1932

Abstract

Detection of low-energy nuclear recoil events plays a central role in searches for particle dark matter interactions with atomic matter and studies of coherent neutrino scatters. Precise nuclear recoil calibration data allow the responses of these dark matter and neutrino detectors to be characterized and enable in situ evaluation of an experiment's sensitivity to anticipated signals. This article reviews the common methods for detection of nuclear recoil events and the wide variety of techniques that have been developed to calibrate detector response to nuclear recoils. We summarize the main experimental factors that are critical for accurate nuclear recoil calibrations, investigate mitigation strategies for different backgrounds and biases, and discuss how the presentation of calibration results can facilitate comparison between experiments. Lastly, we discuss the challenges for future nuclear recoil calibration efforts and the physics opportunities they may enable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-111722-025122
2023-09-25
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/nucl/73/1/annurev-nucl-111722-025122.html?itemId=/content/journals/10.1146/annurev-nucl-111722-025122&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Gaitskell RJ. Annu. Rev. Nucl. Part. Sci. 54:315 2004.)
    [Google Scholar]
  2. 2.
    Buchmüller W, Peccei R, Yanagida T. Annu. Rev. Nucl. Part. Sci. 55:311 2005.)
    [Google Scholar]
  3. 3.
    Marciano WJ, Parsa Z. Annu. Rev. Nucl. Part. Sci. 36:171 1986.)
    [Google Scholar]
  4. 4.
    Freedman DZ. Phys. Rev. D 9:1389 1974.)
    [Google Scholar]
  5. 5.
    Akimov D et al. Science 357:63561123 2017.)
    [Google Scholar]
  6. 6.
    Lewin JD, Smith PF. Astropart. Phys. 6:87 1996.)
    [Google Scholar]
  7. 7.
    Lindhard J, Scharff M. Phys. Rev. 124:1128 1961.)
    [Google Scholar]
  8. 8.
    Essig R et al. arXiv:2203.08297 [hep-ph] 2022.)
  9. 9.
    Akindele OA et al. arXiv:2203.07214 [hep-ex] 2022.)
  10. 10.
    Bowen M, Huber P. Phys. Rev. D 102:5053008 2020.)
    [Google Scholar]
  11. 11.
    Chavarria AE et al. Phys. Rev. D 94:8082007 2016.)
    [Google Scholar]
  12. 12.
    Albarkry MR et al. arXiv:2303.02196 [physics.ins-det] 2023.)
  13. 13.
    Collar JI, Kavner ARL, Lewis CM. Phys. Rev. D 103:12122003 2021.)
    [Google Scholar]
  14. 14.
    Barbeau PS, Collar JI, Tench O. J. Cosmol. Astropart. Phys. 0709:009 2007.)
    [Google Scholar]
  15. 15.
    Albakry MF et al. Phys. Rev. D 105:12122002 2022.)
    [Google Scholar]
  16. 16.
    Chasman C, Jones KW, Kraner HW, Brandt W. Phys. Rev. Lett. 21:201430 1968.)
    [Google Scholar]
  17. 17.
    Akerib DS et al. Phys. Rev. Lett. 116:16161301 2016.)
    [Google Scholar]
  18. 18.
    Lenardo BG et al. Phys. Rev. Lett. 123:23231106 2019a.)
    [Google Scholar]
  19. 19.
    Akerib DS et al. (LUX Collab.) arXiv:2210.05859 [physics.ins-det] 2022.)
  20. 20.
    Aghanim N et al. (Planck Collab.) Astron. Astrophys. 641:A6 2020. Erratum. Astron. Astrophys. 652:C4
    [Google Scholar]
  21. 21.
    Feng JL. Annu. Rev. Astron. Astrophys. 48:495 2010.)
    [Google Scholar]
  22. 22.
    Jungman G, Kamionkowski M, Griest K. Phys. Rep. 267:5195 1996.)
    [Google Scholar]
  23. 23.
    Steigman G, Dasgupta B, Beacom JF. Phys. Rev. D 86:2023506 2012.)
    [Google Scholar]
  24. 24.
    Fitzpatrick AL et al. J. Cosmol. Astropart. Phys. 1302:004 2013.)
    [Google Scholar]
  25. 25.
    Essig R et al. arXiv:1311.0029 [hep-ph] 2013.)
