1932

Abstract

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic fatty liver disease worldwide, particularly in obese and type 2 diabetic individuals. Currently, there are no therapies for NAFLD that have been approved by the US Food and Drug Administration. Herein, we examine the rationale for using ω3 polyunsaturated fatty acids (PUFAs) in NAFLD therapy. This focus is based on the finding that NAFLD severity is associated with a reduction of hepatic C ω3 PUFAs. Because C ω3 PUFAs are pleiotropic regulators of cell function, loss of C ω3 PUFAs has the potential to significantly impact hepatic function. We describe NAFLD prevalence and pathophysiology as well as current NAFLD therapies. We also present evidence from clinical and preclinical studies that evaluated the capacity of C ω3 PUFAs to treat NAFLD. Given the clinical and preclinical evidence, dietary C ω3 PUFA supplementation has the potential to decrease human NAFLD severity by reducing hepatosteatosis and liver injury.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-061021-030223
2023-08-21
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/nutr/43/1/annurev-nutr-061021-030223.html?itemId=/content/journals/10.1146/annurev-nutr-061021-030223&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alkhouri N, Dixon LJ, Feldstein AE. 2009. Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 3:445–51
    [Google Scholar]
  2. 2.
    Allard JP, Aghdassi E, Mohammed S, Raman M, Avand G et al. 2008. Nutritional assessment and hepatic fatty acid composition in non-alcoholic fatty liver disease (NAFLD): a cross-sectional study. J. Hepatol. 48:300–7
    [Google Scholar]
  3. 3.
    Aminian A, Al-Kurd A, Wilson R, Bena J, Fayazzadeh H et al. 2021. Association of bariatric surgery with major adverse liver and cardiovascular outcomes in patients with biopsy-proven nonalcoholic steatohepatitis. JAMA 326:2031–42
    [Google Scholar]
  4. 4.
    Angulo P. 2002. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346:1221–31
    [Google Scholar]
  5. 5.
    Angulo P, Hui JM, Marchesini G, Bugianesi E, George J et al. 2007. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45:846–54
    [Google Scholar]
  6. 6.
    Aragon E, Wang Q, Zou Y, Morgani SM, Ruiz L et al. 2019. Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-β signaling. Genes Dev. 33:1506–24
    [Google Scholar]
  7. 7.
    Araya J, Rodrigo R, Videla LA, Thielemann L, Orellana M et al. 2004. Increase in long-chain polyunsaturated fatty acid n–6/n–3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease. Clin. Sci. 106:635–43
    [Google Scholar]
  8. 8.
    Arendt BM, Comelli EM, Ma DW, Lou W, Teterina A et al. 2015. Altered hepatic gene expression in nonalcoholic fatty liver disease is associated with lower hepatic n-3 and n-6 polyunsaturated fatty acids. Hepatology 61:1565–78
    [Google Scholar]
  9. 9.
    Arendt BM, Mohammed SS, Aghdassi E, Prayitno NR, Ma DW et al. 2009. Hepatic fatty acid composition differs between chronic hepatitis C patients with and without steatosis. J. Nutr. 139:691–95
    [Google Scholar]
  10. 10.
    Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Holleboom AG et al. 2020. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat. Rev. Gastroenterol. Hepatol. 17:279–97
    [Google Scholar]
  11. 11.
    Bauer KC, Littlejohn PT, Ayala V, Creus-Cuadros A, Finlay BB. 2022. Nonalcoholic fatty liver disease and the gut-liver axis: exploring an undernutrition perspective. Gastroenterology 162:1858–75.e2
    [Google Scholar]
  12. 12.
    Bessone F, Razori MV, Roma MG. 2019. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell. Mol. Life Sci. 76:99–128
    [Google Scholar]
  13. 13.
    Bonnans C, Chou J, Werb Z. 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:786–801
    [Google Scholar]
  14. 14.
    Botolin D, Wang Y, Christian B, Jump DB. 2006. Docosahexaneoic acid (22:6,n-3) regulates rat hepatocyte SREBP-1 nuclear abundance by Erk- and 26S proteasome-dependent pathways. J. Lipid Res. 47:181–92
    [Google Scholar]
  15. 15.
