128 1992.
    [Google Scholar]
  11. 11. 
    Pantaleone JT. Phys. Rev. D 46:510 1992.
    [Google Scholar]
  12. 12. 
    Janka HT et al. Phys. Rep. 442:38 2007.
    [Google Scholar]
  13. 13. 
    Janka HT Neutrino-driven explosions. Handbook of Supernovae AW Alsabti, P Murdin1095150 Cham, Switz: Springer( 2017.
    [Google Scholar]
  14. 14. 
    Burrows A. Rev. Mod. Phys. 85:245 2013.
    [Google Scholar]
  15. 15. 
    Burrows A, Vartanyan D. Nature 589:29 2021.
    [Google Scholar]
  16. 16. 
    Duan H, Fuller GM, Carlson J, Qian YZ. Phys. Rev. D 74:105014 2006.
    [Google Scholar]
  17. 17. 
    Fogli G, Lisi E, Marrone A, Mirizzi A. J. Cosmol. Astropart. Phys. 0712:010 2007.
    [Google Scholar]
  18. 18. 
    Raffelt GG, Sarikas S, de Sousa Seixas D. Phys. Rev. Lett. 111:091101 2013. Erratum. Phys. Rev. Lett. 113:239903 (2014)
    [Google Scholar]
  19. 19. 
    Duan H, Shalgar S. Phys. Lett. B 747:139 2015.
    [Google Scholar]
  20. 20. 
    Abbar S, Duan H, Shalgar S. Phys. Rev. D 92:065019 2015.
    [Google Scholar]
  21. 21. 
    Mirizzi A, Mangano G, Saviano N. Phys. Rev. D 92:021702 2015.
    [Google Scholar]
  22. 22. 
    Cirigliano V, Paris MW, Shalgar S. Phys. Lett. B 774:258 2017.
    [Google Scholar]
  23. 23. 
    Sawyer RF. Phys. Rev. D 72:045003 2005.
    [Google Scholar]
  24. 24. 
    Sawyer RF. Phys. Rev. D 79:105003 2009.
    [Google Scholar]
  25. 25. 
    Sawyer RF. Phys. Rev. Lett. 116:081101 2016.
    [Google Scholar]
  26. 26. 
    Chakraborty S, Hansen RS, Izaguirre I, Raffelt GG. J. Cosmol. Astropart. Phys. 1603:042 2016.
    [Google Scholar]
  27. 27. 
    Izaguirre I, Raffelt G, Tamborra I. Phys. Rev. Lett. 118:021101 2017.
    [Google Scholar]
  28. 28. 
    Friedland A, Lunardini C. J. High Energy Phys. 0310:043 2003.
    [Google Scholar]
  29. 29. 
    Friedland A, Lunardini C. Phys. Rev. D 68:013007 2003.
    [Google Scholar]
  30. 30. 
    Balantekin A, Pehlivan Y. J. Phys. G 34:47 2007.
    [Google Scholar]
  31. 31. 
    Pehlivan Y et al. AIP Conf. Proc. 1269:189 2010.
    [Google Scholar]
  32. 32. 
    Pehlivan Y, Balantekin A, Kajino T, Yoshida T. Phys. Rev. D 84:065008 2011.
    [Google Scholar]
  33. 33. 
    Birol S, Pehlivan Y, Balantekin A, Kajino T. Phys. Rev. D 98:083002 2018.
    [Google Scholar]
  34. 34. 
    Patwardhan AV, Cervia MJ, Balantekin AB. Phys. Rev. D 99:123013 2019.
    [Google Scholar]
  35. 35. 
    Cervia MJ et al. Phys. Rev. D 100:083001 2019.
    [Google Scholar]
  36. 36. 
    Rrapaj E. Phys. Rev. C 101:065805 2020.
    [Google Scholar]
  37. 37. 
    Sigl G, Raffelt GG. Nucl. Phys. B 406:423 1993.