  26. 26.
    Essig R, Pradler J, Sholapurkar M, Yu TT. Phys. Rev. Lett. 124:2021801 2020.)
    [Google Scholar]
  27. 27.
    Gu PH, He XG. Phys. Lett. B 778:292 2018.)
    [Google Scholar]
  28. 28.
    Escudero M, Berlin A, Hooper D, Lin MX. J. Cosmol. Astropart. Phys. 1612:029 2016.)
    [Google Scholar]
  29. 29.
    Akerib DS et al. Phys. Rev. Lett. 122:13131301 2019.)
    [Google Scholar]
  30. 30.
    Aprile E et al. Phys. Rev. Lett. 123:25251801 2019.)
    [Google Scholar]
  31. 31.
    Agnese R et al. Phys. Rev. Lett. 116:7071301 2016.)
    [Google Scholar]
  32. 32.
    Akerib DS et al. Phys. Rev. D 104:6062005 2021.)
    [Google Scholar]
  33. 33.
    Aprile E et al. arXiv:2210.07591 [hep-ex] 2022.)
  34. 34.
    Adhikari P et al. Phys. Rev. D 102:8082001 2020.)
    [Google Scholar]
  35. 35.
    Agnes P et al. Phys. Rev. D 101:6062002 2020.)
    [Google Scholar]
  36. 36.
    Balantekin AB, Kayser B. Annu. Rev. Nucl. Part. Sci. 68:313 2018.)
    [Google Scholar]
  37. 37.
    Fukuda Y et al. Phys. Rev. Lett. 81:81562 1998.)
    [Google Scholar]
  38. 38.
    Ahmad QR et al. Phys. Rev. Lett. 87:7071301 2001.)
    [Google Scholar]
  39. 39.
    de Gouvêa A. Annu. Rev. Nucl. Part. Sci. 66:197 2016.)
    [Google Scholar]
  40. 40.
    KATRIN Collab Nat. Phys. 18:2160 2022.)
    [Google Scholar]
  41. 41.
    Scholberg K. Phys. Rev. D 73:033005 2006.)
    [Google Scholar]
  42. 42.
    Akimov D et al. Phys. Rev. Lett. 126:1012002 2021.)
    [Google Scholar]
  43. 43.
    Anderson AJ et al. Phys. Rev. D 86:1013004 2012.)
    [Google Scholar]
  44. 44.
    Janka HT, Melson T, Summa A. Annu. Rev. Nucl. Part. Sci. 66:341 2016.)
    [Google Scholar]
  45. 45.
    Nakamura K et al. Mon. Not. R. Astron. Soc. 461:33296 2016.)
    [Google Scholar]
  46. 46.
    Hagmann C, Bernstein A. IEEE Trans. Nucl. Sci. 51:52151 2004.)
    [Google Scholar]
  47. 47.
    Aguilar-Arevalo AA et al. Phys. Rev. D 106:1012001 2022.)
    [Google Scholar]
  48. 48.
    Akimov D et al. Phys. Rev. Lett. 130:051803 2023.)
    [Google Scholar]
  49. 49.
    Ziegler JF, Ziegler MD, Biersack JP. Nucl. Instrum. Methods B 268:1818 2010.)
    [Google Scholar]
  50. 50.
    Lindhard J, Nielsen V, Scharff M, Thomsen P. Mat. Fys. Medd. 33:1010 1963.)
    [Google Scholar]
  51. 51.
    Lindhard J, Scharff M, Schiøtt HE. Mat. Fys. Medd. 33:1414 1963.)
    [Google Scholar]
  52. 52.
    Lindhard J, Nielsen V, Scharff M. Mat. Fys. Medd. 36:1010 1968.)
    [Google Scholar]
  53. 53.
    Shutt T et al. Nucl. Instrum. Methods A 579:1451 2007.)
    [Google Scholar]
  54. 54.
    Sorensen P, Dahl CE. Phys. Rev. D 83:6063501 2011.)
    [Google Scholar]
  55. 55.
    Mei DM, Yin ZB, Stonehill L, Hime A. Astropart. Phys. 30:112 2008.)
    [Google Scholar]
  56. 56.
