This article summarizes current data and approaches to assess sodium intake in individuals and populations. A review of the literature on sodium excretion and intake estimation supports the continued use of 24-h urine collections for assessing population and individual sodium intake. Since 2000, 29 studies used urine biomarkers to estimate population sodium intake, primarily among adults. More than half used 24-h urine; the rest used a spot/casual, overnight, or 12-h specimen. Associations between individual sodium intake and health outcomes were investigated in 13 prospective cohort studies published since 2000. Only three included an indicator of long-term individual sodium intake, i.e., multiple 24-h urine specimens collected several days apart. Although not insurmountable, logistic challenges of 24-h urine collection remain a barrier for research on the relationship of sodium intake and chronic disease. Newer approaches, including modeling based on shorter collections, offer promise for estimating population sodium intake in some groups.

Keyword(s): 24 hbalancemetabolismovernightspotsweat

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aaron KJ, Sanders PW. 1.  2013. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin. Proc. 88:987–95 [Google Scholar]
  2. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. 2.  2013. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ 346:f1326 [Google Scholar]
  3. Agarwal R. 3.  2007. Relationship between circadian blood pressure variation and circadian protein excretion in CKD. Am. J. Physiol. Renal Physiol. 293:F655–59 [Google Scholar]
  4. Allsopp AJ, Sutherland R, Wood P, Wootton SA. 4.  1998. The effect of sodium balance on sweat sodium secretion and plasma aldosterone concentration. Eur. J. Appl. Physiol. 78:516–21 [Google Scholar]
  5. Anderson CA, Appel LJ, Okuda N, Brown IJ, Chan Q. 5.  et al. 2010. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J. Am. Diet. Assoc. 110:736–45 [Google Scholar]
  6. Angell SY, Yi S, Eisenhower D, Kerker BD, Curtis CJ. 6.  et al. 2014. Sodium intake in a cross-sectional, representative sample of New York City adults. Am. J. Public Health 104:2409–16 [Google Scholar]
  7. Bailey JL, Sands JM, Franch HA. 7.  2014. Water, electrolytes and acid-base metabolism. Modern Nutrition in Health and Disease A Ross, B Caballero, RJ Cousins, KL Tucker, TR Ziegler 102–32 Philadelphia: Lippincott Williams & Wilkins [Google Scholar]
  8. Bankir L, Bochud M, Maillard M, Bovet P, Gabriel A, Burnier M. 8.  2008. Nighttime blood pressure and nocturnal dipping are associated with daytime urinary sodium excretion in African subjects. Hypertension 51:891–98 [Google Scholar]
  9. Bankir L, Perucca J, Weinberger MH. 9.  2007. Ethnic differences in urine concentration: possible relationship to blood pressure. Clin. J. Am. Soc. Nephrol. 2:304–12 [Google Scholar]
  10. Bingham S, Cummings JH. 10.  1983. The use of 4-aminobenzoic acid as a marker to validate the completeness of 24 h urine collections in man. Clin. Sci. (Lond.) 64:629–35 [Google Scholar]
  11. Bingham SA, Cummings JH. 11.  1985. The use of creatinine output as a check on the completeness of 24-hour urine collections. Hum. Nutr. Clin. Nutr. 39:343–53 [Google Scholar]