    Boursier J, Diehl AM. 2015. Implication of gut microbiota in nonalcoholic fatty liver disease. PLOS Pathog. 11:e1004559
    [Google Scholar]
  16. 16.
    Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA, Network NCR. 2011. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53:810–20
    [Google Scholar]
  17. 17.
    Burke PA, Ling PR, Forse RA, Bistrian BR. 1999. Conditionally essential fatty acid deficiencies in end-stage liver disease. Nutrition 15:302–4
    [Google Scholar]
  18. 18.
    Cabre E, Gassull MA. 1996. Polyunsaturated fatty acid deficiency in liver diseases: pathophysiological and clinical significance. Nutrition 12:542–48
    [Google Scholar]
  19. 19.
    Cabre E, Gassull MA. 1999. Feeding long-chain PUFA to advanced cirrhotics: Is it worthwhile?. Nutrition 15:322–24
    [Google Scholar]
  20. 20.
    Calder PC. 2020. n-3 PUFA and inflammation: from membrane to nucleus and from bench to bedside. Proc. Nutr. Soc. 79:404–16
    [Google Scholar]
  21. 21.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–72
    [Google Scholar]
  22. 22.
    Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K et al. 2018. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67:328–57
    [Google Scholar]
  23. 23.
    Chang WH, Ting HC, Chen WW, Chan JF, Hsu YH. 2018. Omega-3 and omega-6 fatty acid differentially impact cardiolipin remodeling in activated macrophage. Lipids Health Dis. 17:201
    [Google Scholar]
  24. 24.
    Chen W, Jump DB, Esselman WJ, Busik JV. 2007. Inhibition of cytokine signaling in human retinal endothelial cells through modification of caveolae/lipid rafts by docosahexaenoic acid. Investig. Ophthalmol. Vis. Sci. 48:18–26
    [Google Scholar]
  25. 25.
    Chen Z, Tian R, She Z, Cai J, Li H. 2020. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic. Biol. Med. 152:116–41
    [Google Scholar]
  26. 26.
    Clemmesen JO, Hoy CE, Jeppesen PB, Ott P. 2000. Plasma phospholipid fatty acid pattern in severe liver disease. J. Hepatol. 32:481–87
    [Google Scholar]
  27. 27.
    Corbin KD, Zeisel SH. 2012. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 28:159–65
    [Google Scholar]
  28. 28.
    Costantini L, Molinari R, Farinon B, Merendino N. 2017. Impact of omega-3 fatty acids on the gut microbiota. Int. J. Mol. Sci. 18:2645
    [Google Scholar]
  29. 29.
    Cotter TG, Rinella M. 2020. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology 158:1851–64
    [Google Scholar]
  30. 30.
    Dasarathy S, Dasarathy J, Khiyami A, Yerian L, Hawkins C et al. 2015. Double-blind randomized placebo-controlled clinical trial of omega 3 fatty acids for the treatment of diabetic patients with nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 49:137–44
    [Google Scholar]
  31. 31.
    Depner CM, Philbrick KA, Jump DB. 2013. Docosahexaenoic acid attenuates hepatic inflammation, oxidative stress, and fibrosis without decreasing hepatosteatosis in a Ldlr−/− mouse model of Western diet-induced nonalcoholic steatohepatitis. J. Nutr. 143:315–23
    [Google Scholar]
  32. 32.
    Depner CM, Traber MG, Bobe G, Kensicki E, Bohren KM et al. 2013. A metabolomic analysis of omega-3 fatty acid-mediated attenuation of western diet-induced nonalcoholic steatohepatitis in LDLR−/− mice. PLOS ONE 8:e83756
    [Google Scholar]
  33. 33.
    Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. 2005. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 115:1343–51
    [Google Scholar]
  34. 34.
    Dropmann A, Dooley S, Dewidar B, Hammad S, Dediulia T et al. 2020. TGF-β2 silencing to target biliary-derived liver diseases. Gut 69:1677–90
    [Google Scholar]
  35. 35.