    Li L. 2022. A measurement of the response of a high purity germanium detector to low-energy nuclear recoils. PhD Thesis Duke Univ. Durham, NC:
    [Google Scholar]
  57. 57.
    Sorensen P. Phys. Rev. D 91:8083509 2015.)
    [Google Scholar]
  58. 58.
    Sarkis Y, Aguilar-Arevalo A, D'Olivo JC Phys. Rev. D 101:10102001 2020.)
    [Google Scholar]
  59. 59.
    Birks JB. Proc. Phys. Soc. Sect. A 64:10874 1951.)
    [Google Scholar]
  60. 60.
    Migdal AB. J. Phys. Acad. Sci. USSR 4:449 1941.)
    [Google Scholar]
  61. 61.
    Ibe M, Nakano W, Shoji Y, Suzuki K J. High Energy Phys. 2018:194 2018.)
    [Google Scholar]
  62. 62.
    Baxter D, Kahn Y, Krnjaic G. Phys. Rev. D 101:7076014 2020.)
    [Google Scholar]
  63. 63.
    Aprile E et al. Phys. Rev. Lett. 123:24241803 2019.)
    [Google Scholar]
  64. 64.
    Agnes P et al. (DarkSide-50 Collab.) Phys. Rev. Lett. 130:101001 2023.)
    [Google Scholar]
  65. 65.
    Albakry M et al. Phys. Rev. D In press 2023.)
    [Google Scholar]
  66. 66.
    Andreen CJ, Hines RL. Phys. Rev. 159:2285 1967.)
    [Google Scholar]
  67. 67.
    Bernabei R et al. Eur. Phys. J. C 53:205 2008.)
    [Google Scholar]
  68. 68.
    Bernabei R et al. Eur. Phys. J. C 56:3335 2008.)
    [Google Scholar]
  69. 69.
    Amaudruz PA et al. Phys. Rev. Lett. 121:7071801 2018.)
    [Google Scholar]
  70. 70.
    Abe K et al. Phys. Lett. B 789:45 2019.)
    [Google Scholar]
  71. 71.
    Agnes P et al. Phys. Rev. D 98:10102006 2018.)
    [Google Scholar]
  72. 72.
    Ahmed Z et al. (CDMS Collab.) Phys. Rev. Lett. 106:13131302 2011.)
    [Google Scholar]
  73. 73.
    Agnolet G et al. Nucl. Instrum. Methods A 853:53 2017.)
    [Google Scholar]
  74. 74.
    Agnese R et al. Phys. Rev. Lett. 111:25251301 2013.)
    [Google Scholar]
  75. 75.
    Angle J et al. Phys. Rev. Lett. 100:2021303 2008.)
    [Google Scholar]
  76. 76.
    Akerib DS et al. Phys. Rev. Lett. 112:9091303 2014.)
    [Google Scholar]
  77. 77.
    Aprile E et al. Phys. Rev. Lett. 121:11111302 2018.)
    [Google Scholar]
  78. 78.
    Arnaud Q et al. Astropart. Phys. 97:54 2018.)
    [Google Scholar]
  79. 79.
    Abdelhameed AH et al. Phys. Rev. D 100:10102002 2019.)
    [Google Scholar]
  80. 80.
    Ren R et al. Phys. Rev. D 104:3032010 2021.)
    [Google Scholar]
  81. 81.
    Onillon A et al. Proc. Sci. PANIC2021 294 2022.)
    [Google Scholar]
  82. 82.
    Fleischmann A, Enss C, Seidel G. Cryogenic Particle Detection C Enss 197211. Berlin: Springer 2005.)
    [Google Scholar]
  83. 83.
    Ulbricht G, Lucia MD, Baldwin E. Appl. Sci. 11:62671 2021.)
    [Google Scholar]
  84. 84.
    Hochberg Y et al. Phys. Rev. Lett. 123:15151802 2019.)
    [Google Scholar]
  85. 85.
    Adari P et al. SciPost Phys. Proc. 9:001 2022.)
    [Google Scholar]
  86. 86.
    Amole C et al. Phys. Rev. D 100:2022001 2019.)
    [Google Scholar]
  87. 87.
    Szydagis M et al. Phys. Chem. Chem. Phys. 23:2413440 2021.)
    [Google Scholar]
  88. 88.
    Flores LJ et al. Phys. Rev. D 103:9L091301 2021.)