  12. Black DA. 12.  1952. Salt and hypertension. Br. J. Nutr. 6:428–32 [Google Scholar]
  13. Brown IJ, Dyer AR, Chan Q, Cogswell ME, Ueshima H. 13.  et al. INTERSALT Co-Op. Res. Group. 2013. Estimating 24-hour urinary sodium excretion from casual urinary sodium concentrations in Western populations: the INTERSALT study. Am. J. Epidemiol. 177:1180–92 [Google Scholar]
  14. Brown IJ, Tzoulaki I, Candeias V, Elliott P. 14.  2009. Salt intakes around the world: implications for public health. Int. J. Epidemiol. 38:791–813 [Google Scholar]
  15. Buono MJ, Ball KD, Kolkhorst FW. 15.  2007. Sodium ion concentration versus sweat rate relationship in humans. J. Appl. Physiol. 103:990–94 [Google Scholar]
  16. Campbell N. 16.  2014. Validation and comparison of three formulae to estimate sodium and potassium excretion from a single-morning fasting urine compared to 24-h measures in 11 countries. J. Hypertens. 32:1005–15 [Google Scholar]
  17. Cappuccio FP, Kerry SM, Micah FB, Plange-Rhule J, Eastwood JB. 17.  2006. A community programme to reduce salt intake and blood pressure in Ghana [ISRCTN88789643]. BMC Public Health 6:13 [Google Scholar]
  18. Carriquiry AL. 18.  2003. Estimation of usual intake distributions of nutrients and foods. J. Nutr. 133:601–8S [Google Scholar]
  19. 19. Cent. Dis. Control Prev. (CDC) 2013. Trends in the prevalence of excess dietary sodium intake—United States, 2003–2010. MMWR Morb. Mortal. Wkly. Rep. 62:1021–25 [Google Scholar]
  20. Chappuis A, Bochud M, Glatz N, Vuistiner P, Burnier M. 20.  2011. Swiss Survey on Salt Intake: Main Results. Lausanne, Switz: Serv. Nephrol. Inst. Univ. Med. Soc. Prev. Cent. Hosp. Univ. Vaudois (CHUV) [Google Scholar]
  21. Choi YM, Jung KC, Jo HM, Nam KW, Choe JH. 21.  et al. 2014. Combined effects of potassium lactate and calcium ascorbate as sodium chloride substitutes on the physicochemical and sensory characteristics of low-sodium frankfurter sausage. Meat Sci. 96:21–25 [Google Scholar]
  22. Chun TY, Bankir L, Eckert GJ, Bichet DG, Saha C. 22.  et al. 2008. Ethnic differences in renal responses to furosemide. Hypertension 52:241–48 [Google Scholar]
  23. Cipullo JP, Martin JF, Ciorlia LA, Godoy MR, Cacao JC. 23.  et al. 2010. [Hypertension prevalence and risk factors in a Brazilian urban population]. Arq. Bras. Cardiol. 94:519–26 [Google Scholar]
  24. Cobb LK, Anderson CA, Elliott P, Hu FB, Liu K. 24.  et al. 2014. Methodological issues in cohort studies that relate sodium intake to cardiovascular disease outcomes: a science advisory from the American Heart Association. Circulation 129:1173–86 [Google Scholar]
  25. Cogswell ME, Wang CY, Chen TC, Pfeiffer CM, Elliott P. 25.  et al. 2013. Validity of predictive equations for 24-h urinary sodium excretion in adults aged 18–39 y. Am. J. Clin. Nutr. 98:1502–13 [Google Scholar]
  26. Cook NR, Appel LJ, Whelton PK. 26.  2014. Lower levels of sodium intake and reduced cardiovascular risk. Circulation 129:981–89 [Google Scholar]
  27. Cook NR, Kumanyika SK, Cutler JA. 27.  1998. Effect of change in sodium excretion on change in blood pressure corrected for measurement error. The Trials of Hypertension Prevention, Phase I. Am. J. Epidemiol. 148:431–44 [Google Scholar]
  28. Davey Smith G, Phillips AN. 28.  1997. Intersalt data. Correction for regression dilution bias in Intersalt study was misleading. BMJ 315:485–87 [Google Scholar]