    [Google Scholar]
  38. 38. 
    Cardall CY. Phys. Rev. D 78:085017 2008.
    [Google Scholar]
  39. 39. 
    Stirner T, Sigl G, Raffelt GG. J. Cosmol. Astropart. Phys. 1805:016 2018.
    [Google Scholar]
  40. 40. 
    Nunokawa H, Peltoniemi J, Rossi A, Valle J. Phys. Rev. D 56:1704 1997.
    [Google Scholar]
  41. 41. 
    Stapleford CJ et al. Phys. Rev. D 94:093007 2016.
    [Google Scholar]
  42. 42. 
    Wong YY. Phys. Rev. D 66:025015 2002.
    [Google Scholar]
  43. 43. 
    Dolgov A et al. Nucl. Phys. B 632:363 2002.
    [Google Scholar]
  44. 44. 
    Johns L et al. Phys. Rev. D 94:083505 2016.
    [Google Scholar]
  45. 45. 
    Banerjee A, Dighe A, Raffelt GG. Phys. Rev. D 84:053013 2011.
    [Google Scholar]
  46. 46. 
    Sarikas S, Raffelt GG, Hüdepohl L, Janka HT. Phys. Rev. Lett. 108:061101 2012.
    [Google Scholar]
  47. 47. 
    Abbar S, Duan H. Phys. Rev. D 98:043014 2018.
    [Google Scholar]
  48. 48. 
    Shalgar S, Padilla-Gay I, Tamborra I. J. Cosmol. Astropart. Phys. 2006.048 2020.
    [Google Scholar]
  49. 49. 
    Capozzi F, Raffelt GG, Stirner T. J. Cosmol. Astropart. Phys. 1909.002 2019.
    [Google Scholar]
  50. 50. 
    Stirner T. 2020. Fast neutrino flavour conversions. PhD Thesis Ludwig Maximilian Univ. Munich
    [Google Scholar]
  51. 51. 
    Capozzi F et al. Phys. Rev. D 96:043016 2017.
    [Google Scholar]
  52. 52. 
    Sturrock P. Phys. Rev. 112:1488 1958.
    [Google Scholar]
  53. 53. 
    Yi C, Ma L, Martin JD, Duan H. Phys. Rev. D 99:063005 2019.
    [Google Scholar]
  54. 54. 
    Shalgar S, Tamborra I, Bustamante M. Phys. Rev. D 103123008( 2021.
  55. 55. 
    Chakraborty M, Chakraborty S. J. Cosmol. Astropart. Phys. 2001:005 2020.
    [Google Scholar]
  56. 56. 
    Capozzi F, Chakraborty M, Chakraborty S, Sen M. Phys. Rev. Lett. 125:251801 2020.
    [Google Scholar]
  57. 57. 
    Dighe A, Sen M. Phys. Rev. D 97:043011 2018.
    [Google Scholar]
  58. 58. 
    Esteban-Pretel A et al. Phys. Rev. D 78:085012 2008.
    [Google Scholar]
  59. 59. 
    Airen S et al. J. Cosmol. Astropart. Phys. 1812:019 2018.
    [Google Scholar]
  60. 60. 
    Dasgupta B, Sen M. Phys. Rev. D 97:023017 2018.
    [Google Scholar]
  61. 61. 
    Johns L, Nagakura H, Fuller GM, Burrows A. Phys. Rev. D 101:043009 2020.
    [Google Scholar]
  62. 62. 
    Shalgar S, Tamborra I. J. Cosmol. Astropart. Phys. 2101:014 2021.
    [Google Scholar]
  63. 63. 
    Hannestad S, Raffelt GG, Sigl G, Wong YY. Phys. Rev. D 74:105010 2006. Erratum. Phys. Rev. D 76:029901 (2007)
    [Google Scholar]
  64. 64. 
    Martin JD, Yi C, Duan H. Phys. Lett. B 800:135088 2020.