    Duparc T, Plovier H, Marrachelli VG, Van Hul M, Essaghir A et al. 2017. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut 66:620–32
    [Google Scholar]
  36. 36.
    Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N et al. 2022. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: recent advances in the understanding of their biosynthesis, structures, and functions. Prog. Lipid Res. 86:101165
    [Google Scholar]
  37. 37.
    Eriksson JW, Lundkvist P, Jansson PA, Johansson L, Kvarnstrom M et al. 2018. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study. Diabetologia 61:1923–34
    [Google Scholar]
  38. 38.
    Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. 2018. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67:123–33
    [Google Scholar]
  39. 39.
    Funk CD. 2001. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–75
    [Google Scholar]
  40. 40.
    Garcia-Jaramillo M, Lytle KA, Spooner MH, Jump DB. 2019. A lipidomic analysis of docosahexaenoic acid (22:6, ω3) mediated attenuation of western diet induced nonalcoholic steatohepatitis in male Ldlr−/− mice. Metabolites 9:252
    [Google Scholar]
  41. 41.
    Garcia-Jaramillo M, Spooner MH, Lohr CV, Wong CP, Zhang W, Jump DB. 2019. Lipidomic and transcriptomic analysis of western diet-induced nonalcoholic steatohepatitis (NASH) in female Ldlr−/− mice. PLOS ONE 14:e0214387
    [Google Scholar]
  42. 42.
    Gramlich L, Meddings L, Alberda C, Wichansawakun S, Robbins S et al. 2015. Essential fatty acid deficiency in 2015: the impact of novel intravenous lipid emulsions. JPEN J. Parenter. Enteral. Nutr. 39:61S–66S
    [Google Scholar]
  43. 43.
    Green CJ, Pramfalk C, Charlton CA, Gunn PJ, Cornfield T et al. 2020. Hepatic de novo lipogenesis is suppressed and fat oxidation is increased by omega-3 fatty acids at the expense of glucose metabolism. BMJ Open Diabetes Res. Care 8:e000871
    [Google Scholar]
  44. 44.
    Grunfeld C, Feingold KR. 2009. Endotoxin in the gut and chylomicrons: translocation or transportation?. J. Lipid Res. 50:1–2
    [Google Scholar]
  45. 45.
    Guerrerio AL, Colvin RM, Schwartz AK, Molleston JP, Murray KF et al. 2012. Choline intake in a large cohort of patients with nonalcoholic fatty liver disease. Am. J. Clin. Nutr. 95:892–900
    [Google Scholar]
  46. 46.
    Guilherme A, Virbasius JV, Puri V, Czech MP. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9:367–77
    [Google Scholar]
  47. 47.
    Han MAT, Yu Q, Tafesh Z, Pyrsopoulos N. 2021. Diversity in NAFLD: a review of manifestations of nonalcoholic fatty liver disease in different ethnicities globally. J. Clin. Transl. Hepatol. 9:71–80
    [Google Scholar]
  48. 48.
    Haque JA, McMahan RS, Campbell JS, Shimizu-Albergine M, Wilson AM et al. 2010. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice. Lab. Investig. 90:1704–17
    [Google Scholar]
  49. 49.
    Harte AL, da Silva NF, Creely SJ, McGee KC, Billyard T et al. 2010. Elevated endotoxin levels in non-alcoholic fatty liver disease. J. Inflamm. 7:15
    [Google Scholar]
  50. 50.
    Hashimoto E, Tokushige K. 2011. Prevalence, gender, ethnic variations, and prognosis of NASH. J. Gastroenterol. 46:Suppl. 163–69
    [Google Scholar]
  51. 51.
    Horn CL, Morales AL, Savard C, Farrell GC, Ioannou GN. 2022. Role of cholesterol-associated steatohepatitis in the development of NASH. Hepatol. Commun. 6:12–35
    [Google Scholar]
  52. 52.
    Huang DQ, El-Serag HB, Loomba R. 2021. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 18:223–38
    [Google Scholar]
  53. 53.
    Ioannou GN. 2016. The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol. Metab. 27:84–95
    [Google Scholar]
  54. 54.