  29. Dodd KW, Guenther PM, Freedman LS, Subar AF, Kipnis V. 29.  et al. 2006. Statistical methods for estimating usual intake of nutrients and foods: a review of the theory. J. Am. Diet. Assoc. 106:1640–50 [Google Scholar]
  30. Donfrancesco C, Ippolito R, Lo Noce C, Palmieri L, Iacone R. 30.  et al. 2013. Excess dietary sodium and inadequate potassium intake in Italy: results of the MINISAL study. Nutr. Metab. Cardiovasc. Dis. 23:850–56 [Google Scholar]
  31. Drummer C, Gerzer R, Heer M, Molz B, Bie P. 31.  et al. 1992. Effects of an acute saline infusion on fluid and electrolyte metabolism in humans. Am. J. Physiol. 262:5 Part 2F744–55 [Google Scholar]
  32. Dyer AR, Martin GJ, Burton WN, Levin M, Stamler J. 32.  1998. Blood pressure and diurnal variation in sodium, potassium, and water excretion. J. Hum. Hypertens. 12:363–71 [Google Scholar]
  33. Dyer AR, Shipley M, Elliott P. 33.  1994. Urinary electrolyte excretion in 24 hours and blood pressure in the INTERSALT study. I. Estimates of reliability. The INTERSALT Cooperative Research Group. Am. J. Epidemiol. 139:927–39 [Google Scholar]
  34. Dyer AR, Stamler R, Grimm R, Stamler J, Berman R. 34.  et al. 1987. Do hypertensive patients have a different diurnal pattern of electrolyte excretion?. Hypertension 10:417–24 [Google Scholar]
  35. Ejike CE, Ugwu CE. 35.  2012. Association between blood pressure and urinary electrolytes in a population of nonurban-dwelling Nigerians. Niger. J. Clin. Pract. 15:258–64 [Google Scholar]
  36. Ekinci EI, Clarke S, Thomas MC, Moran JL, Cheong K. 36.  et al. 2011. Dietary salt intake and mortality in patients with type 2 diabetes. Diabetes Care 34:703–9 [Google Scholar]
  37. Elliott P. 37.  1990. Regression dilution bias. Lancet 335:1230–31 [Google Scholar]
  38. Elliott P, Brown I. 38.  2007. Sodium intakes around the world. Backgr. doc. prep. for Forum Tech. Meet. Reduc. Salt Intake Popul., Paris 5–7th Oct. 2006. Geneva: World Health Org. http://www.who.int/dietphysicalactivity/Elliot-brown-2007.pdf [Google Scholar]
  39. Elliott P, Stamler R. 39.  1988. Manual of operations for “INTERSALT,” an international cooperative study on the relation of sodium and potassium to blood pressure. Control. Clin. Trials 9:1–117S [Google Scholar]
  40. Elliott P, Stamler J, Nichols R, Dyer AR, Stamler R. 40.  et al. 1996. Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group. BMJ 312:1249–53 [Google Scholar]
  41. Epstein M, Hollenberg N. 41.  1976. Age as a determinant of renal sodium conservation in normal man. J. Lab. Clin. Med. 87:411–17 [Google Scholar]
  42. Erdem Y, Arici M, Altun B, Turgan C, Sindel S. 42.  et al. 2010. The relationship between hypertension and salt intake in Turkish population: SALTURK study. Blood Press. 19:313–18 [Google Scholar]
  43. Espeland MA, Kumanyika S, Wilson AC, Reboussin DM, Easter L. 43.  et al. 2001. Statistical issues in analyzing 24-hour dietary recall and 24-hour urine collection data for sodium and potassium intakes. Am. J. Epidemiol. 153:996–1006 [Google Scholar]
  44. Fukuda M, Mizuno M, Yamanaka T, Motokawa M, Shirasawa Y. 44.  et al. 2008. Patients with renal dysfunction require a longer duration until blood pressure dips during the night. Hypertension 52:1155–60 [Google Scholar]