    [Google Scholar]
  65. 65. 
    Capozzi F et al. Phys. Rev. Lett. 122:091101 2019.
    [Google Scholar]
  66. 66. 
    Shalgar S, Tamborra I. Astrophys. J. 883:80 2019.
    [Google Scholar]
  67. 67. 
    Shalgar S, Tamborra I. Phys. Rev. D 103:063002 2021.
    [Google Scholar]
  68. 68. 
    Brandt TD, Burrows A, Ott CD, Livne E. Astrophys. J. 728:8 2011.
    [Google Scholar]
  69. 69. 
    Tamborra I, Hüedepohl L, Raffelt GG, Janka HT. Astrophys. J. 839:132 2017.
    [Google Scholar]
  70. 70. 
    Tamborra I et al. Astrophys. J. 792:96 2014.
    [Google Scholar]
  71. 71. 
    Abbar S. Phys. Rev. D 103:045014 2021.
    [Google Scholar]
  72. 72. 
    Sarikas S, de Sousa Seixas D, Raffelt GG. Phys. Rev. D 86:125020 2012.
    [Google Scholar]
  73. 73. 
    Morinaga T, Yamada S. Phys. Rev. D 97:023024 2018.
    [Google Scholar]
  74. 74. 
    Johns L, Nagakura H, Fuller GM, Burrows A. Phys. Rev. D 102:103017 2020.
    [Google Scholar]
  75. 75. 
    Bhattacharyya S, Dasgupta B. Phys. Rev. Lett. 126:061302 2021.
    [Google Scholar]
  76. 76. 
    Bethe HA, Wilson JR. Astrophys. J. 295:14 1985.
    [Google Scholar]
  77. 77. 
    Shapiro SL, Teukolsky SA. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects Hoboken, NJ: Wiley 2008.
    [Google Scholar]
  78. 78. 
    Bollig R et al. Phys. Rev. Lett. 119:242702 2017.
    [Google Scholar]
  79. 79. 
    Janka HT, Melson T, Summa A. Annu. Rev. Nucl. Part. Sci. 66:341 2016.
    [Google Scholar]
  80. 80. 
    Burrows A. arXiv:1812.05612 [astro-ph.SR] 2018.
  81. 81. 
    Mezzacappa A, Endeve E, Messer OB, Bruenn SW. arXiv:2010.09013 [astro-ph.HE] 2020.
  82. 82. 
    Vartanyan D, Burrows A, Radice D. Mon. Not. R. Astron. Soc. 489:2227 2019.
    [Google Scholar]
  83. 83. 
    Nagakura H et al. Astrophys. J. 854:136 2018.
    [Google Scholar]
  84. 84. 
    Bruenn SW et al. Astrophys. J. 818:123 2016.
    [Google Scholar]
  85. 85. 
    O'Connor EP, Couch SM Astrophys. J. 854:63 2018.
    [Google Scholar]
  86. 86. 
    Richers S et al. Astrophys. J. 847:133 2017.
    [Google Scholar]
  87. 87. 
    Vartanyan D et al. Mon. Not. R. Astron. Soc. 477:3091 2018.
    [Google Scholar]
  88. 88. 
    Just O et al. Mon. Not. R. Astron. Soc. 481:4786 2018.
    [Google Scholar]
  89. 89. 
    Cabezón RM et al. Astron. Astrophys. 619:A118 2018.
    [Google Scholar]
  90. 90. 
    Pan KC et al. J. Phys. G 46:014001 2019.
    [Google Scholar]
  91. 91. 
    Glas R et al. Astrophys. J. 881:36 2019.
    [Google Scholar]
  92. 92. 
    Glas R, Just O, Janka HT, Obergaulinger M. Astrophys. J. 873:45 2019.
    [Google Scholar]
  93. 93. 
    Dasgupta B, Mirizzi A, Sen M. Phys. Rev. D 98:103001 2018.