    [Google Scholar]
  89. 89.
    Taylor W, Gaitskell R. Low-energy monoenergetic neutron production with a DD-neutron source for sub-keV nuclear recoil calibrations in the LUX and LZ experiments. Paper presented at the 5th Technology and Instrumentation in Particle Physics, online, May 25 2021.)
    [Google Scholar]
  90. 90.
    Akerib DS et al. (LUX Collab.) arXiv:1608.05381 [physics.ins-det] 2016.)
  91. 91.
    Chasman C, Jones KW, Ristinen RA. Phys. Rev. Lett. 15:6245 1965.)
    [Google Scholar]
  92. 92.
    Jones KW, Kraner HW. Phys. Rev. C 4:1125 1971.)
    [Google Scholar]
  93. 93.
    Jones KW, Kraner HW. Phys. Rev. A 11:41347 1975.)
    [Google Scholar]
  94. 94.
    Amarasinghe C et al. Phys. Rev. D 106:032007 2022.)
    [Google Scholar]
  95. 95.
    Thulliez L et al. J. Instrum. 16:07P07032 2021.)
    [Google Scholar]
  96. 96.
    Villano AN et al. Phys. Rev. D 105:8083014 2022.)
    [Google Scholar]
  97. 97.
    Joshi TH. Nucl. Instrum. Methods A 656:151 2011.)
    [Google Scholar]
  98. 98.
    Behnke E et al. Phys. Rev. D 88:2021101 2013.)
    [Google Scholar]
  99. 99.
    Heaton R, Lee H, Skensved P, Robertson B. Nucl. Instrum. Methods A 276:3529 1989.)
    [Google Scholar]
  100. 100.
    Scherzinger J et al. Appl. Radiat. Isot. 98:74 2015.)
    [Google Scholar]
  101. 101.
    Gibbons JH, Macklin RL, Schmitt HW. Phys. Rev. 100:1167 1955.)
    [Google Scholar]
  102. 102.
    Zoubkov N, Kozlovsky K, Osipov V, Tsybin A. Phys. B Condens. Matter 174:1559 1991.)
    [Google Scholar]
  103. 103.
    Collar JI, Kavner ARL, Lewis CM. Phys. Rev. D 103:12122003 2021.)
    [Google Scholar]
  104. 104.
    Murzin AV et al. Sov. At. Energy 67:699 1989.)
    [Google Scholar]
  105. 105.
    Joshi T et al. Nucl. Instrum. Methods B 333:6 2014.)
    [Google Scholar]
  106. 106.
    Barbeau P, Collar J, Whaley P. Nucl. Instrum. Methods A 574:2385 2007.)
    [Google Scholar]
  107. 107.
    Spooner N et al. Phys. Lett. B 321:1156 1994.)
    [Google Scholar]
  108. 108.
    Tovey D et al. Phys. Lett. B 433:1150 1998.)
    [Google Scholar]
  109. 109.
    Simon E et al. Nucl. Instrum. Methods A 507:3643 2003.)
    [Google Scholar]
  110. 110.
    Xu J et al. Phys. Rev. C 92:1015807 2015.)
    [Google Scholar]
  111. 111.
    Rich G. 2017. Measurement of low-energy nuclear-recoil quenching factors in CsI[Na] and statistical analysis of the first observation of coherent, elastic neutrino-nucleus scattering. PhD Thesis Univ. North Carolina Chapel Hill:
    [Google Scholar]
  112. 112.
    Joo H et al. Astropart. Phys. 108:50 2019.)
    [Google Scholar]
  113. 113.
    Cintas D et al. J. Phys. Conf. Ser. 2156:1012065 2021.)
    [Google Scholar]
  114. 114.
    Gerbier G et al. Astropart. Phys. 11:3287 1999.)
    [Google Scholar]
  115. 115.
    Chagani H et al. J. Instrum. 3:06P06003 2008.)
    [Google Scholar]
  116. 116.
    Collar JI. Phys. Rev. C 88:3035806 2013.)
    [Google Scholar]
  117. 117.
    Bernabei R et al. Phys. Lett. B 389:4757 1996.)
    [Google Scholar]
  118. 118.
    Sarkis Y, Aguilar-Arevalo A, D'Olivo JC. Phys. At. Nucl. 84:4590 2021.)