  45. Fukuda M, Motokawa M, Miyagi S, Sengo K, Muramatsu W. 45.  et al. 2006. Polynocturia in chronic kidney disease is related to natiuresis rather than to water diuresis. Nephrol. Dial. Transplant. 21:2172–77 [Google Scholar]
  46. Fukuda M, Munemura M, Usami T, Nakao N, Takeuchi O. 46.  et al. 2004. Nocturnal blood pressure is elevated with natriuresis and proteinuria as renal function deteriorates in nephropathy. Kidney Int. 65:621–25 [Google Scholar]
  47. Fukuda M, Uzu T, Kimura G. 47.  2012. Duration until nighttime blood pressure fall indicates excess sodium retention. Chronobiol. Int. 29:1412–17 [Google Scholar]
  48. Geleijnse JM, Witteman JC, Stijnen T, Kloos MW, Hofman A, Grobbee DE. 48.  2007. Sodium and potassium intake and risk of cardiovascular events and all-cause mortality: the Rotterdam Study. Eur. J. Epidemiol. 22:763–70 [Google Scholar]
  49. George J, Majeed W, Mackenzie IS, Macdonald TM, Wei L. 49.  2013. Association between cardiovascular events and sodium-containing effervescent, dispersible, and soluble drugs: nested case-control study. BMJ 347:f6954 [Google Scholar]
  50. Gibson JC, Stuart-Hill LA, Pethick W, Gaul CA. 50.  2012. Hydration status and fluid and sodium balance in elite Canadian junior women's soccer players in a cool environment. Appl. Physiol. Nutr. Metab. 37:931–37 [Google Scholar]
  51. Graudal N, Jurgens G, Baslund B, Alderman MH. 51.  2014. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis. Am. J. Hypertens. 27:1129–37 [Google Scholar]
  52. Graudal NA, Hubeck-Graudal T, Jurgens G. 52.  2011. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst. Rev. 11:CD004022 [Google Scholar]
  53. Hall GA. 53.  2011. Guyton and Hall Textbook of Medical Physiology Philadelphia: Saunders Elsevier, 12th ed.. [Google Scholar]
  54. Hashimoto Y, Watanabe N, Futamura A. 54.  2007. [Amounts of sweat and salt loss due to sweating during a three-hour badminton practice in summer]. Rinsho Byori 55:1015–18 [Google Scholar]
  55. He FJ, Li J, Macgregor GA. 55.  2013. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst. Rev. 4:CD004937 [Google Scholar]
  56. Hedayati SS, Minhajuddin AT, Ijaz A, Moe OW, Elsayed EF. 56.  et al. 2012. Association of urinary sodium/potassium ratio with blood pressure: sex and racial differences. Clin. J. Am. Soc. Nephrol. 7:315–22 [Google Scholar]
  57. Heer M, Baisch F, Kropp J, Gerzer R, Drummer C. 57.  2000. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am. J. Physiol. Renal. Physiol. 278:F585–95 [Google Scholar]
  58. Heer M, Frings-Meuthen P, Titze J, Boschmann M, Frisch S. 58.  et al. 2009. Increasing sodium intake from a previous low or high intake affects water, electrolyte and acid-base balance differently. Br. J. Nutr. 101:1286–94 [Google Scholar]
  59. Hendriksen MA, van Raaij JM, Geleijnse JM, Wilson-van den Hooven C, Ocké MC, van der A DL. 59.  2013. Monitoring salt and iodine intakes in Dutch adults between 2006 and 2010 using 24 h urinary sodium and iodine excretions. Public Health Nutr. 17:1431–38 [Google Scholar]
  60. Honarpisheh A, Hooman N, Taghavi A. 60.  2009. Urinary calcium excretion in healthy children living in Kashan/Iran. Iran. J. Pediatr. 19:154–58 [Google Scholar]