    [Google Scholar]
  94. 94. 
    Abbar S. J. Cosmol. Astropart. Phys. 2005:027 2020.
    [Google Scholar]
  95. 95. 
    Abbar S et al. Phys. Rev. D 100:043004 2019.
    [Google Scholar]
  96. 96. 
    Delfan Azari M et al. Phys. Rev. D 99:103011 2019.
    [Google Scholar]
  97. 97. 
    Delfan Azari M et al. Phys. Rev. D 101:023018 2020.
    [Google Scholar]
  98. 98. 
    Glas R et al. Phys. Rev. D 101:063001 2020.
    [Google Scholar]
  99. 99. 
    Abbar S et al. Phys. Rev. D 101:043016 2020.
    [Google Scholar]
  100. 100. 
    Nagakura H, Morinaga T, Kato C, Yamada S. Astrophys. J. 886:139 2019.
    [Google Scholar]
  101. 101. 
    Morinaga T, Nagakura H, Kato C, Yamada S. Phys. Rev. Res. 2:012046 2020.
    [Google Scholar]
  102. 102. 
    Xiong Z, Sieverding A, Sen M, Qian Y-Z. Astrophys. J. 900:144 2020.
    [Google Scholar]
  103. 103. 
    Ruffert M, Janka HT, Takahashi K, Schäfer G. Astron. Astrophys. 319:122 1997.
    [Google Scholar]
  104. 104. 
    Foucart F et al. Phys. Rev. D 91:124021 2015.
    [Google Scholar]
  105. 105. 
    Hayato Y et al. Astrophys. J. Lett. 857:L4 2018.
    [Google Scholar]
  106. 106. 
    Lattimer JM, Schramm DN. Astrophys. J. Lett. 192:L145 1974.
    [Google Scholar]
  107. 107. 
    Eichler D, Livio M, Piran T, Schramm DN. Nature 340:126 1989.
    [Google Scholar]
  108. 108. 
    Li LX, Paczynski B. Astrophys. J. Lett. 507:L59 1998.
    [Google Scholar]
  109. 109. 
    Kulkarni SR. arXiv:astro-ph/0510256 [astro-ph] 2005.
  110. 110. 
    Metzger B et al. Mon. Not. R. Astron. Soc. 406:2650 2010.
    [Google Scholar]
  111. 111. 
    Wanajo S et al. Astrophys. J. Lett. 789:L39 2014.
    [Google Scholar]
  112. 112. 
    Perego A et al. Mon. Not. R. Astron. Soc. 443:3134 2014.
    [Google Scholar]
  113. 113. 
    Fernández R, Metzger BD. Annu. Rev. Nucl. Part. Sci. 66:23 2016.
    [Google Scholar]
  114. 114. 
    Sekiguchi Y, Kiuchi K, Kyutoku K, Shibata M. Phys. Rev. D 91:064059 2015.
    [Google Scholar]
  115. 115. 
    Radice D et al. Mon. Not. R. Astron. Soc. 460:3255 2016.
    [Google Scholar]
  116. 116. 
    Miller JM et al. Phys. Rev. D 100:023008 2019.
    [Google Scholar]
  117. 117. 
    Woosley SE. Astrophys. J. 405:273 1993.
    [Google Scholar]
  118. 118. 
    Ruffert M, Janka HT. Astron. Astrophys. 344:573 1999.
    [Google Scholar]
  119. 119. 
    Zalamea I, Beloborodov AM. Mon. Not. R. Astron. Soc. 410:2302 2011.
    [Google Scholar]
  120. 120. 
    Just O et al. Astrophys. J. Lett. 816:L30 2016.
    [Google Scholar]
  121. 121. 
    Foucart F et al. Astrophys. J. Lett. 902:L27 2020.
    [Google Scholar]
  122. 122. 
    Abbott B et al. Phys. Rev. Lett. 119:161101 2017.
    [Google Scholar]
  123. 123. 