    Iracheta-Vellve A, Petrasek J, Gyongyosi B, Satishchandran A, Lowe P et al. 2016. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. J. Biol. Chem. 291:26794–805
    [Google Scholar]
  55. 55.
    Jump DB. 2016. Chronic fatty liver disease. ASBMB Today Apr. 1. https://www.asbmb.org/asbmb-today/science/040116/chronic-fatty-liver-disease
    [Google Scholar]
  56. 56.
    Jump DB, Clarke SD. 1999. Regulation of gene expression by dietary fat. Annu. Rev. Nutr. 19:63–90
    [Google Scholar]
  57. 57.
    Jump DB, Depner CM, Tripathy S. 2012. Omega-3 fatty acid supplementation and cardiovascular disease. J. Lipid Res. 53:2525–45
    [Google Scholar]
  58. 58.
    Jump DB, Depner CM, Tripathy S, Lytle KA. 2015. Potential for dietary omega-3 fatty acids to prevent nonalcoholic fatty liver disease and reduce the risk of primary liver cancer. Adv. Nutr. 6:694–702
    [Google Scholar]
  59. 59.
    Jump DB, Lytle KA, Depner CM, Tripathy S. 2018. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol. Ther. 181:108–25
    [Google Scholar]
  60. 60.
    Jump DB, Tripathy S, Depner CM. 2013. Fatty acid-regulated transcription factors in the liver. Annu. Rev. Nutr. 33:249–69
    [Google Scholar]
  61. 61.
    Kaden-Volynets V, Basic M, Neumann U, Pretz D, Rings A et al. 2019. Lack of liver steatosis in germ-free mice following hypercaloric diets. Eur. J. Nutr. 58:1933–45
    [Google Scholar]
  62. 62.
    Kattapuram N, Zhang C, Muyyarikkandy MS, Surugihalli C, Muralidaran V et al. 2021. Dietary macronutrient composition differentially modulates the remodeling of mitochondrial oxidative metabolism during NAFLD. Metabolites 11:272
    [Google Scholar]
  63. 63.
    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. 2011. Human nutrition, the gut microbiome and the immune system. Nature 474:327–36
    [Google Scholar]
  64. 64.
    Kessoku T, Kobayashi T, Tanaka K, Yamamoto A, Takahashi K et al. 2021. The role of leaky gut in nonalcoholic fatty liver disease: a novel therapeutic target. Int. J. Mol. Sci. 22:8161
    [Google Scholar]
  65. 65.
    Kim WR, Lake JR, Smith JM, Skeans MA, Schladt DP et al. 2016. Liver. Am. J. Transplant. 16:Suppl. 269–98
    [Google Scholar]
  66. 66.
    Klair JS, Yang JD, Abdelmalek MF, Guy CD, Gill RM et al. 2016. A longer duration of estrogen deficiency increases fibrosis risk among postmenopausal women with nonalcoholic fatty liver disease. Hepatology 64:85–91
    [Google Scholar]
  67. 67.
    Kleiner DE, Makhlouf HR. 2016. Histology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in adults and children. Clin. Liver Dis. 20:293–312
    [Google Scholar]
  68. 68.
    Kobyliak N, Falalyeyeva T, Bodnar P, Beregova T. 2017. Probiotics supplemented with omega-3 fatty acids are more effective for hepatic steatosis reduction in an animal model of obesity. Probiot. Antimicrob. Proteins 9:123–30
    [Google Scholar]
  69. 69.
    Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M et al. 2008. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7:45–56
    [Google Scholar]
  70. 70.
    Krey G, Braissant O, L'Horset F, Kalkhoven E, Perroud M et al. 1997. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol. Endocrinol. 11:779–91
    [Google Scholar]
  71. 71.
    Kulkarni AV, Tevethia HV, Arab JP, Candia R, Premkumar M et al. 2021. Efficacy and safety of obeticholic acid in liver disease—a systematic review and meta-analysis. Clin. Res. Hepatol. Gastroenterol. 45:101675
    [Google Scholar]
  72. 72.
    Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. 2014. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146:726–35
    [Google Scholar]
  73. 73.