  61. Hooper L, Ashton K, Harvey LJ, Decsi T, Fairweather-Tait SJ. 61.  2009. Assessing potential biomarkers of micronutrient status by using a systematic review methodology: methods. Am. J. Clin. Nutr. 89:1953–59S [Google Scholar]
  62. Horswill CA, Stofan JR, Lacambra M, Toriscelli TA, Eichner ER, Murray R. 62.  2009. Sodium balance during U.S. football training in the heat: cramp-prone versus reference players. Int. J. Sports Med. 30:789–94 [Google Scholar]
  63. Hubbard Armstrong RW LE, Evans PK, DeLuca JP. 63.  1986. Long-term water and salt deficits—a military perspective. Predicting Decrements in Military Performance Due to Inadequate Nutrition Proc. workshop Oct 22–24 1984 Washington, DC: Natl. Acad. Press [Google Scholar]
  64. Hulthen L, Aurell M, Klingberg S, Hallenberg E, Lorentzon M, Ohlsson C. 64.  2010. Salt intake in young Swedish men. Public Health Nutr. 13:601–5 [Google Scholar]
  65. 65. Inst. Med 2005. Dietary Reference Intake for Water, Potassium, Sodium, Chloride, and Sulfate. Washington, DC: Natl. Acad. Press [Google Scholar]
  66. 66. Inst. Med 2010. Strategies to Reduce Sodium Intake in the United States. Washington, DC: Natl. Acad. Press [Google Scholar]
  67. 67. Inst. Med 2013. Sodium Intake in Populations: Assessment of Evidence. Washington, DC: Natl. Acad. Press [Google Scholar]
  68. 68. Intersalt 1998. An international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297:319–28 [Google Scholar]
  69. Jakobsen J, Ovesen L, Fagt S, Pedersen AN. 69.  1997. Para-aminobenzoic acid used as a marker for completeness of 24 hour urine: assessment of control limits for a specific HPLC method. Eur. J. Clin. Nutr. 51:514–19 [Google Scholar]
  70. Ji C, Miller MA, Venezia A, Strazzullo P, Cappuccio FP. 70.  2014. Comparisons of spot versus 24-h urine samples for estimating population salt intake: validation study in two independent samples of adults in Britain and Italy. Nutr. Metab. Cardiovasc. Dis. 24:140–47 [Google Scholar]
  71. Ji C, Sykes L, Paul C, Dary O, Legetic B. 71.  et al. Sub-Group Res. Surveill. PAHO-WHO Reg. Expert Group Cardiovasc. Dis. Prev. Through Popul.-Wide Diet. Salt Reduct 2012. Systematic review of studies comparing 24-hour and spot urine collections for estimating population salt intake. Rev. Panam. Salud Publica 32:307–15 [Google Scholar]
  72. Joosten MM, Gansevoort RT, Mukamal KJ, Lambers Heerspink HJ, Geleijnse JM. 72.  et al. 2014. Sodium excretion and risk of developing coronary heart disease. Circulation 129:1121–28 [Google Scholar]
  73. Kanbay M, Bayram Y, Solak Y, Sanders PW. 73.  2013. Dietary potassium: a key mediator of the cardiovascular response to dietary sodium chloride. J. Am. Soc. Hypertens. 7:395–400 [Google Scholar]
  74. Kawasaki T, Itoh K, Uezono K, Sasaki H. 74.  1993. A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clin. Exp. Pharmacol. Physiol. 20:7–14 [Google Scholar]
  75. Kelishadi R, Gheisari A, Zare N, Farajian S, Shariatinejad K. 75.  2013. Salt intake and the association with blood pressure in young Iranian children: first report from the Middle East and North Africa. Int. J. Prev. Med. 4:4475–83 [Google Scholar]
  76. Khosravi A, Kelishadi R, Sarrafzadegan N, Boshtam M, Nouri F. 76.  et al. 2012. Impact of a community-based lifestyle intervention program on blood pressure and salt intake of normotensive adult population in a developing country. J. Res. Med. Sci. 17:235–41 [Google Scholar]