    Abbott B et al. Astrophys. J. Lett. 848:L13 2017.
    [Google Scholar]
  124. 124. 
    Abbott B et al. Astrophys. J. Lett. 848:L12 2017.
    [Google Scholar]
  125. 125. 
    Foucart F et al. Phys. Rev. D 90:024026 2014.
    [Google Scholar]
  126. 126. 
    Just O et al. Mon. Not. R. Astron. Soc. 448:541 2015.
    [Google Scholar]
  127. 127. 
    Fernández R, Metzger BD. Mon. Not. R. Astron. Soc. 435:502 2013.
    [Google Scholar]
  128. 128. 
    Lippuner J et al. Mon. Not. R. Astron. Soc. 472:904 2017.
    [Google Scholar]
  129. 129. 
    Fujibayashi S et al. Astrophys. J. 860:64 2018.
    [Google Scholar]
  130. 130. 
    Wu MR, Tamborra I, Just O, Janka HT. Phys. Rev. D 96:123015 2017.
    [Google Scholar]
  131. 131. 
    Ardevol-Pulpillo R, Janka HT, Just O, Bauswein A. Mon. Not. R. Astron. Soc. 485:4754 2019.
    [Google Scholar]
  132. 132. 
    George M et al. Phys. Rev. D 102:103015 2020.
    [Google Scholar]
  133. 133. 
    Malkus A, Friedland A, McLaughlin G. arXiv:1403.5797 [hep-ph] 2014.
  134. 134. 
    Malkus A, Kneller J, McLaughlin G, Surman R. Phys. Rev. D 86:085015 2012.
    [Google Scholar]
  135. 135. 
    Wu MR, Duan H, Qian YZ. Phys. Lett. B 752:89 2016.
    [Google Scholar]
  136. 136. 
    Tian JY, Patwardhan AV, Fuller GM. Phys. Rev. D 96:043001 2017.
    [Google Scholar]
  137. 137. 
    Vlasenko A, McLaughlin G. Phys. Rev. D 97:083011 2018.
    [Google Scholar]
  138. 138. 
    Shalgar S. J. Cosmol. Astropart. Phys. 1802:010 2018.
    [Google Scholar]
  139. 139. 
    Wu MR, Tamborra I. Phys. Rev. D 95:103007 2017.
    [Google Scholar]
  140. 140. 
    Padilla-Gay I, Shalgar S, Tamborra I. J. Cosmol. Astropart. Phys. 2101:017 2021.
    [Google Scholar]
  141. 141. 
    Lesgourgues J, Mangano G, Miele G, Pastor S. Neutrino Cosmology Cambridge, UK: Cambridge Univ. Press 2013.
    [Google Scholar]
  142. 142. 
    Zyla P et al. PTEP 2020:083C01 2020.
    [Google Scholar]
  143. 143. 
    Akita K, Yamaguchi M. J. Cosmol. Astropart. Phys. 2008:012 2020.
    [Google Scholar]
  144. 144. 
    Lunardini C, Smirnov A. Nucl. Phys. B 616:307 2001.
    [Google Scholar]
  145. 145. 
    Abazajian KN, Beacom JF, Bell NF. Phys. Rev. D 66:013008 2002.
    [Google Scholar]
  146. 146. 
    Pastor S, Raffelt GG, Semikoz DV. Phys. Rev. D 65:053011 2002.
    [Google Scholar]
  147. 147. 
    Froustey J, Pitrou C, Volpe MC. J. Cosmol. Astropart. Phys. 2012.015 2020.
    [Google Scholar]
  148. 148. 
    Hansen RS, Shalgar S, Tamborra I. arXiv:2012.03948 [ astro-ph.CO] 2020.
  149. 149. 
    Bell NF, Volkas RR, Wong YY. Phys. Rev. D 59:113001 1999.
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-102920-050505
Loading
/content/journals/10.1146/annurev-nucl-102920-050505
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error