    Landschulz KT, Jump DB, MacDougald OA, Lane MD. 1994. Transcriptional control of the stearoyl-CoA desaturase-1 gene by polyunsaturated fatty acids. Biochem. Biophys. Res. Commun. 200:763–68
    [Google Scholar]
  74. 74.
    Lauszus JS, Eriksen PL, Hansen MM, Eriksen LL, Shawcross DL et al. 2021. Activation and functional priming of blood neutrophils in non-alcoholic fatty liver disease increases in non-alcoholic steatohepatitis. Clin. Exp. Gastroenterol. 14:441–49
    [Google Scholar]
  75. 75.
    Lee CH, Fu Y, Yang SJ, Chi CC. 2020. Effects of omega-3 polyunsaturated fatty acid supplementation on non-alcoholic fatty liver: a systematic review and meta-analysis. Nutrients 12:2769
    [Google Scholar]
  76. 76.
    Lee JJ, Lambert JE, Hovhannisyan Y, Ramos-Roman MA, Trombold JR et al. 2015. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 101:34–43
    [Google Scholar]
  77. 77.
    Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R et al. 2004. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J. Biol. Chem. 279:16971–79
    [Google Scholar]
  78. 78.
    Lepretti M, Martucciello S, Burgos Aceves MA, Putti R, Lionetti L. 2018. Omega-3 fatty acids and insulin resistance: focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients 10:350
    [Google Scholar]
  79. 79.
    Leung H, Long X, Ni Y, Qian L, Nychas E et al. 2022. Risk assessment with gut microbiome and metabolite markers in NAFLD development. Sci. Transl. Med. 14:eabk0855
    [Google Scholar]
  80. 80.
    Li J, Zou B, Yeo YH, Feng Y, Xie X et al. 2019. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 4:389–98
    [Google Scholar]
  81. 81.
    Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. 2010. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 7:251–64
    [Google Scholar]
  82. 82.
    Loman BR, Hernandez-Saavedra D, An R, Rector RS 2018. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Nutr. Rev. 76:822–39
    [Google Scholar]
  83. 83.
    Loomba R, Friedman SL, Shulman GI. 2021. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 184:2537–64
    [Google Scholar]
  84. 84.
    Ludwig J, Viggiano TR, McGill DB, Oh BJ. 1980. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 55:434–38
    [Google Scholar]
  85. 85.
    Lytle KA, Depner CM, Wong CP, Jump DB. 2015. Docosahexaenoic acid attenuates Western diet-induced hepatic fibrosis in Ldlr−/− mice by targeting the TGFβ-Smad3 pathway. J. Lipid Res. 56:1936–46
    [Google Scholar]
  86. 86.
    Lytle KA, Jump DB. 2016. Is western diet-induced nonalcoholic steatohepatitis in Ldlr−/− mice reversible?. PLOS ONE 11:e0146942
    [Google Scholar]
  87. 87.
    Lytle KA, Wong CP, Jump DB. 2017. Docosahexaenoic acid blocks progression of western diet-induced nonalcoholic steatohepatitis in obese Ldlr−/− mice. PLOS ONE 12:e0173376
    [Google Scholar]
  88. 88.
    Maciejewska D, Ossowski P, Drozd A, Ryterska K, Jamiol-Milc D et al. 2015. Metabolites of arachidonic acid and linoleic acid in early stages of non-alcoholic fatty liver disease—a pilot study. Prostaglandins Other Lipid Mediat. 121:184–89
    [Google Scholar]
  89. 89.
    Mantovani A. 2021. MAFLD versus NAFLD: Where are we?. Dig. Liver Dis. 53:1368–72
    [Google Scholar]
  90. 90.
    Massague J. 2012. TGF-β signaling in development and disease. FEBS Lett. 586:1833
    [Google Scholar]
  91. 91.
    Min HK, Kapoor A, Fuchs M, Mirshahi F, Zhou H et al. 2012. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 15:665–74
    [Google Scholar]
  92. 92.
    Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. 2013. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57:577–89
    [Google Scholar]
  93. 93.
    Mohammad S, Thiemermann C. 2020. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front. Immunol. 11:594150
    [Google Scholar]
  94. 94.