  77. Khosravi A, Toghianifar N, Sarrafzadegan N, Gharipour M, Azadbakht. 77.  2012. Salt intake, obesity, and pre-hypertension among Iranian adults: a cross-sectional study. Pak. J. Med. Sci. 28:297–302 [Google Scholar]
  78. Kilding AE, Tunstall H, Wraith E, Good M, Gammon C, Smith C. 78.  2009. Sweat rate and sweat electrolyte composition in international female soccer players during game specific training. Int. J. Sports Med. 30:443–47 [Google Scholar]
  79. Knuiman JT, Hautvast JG, van der Heyden L, Geboers J, Joossens JV. 79.  et al. 1986. A multi-centre study on completeness of urine collection in 11 European centres. I. Some problems with the use of creatinine and 4-aminobenzoic acid as markers of the completeness of collection. Hum. Nutr. Clin. Nutr. 40:229–37 [Google Scholar]
  80. Kodama N, Morikuni E, Matsuzaki N, Yoshioka YH, Takeyama H. 80.  et al. 2005. Sodium and potassium balances in Japanese young adults. J. Nutr. Sci. Vitaminol. (Tokyo) 51:161–68 [Google Scholar]
  81. Kudo K, Konta T, Mashima Y, Ichikawa K, Takasaki S. 81.  et al. 2011. The association between renal tubular damage and rapid renal deterioration in the Japanese population: the Takahata study. Clin. Exp. Nephrol. 15:235–41 [Google Scholar]
  82. Kurdak SS, Shirreffs SM, Maughan RJ, Ozgünen KT, Zeren C. 82.  et al. 2010. Hydration and sweating responses to hot-weather football competition. Scand. J. Med. Sci. Sports 20:133–39 [Google Scholar]
  83. Laatikainen T, Pietinen P, Valsta L, Sundvall J, Reinivuo H, Tuomilehto J. 83.  2006. Sodium in the Finnish diet: 20-year trends in urinary sodium excretion among the adult population. Eur. J. Clin. Nutr. 60:965–70 [Google Scholar]
  84. Land MA, Webster J, Christoforou A, Praveen D, Jeffery P. 84.  et al. 2014. Salt intake assessed by 24 h urinary sodium excretion in a random and opportunistic sample in Australia. BMJ Open 4:e003720 [Google Scholar]
  85. Leclercq C, Maiani G, Polito A, Ferro-Luzzi A. 85.  1991. Use of PABA test to check completeness of 24-h urine collections in elderly subjects. Nutrition 7:350–54 [Google Scholar]
  86. Lee SG, Lee W, Kwon OH, Kim JH. 86.  2013. Association of urinary sodium/creatinine ratio and urinary sodium/specific gravity unit ratio with blood pressure and hypertension: KNHANES 2009–2010. Clin. Chim. Acta 424:168–73 [Google Scholar]
  87. Lennie TA, Song EK, Wu J-R, Chung ML, Dunbar SB. 87.  et al. 2011. Three gram sodium intake is associated with longer even-free survival only in patients with advanced heart failure. J. Card. Fail. 17:325–30 [Google Scholar]
  88. Liu F, Zheng S, Mu J, Chu C, Wang L. 88.  et al. 2013. Common variation in with no-lysine kinase 1 (WNK1) and blood pressure responses to dietary sodium or potassium interventions—family-based association study. Circ. J. 77:1169–74 [Google Scholar]
  89. Liu K, Cooper R, McKeever J, McKeever P, Byington R. 89.  et al. 1979. Assessment of the association between habitual salt intake and high blood pressure: methodological problems. Am. J. Epidemiol. 110:219–26 [Google Scholar]
  90. Liu K, Cooper R, Soltero I, Stamler J. 90.  1979. Variability in 24-hour urine sodium excretion in children. Hypertension 1:631–36 [Google Scholar]