    [Google Scholar]
  119. 119.
    Sattler AR. Phys. Rev. 138:6A1815 1965.)
    [Google Scholar]
  120. 120.
    Benoit A et al. (EDELWEISS Collab.) Nucl. Instrum. Methods A 577:3558 ( 2007.)
    [Google Scholar]
  121. 121.
    Gerbier G et al. Phys. Rev. D 42:93211 1990.)
    [Google Scholar]
  122. 122.
    Izraelevitch F et al. J. Instrum. 12:06P06014 2017.)
    [Google Scholar]
  123. 123.
    Dougherty BL. Phys. Rev. A 45:32104 1992.)
    [Google Scholar]
  124. 124.
    Sattler AR, Vook FL, Palms JM. Phys. Rev. 143:2588 1966.)
    [Google Scholar]
  125. 125.
    Messous Y. Astropart. Phys. 3:361 1995.)
    [Google Scholar]
  126. 126.
    Baudis L et al. Nucl. Instrum. Methods A 418:348 1998.)
    [Google Scholar]
  127. 127.
    Ruan X Application of germanium detector in fundamental research Talk presented at the Symposium on Future Applications of Germanium Detectors in Fundamental Research Beijing, China: March 24–26 2011.)
    [Google Scholar]
  128. 128.
    Shutt T et al. Phys. Rev. Lett. 69:243425 1992.)
    [Google Scholar]
  129. 129.
    Simon E et al. Nucl. Instrum. Methods A 507:643 2003.)
    [Google Scholar]
  130. 130.
    Szydagis M et al. Instruments 5:113 2021.)
    [Google Scholar]
  131. 131.
    Solovov VN et al. IEEE Trans. Nucl. Sci. 59:63286 2012.)
    [Google Scholar]
  132. 132.
    Meng Y et al. Phys. Rev. Lett. 127:26261802 2021.)
    [Google Scholar]
  133. 133.
    Aalbers J et al. arXiv:2207.03764 [hep-ex] 2022.)
  134. 134.
    Sorensen P. J. Cosmol. Astropart. Phys. 1009:033 2010.)
    [Google Scholar]
  135. 135.
    Aprile E et al. Phys. Rev. Lett. 97:8081302 2006.)
    [Google Scholar]
  136. 136.
    Pershing T et al. Phys. Rev. D 106:5052013 2022.)
    [Google Scholar]
  137. 137.
    Lenardo B et al. arXiv:1908.00518 [physics.ins-det] 2019b.)
  138. 138.
    Plante G et al. Phys. Rev. C 84:4045805 2011.)
    [Google Scholar]
  139. 139.
    Aprile E et al. Phys. Rev. D 98:11112003 2018.)
    [Google Scholar]
  140. 140.
    Manzur A et al. Phys. Rev. C 81:2025808 2010.)
    [Google Scholar]
  141. 141.
    Barbeau PS Neutrino and astroparticle physics with P-type point contact high purity germanium detectors PhD Diss., Univ. Chicago ( 2009.)
    [Google Scholar]
  142. 142.
    Sorensen P et al. Nucl. Instrum. Methods A 601:3339 2009.)
    [Google Scholar]
  143. 143.
    Aprile E et al. Phys. Rev. D 88:1012006 2013.)
    [Google Scholar]
  144. 144.
    Szydagis M et al. J. Instrum. 6:10P10002 2011.)
    [Google Scholar]
  145. 145.
    Szydagis M, Fyhrie A, Thorngren D, Tripathi M. J. Instrum. 8:C10003 2013.)
    [Google Scholar]
  146. 146.
    Biekert A et al. Phys. Rev. D 105:9092005 2022.)
    [Google Scholar]
  147. 147.
    Araújo HM et al. Astropart. Phys. 151:102853 2023.)
    [Google Scholar]
  148. 148.
    Smith D, Weiner N. Phys. Rev. D 64:4043502 2001.)
    [Google Scholar]
  149. 149.
    Vahsen SE et al. arXiv:2008.12587 [physics.ins-det] 2020.)
  150. 150.
    Balogh L et al. Phys. Rev. D 105:5052004 2022.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-111722-025122
Loading
/content/journals/10.1146/annurev-nucl-111722-025122
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error