    Moore MP, Cunningham RP, Dashek RJ, Mucinski JM, Rector RS. 2020. A fad too far? Dietary strategies for the prevention and treatment of NAFLD. Obesity 28:1843–52
    [Google Scholar]
  95. 95.
    Moore MP, Cunningham RP, Meers GM, Johnson SA, Wheeler AA et al. 2022. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology 76:1452–65
    [Google Scholar]
  96. 96.
    Morisseau C, Hammock BD. 2013. Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu. Rev. Pharmacol. Toxicol. 53:37–58
    [Google Scholar]
  97. 97.
    Musa-Veloso K, Venditti C, Lee HY, Darch M, Floyd S et al. 2018. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. Nutr. Rev. 76:581–602
    [Google Scholar]
  98. 98.
    Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T et al. 2021. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 384:1113–24
    [Google Scholar]
  99. 99.
    Noriega BS, Sanchez-Gonzalez MA, Salyakina D, Coffman J. 2016. Understanding the impact of omega-3 rich diet on the gut microbiota. Case Rep. Med. 2016:3089303
    [Google Scholar]
  100. 100.
    Oemer G, Koch J, Wohlfarter Y, Lackner K, Gebert REM et al. 2022. The lipid environment modulates cardiolipin and phospholipid constitution in wild type and tafazzin-deficient cells. J. Inherit Metab. Dis. 45:38–50
    [Google Scholar]
  101. 101.
    Paik JM, Mir S, Alqahtani SA, Younossi Y, Ong JP, Younossi ZM. 2022. Dietary risks for liver mortality in NAFLD: global burden of disease data. Hepatol. Commun. 6:90–100
    [Google Scholar]
  102. 102.
    Pan JJ, Fallon MB. 2014. Gender and racial differences in nonalcoholic fatty liver disease. World J. Hepatol. 6:274–83
    [Google Scholar]
  103. 103.
    Paradies G, Paradies V, Ruggiero FM, Petrosillo G. 2014. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J. Gastroenterol. 20:14205–18
    [Google Scholar]
  104. 104.
    Paradies G, Paradies V, Ruggiero FM, Petrosillo G. 2019. Role of cardiolipin in mitochondrial function and dynamics in health and disease: molecular and pharmacological aspects. Cells 8:728
    [Google Scholar]
  105. 105.
    Patterson E, Wall R, Lisai S, Ross RP, Dinan TG et al. 2017. Bifidobacterium breve with α-linolenic acid alters the composition, distribution and transcription factor activity associated with metabolism and absorption of fat. Sci. Rep. 7:43300
    [Google Scholar]
  106. 106.
    Peng KY, Watt MJ, Rensen S, Greve JW, Huynh K et al. 2018. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J. Lipid Res. 59:1977–86
    [Google Scholar]
  107. 107.
    Pouwels S, Sakran N, Graham Y, Leal A, Pintar T et al. 2022. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 22:63
    [Google Scholar]
  108. 108.
    Rajkumar H, Mahmood N, Kumar M, Varikuti SR, Challa HR, Myakala SP. 2014. Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: a randomized, controlled trial. Mediators Inflamm. 2014:348959
    [Google Scholar]
  109. 109.
    Reddy JK, Rao MS. 2006. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am. J. Physiol. Gastrointest. Liver Physiol. 290:G852–58
    [Google Scholar]
  110. 110.
    Rowe IA, Wong VW, Loomba R. 2022. Treatment candidacy for pharmacologic therapies for NASH. Clin. Gastroenterol. Hepatol. 20:1209–17
    [Google Scholar]
  111. 111.
    Sanyal AJ, Abdelmalek MF, Suzuki A, Cummings OW, Chojkier M et al. 2014. No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology 147:377–84.e1
    [Google Scholar]
  112. 112.
    Scheving LA, Zhang X, Threadgill DW, Russell WE. 2016. Hepatocyte ERBB3 and EGFR are required for maximal CCl4-induced liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 311:G807–16
    [Google Scholar]
  113. 113.
    Schuck RN, Zha W, Edin ML, Gruzdev A, Vendrov KC et al. 2014. The cytochrome P450 epoxygenase pathway regulates the hepatic inflammatory response in fatty liver disease. PLOS ONE 9:e110162
    [Google Scholar]
  114. 114.
    Scorletti E, Bhatia L, McCormick KG, Clough GF, Nash K et al. 2014. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the WELCOME study. Hepatology 60:1211–21
    [Google Scholar]
  115. 115.
    Scorletti E, Byrne CD. 2018. Omega-3 fatty acids and non-alcoholic fatty liver disease: evidence of efficacy and mechanism of action. Mol. Aspects Med. 64:135–46
    [Google Scholar]
  116. 116.
    Serhan CN, Levy BD. 2018. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J. Clin. Investig. 128:2657–69
    [Google Scholar]
  117. 117.
    Sharpton SR, Maraj B, Harding-Theobald E, Vittinghoff E, Terrault NA. 2019. Gut microbiome-targeted therapies in nonalcoholic fatty liver disease: a systematic review, meta-analysis, and meta-regression. Am. J. Clin. Nutr. 110:139–49
    [Google Scholar]
  118. 118.
    Shim YJ, Tae YK, Kang BH, Park JS, Jeon SY, Min BH. 2017. Toll-like receptor 4 signaling is required for clusterin-induced tumor necrosis factor-α secretion in macrophage. Biochem. Biophys. Res. Commun. 482:1407–12
    [Google Scholar]
  119. 119.
    Simopoulos AP. 2016. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8:128
    [Google Scholar]
  120. 120.
    Song Q, Zhang X. 2022. The role of gut-liver axis in gut microbiome dysbiosis associated NAFLD and NAFLD-HCC. Biomedicines 10:524
    [Google Scholar]
  121. 121.
    Soong G, Reddy B, Sokol S, Adamo R, Prince A. 2004. TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J. Clin. Investig. 113:1482–89
    [Google Scholar]
  122. 122.
    Spooner MH, Jump DB. 2019. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: Where do we stand?. Curr. Opin. Clin. Nutr. Metab. Care 22:103–10
    [Google Scholar]
  123. 123.
    Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. 2009. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50:1094–104
    [Google Scholar]
  124. 124.
    Stoeckman AK, Ma L, Towle HC. 2004. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J. Biol. Chem. 279:15662–69
    [Google Scholar]
  125. 125.
    Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. 2018. Mechanisms by which dietary fatty acids regulate mitochondrial structure-function in health and disease. Adv. Nutr. 9:247–62
    [Google Scholar]
  126. 126.
    Sullivan EM, Pennington ER, Sparagna GC, Torres MJ, Neufer PD et al. 2018. Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome. J. Biol. Chem. 293:466–83
    [Google Scholar]
  127. 127.
    Sun T, Huang Z, Liang WC, Yin J, Lin WY et al. 2021. TGFβ2 and TGFβ3 isoforms drive fibrotic disease pathogenesis. Sci. Transl. Med. 13:eabe0407
    [Google Scholar]
  128. 128.
    Sunny NE, Bril F, Cusi K. 2017. Mitochondrial adaptation in nonalcoholic fatty liver disease: novel mechanisms and treatment strategies. Trends Endocrinol. Metab. 28:250–60
    [Google Scholar]
  129. 129.
    Tan DJH, Ng CH, Lin SY, Pan XH, Tay P et al. 2022. Clinical characteristics, surveillance, treatment allocation, and outcomes of non-alcoholic fatty liver disease-related hepatocellular carcinoma: a systematic review and meta-analysis. Lancet Oncol 23:521–30
    [Google Scholar]
  130. 130.
    Tandra S, Yeh MM, Brunt EM, Vuppalanchi R, Cummings OW et al. 2011. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease. J. Hepatol. 55:654–59
    [Google Scholar]
  131. 131.
    Targher G, Byrne CD, Tilg H. 2020. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 69:1691–705
    [Google Scholar]
  132. 132.
    Tobin D, Brevik-Andersen M, Qin Y, Innes JK, Calder PC. 2018. Evaluation of a high concentrate omega-3 for correcting the omega-3 fatty acid nutritional deficiency in non-alcoholic fatty liver disease (CONDIN). Nutrients 10:1126
    [Google Scholar]
  133. 133.
    Towle HC. 2005. Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol. Metab. 16:489–94
    [Google Scholar]
  134. 134.
    Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R et al. 2018. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15:397–411. Erratum 2018. Nat. Rev. Gastroenterol. Hepatol. 15:785
    [Google Scholar]
  135. 135.
    Tripathy S, Lytle KA, Stevens RD, Bain JR, Newgard CB et al. 2014. Fatty acid elongase-5 (Elovl5) regulates hepatic triglyceride catabolism in obese C57BL/6J mice. J. Lipid Res. 55:1448–64
    [Google Scholar]
  136. 136.
    Vasandani C, Kafrouni AI, Caronna A, Bashmakov Y, Gotthardt M et al. 2002. Upregulation of hepatic LDL transport by n-3 fatty acids in LDL receptor knockout mice. J. Lipid Res. 43:772–84
    [Google Scholar]
  137. 137.
    Vranešić Bender D, Nutrizio M, Jošić M, KelečićD Ljubas, Karas I et al. 2017. Nutritional status and nutrition quality in patients with non-alcoholic fatty liver disease. Acta Clin. Croat. 56:625–34
    [Google Scholar]
  138. 138.
    Wahlstrom A, Sayin SI, Marschall HU, Backhed F. 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:41–50
    [Google Scholar]
  139. 139.
    Wallace MC, Friedman SL, Mann DA. 2015. Emerging and disease-specific mechanisms of hepatic stellate cell activation. Semin. Liver Dis. 35:107–18
    [Google Scholar]
  140. 140.
    Wan F, Pan F, Ayonrinde O, Adams LA, Mori TA et al. 2022. Prospective dietary polyunsaturated fatty acid intake is associated with trajectories of fatty liver disease: an 8 year follow-up study from adolescence to young adulthood. Eur. J. Nutr. 61:3987–4000
    [Google Scholar]
  141. 141.
    Wu L, Sun J, Liu L, Du X, Liu Y et al. 2020. Anti-toll-like receptor 2 antibody ameliorates hepatic injury, inflammation, fibrosis and steatosis in obesity-related metabolic disorder rats via regulating MAPK and NF-κB pathways. Int. Immunopharmacol. 82:106368
    [Google Scholar]
  142. 142.
    Yang JD, Abdelmalek MF, Pang H, Guy CD, Smith AD et al. 2014. Gender and menopause impact severity of fibrosis among patients with nonalcoholic steatohepatitis. Hepatology 59:1406–14
    [Google Scholar]
  143. 143.
    Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. 2019. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 16:589–604
    [Google Scholar]
  144. 144.
    Yang M, Liu Q, Huang T, Tan W, Qu L et al. 2020. Dysfunction of estrogen-related receptor alpha-dependent hepatic VLDL secretion contributes to sex disparity in NAFLD/NASH development. Theranostics 10:10874–91
    [Google Scholar]
  145. 145.
    Yin C, Evason KJ, Asahina K, Stainier DY. 2013. Hepatic stellate cells in liver development, regeneration, and cancer. J. Clin. Investig. 123:1902–10
    [Google Scholar]
  146. 146.
    Younes R, Bugianesi E. 2019. NASH in lean individuals. Semin. Liver Dis. 39:86–95
    [Google Scholar]
  147. 147.
    Younossi ZM, Corey KE, Lim JK. 2021. AGA clinical practice update on lifestyle modification using diet and exercise to achieve weight loss in the management of nonalcoholic fatty liver disease: expert review. Gastroenterology 160:912–18
    [Google Scholar]
  148. 148.
    Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. 2016. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64:73–84
    [Google Scholar]
  149. 149.
    Zhang Y, Wong HS. 2021. Are mitochondria the main contributor of reactive oxygen species in cells?. J. Exp. Biol. 224:Part 5jeb221606
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-061021-030223
Loading
/content/journals/10.1146/annurev-nutr-061021-030223
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error