  91. Liu K, Dyer AR, Cooper RS, Stamler R, Stamler J. 91.  1979. Can overnight urine replace 24-hour urine collection to assess salt intake?. Hypertension 1:529–36 [Google Scholar]
  92. Liu K, Stamler J. 92.  1984. Assessment of sodium intake in epidemiological studies on blood pressure. Ann. Clin. Res. 16:Suppl. 4349–54 [Google Scholar]
  93. Liu LS, Zheng DY, Jin L, Liao YL, Liu K, Stamler J. 93.  1987. Variability of urinary sodium and potassium excretion in north Chinese men. J. Hypertens. 5:331–35 [Google Scholar]
  94. Liu LS, Zheng DY, Lai SH, Wang GQ, Zhang YL. 94.  1986. Variability in 24-hour urine sodium excretion in Chinese adults. Chin. Med. J. 99:424–26 [Google Scholar]
  95. Loria CM, Obarzanek E, Ernst ND. 95.  2001. Choose and prepare foods with less salt: dietary advice for all Americans. J. Nutr. 131:536–51S [Google Scholar]
  96. Luft FC, Fineberg NS, Sloan RS. 96.  1982. Estimating dietary sodium intake in individuals receiving a randomly fluctuating intake. Hypertension 4:805–8 [Google Scholar]
  97. Mage DT, Allen RH, Gondy G, Smith W, Barr DB, Needham LL. 97.  2004. Estimating pesticide dose from urinary pesticide concentration data by creatinine correction in the Third National Health and Nutrition Examination Survey (NHANES-III). J. Expo. Anal. Environ. Epidemiol. 14:457–65 [Google Scholar]
  98. Marvar PJ, Gordon FJ, Harrison DG. 98.  2009. Blood pressure control: Salt gets under your skin. Nat. Med. 15:487–88 [Google Scholar]
  99. Maseko MJ, Majane HO, Milne J, Norton GR, Woodiwiss AJ. 99.  2006. Salt intake in an urban, developing South African community. Cardiovasc. J. S. Afr. 17:186–91 [Google Scholar]
  100. Matthesen SK, Larsen L, Vase H, Lauridsen TG, Pedersen EB. 100.  2012. Effect of potassium supplementation on renal tubular function, ambulatory blood pressure and pulse wave velocity in healthy humans. Scand. J. Clin. Lab. Invest. 72:78–86 [Google Scholar]
  101. Maughan RJ, Dargavel LA, Hares R, Shirreffs SM. 101.  2009. Water and salt balance of well-trained swimmers in training. Int. J. Sport Nutr. Exerc. Metab. 19:598–606 [Google Scholar]
  102. Maughan RJ, Watson P, Evans GH, Broad N, Shirreffs SM. 102.  2007. Water balance and salt losses in competitive football. Int. J. Sport Nutr. Exerc. Metab. 17:583–94 [Google Scholar]
  103. McLean R, Williams S, Mann J. 103.  2014. Monitoring population sodium intake using spot urine samples: validation in a New Zealand population. J. Hum. Hypertens. 28:657–62 [Google Scholar]
  104. McQuarrie EP, Traynor JP, Taylor AH, Freel M, Fox JG. 104.  et al. 2014. Association between urinary sodium, creatinine, albumin, and long term survival in chronic kidney disease. Hypertension 64:111–17 [Google Scholar]
  105. Mente A, O'Donnell MJ, Dagenais G, Wielgosz A, Lear SA. 105.  et al. 2014. Validation and comparison of three formulae to estimate sodium and potassium excretion from a single morning fasting urine compared to 24-h measures in 11 countries. J. Hypertens. 32:1005–15 [Google Scholar]
  106. Mente A, O'Donnell MJ, Rangarajan S, McQueen MJ, Poirier P. 106.  et al. 2014. Association of urinary sodium and potassium excretion with blood pressure. N. Engl. J. Med. 371:601–11 [Google Scholar]
  107. Meyerfreund D, Goncalves C, Cunha R, Pereira AC, Krieger JE, Mill JG. 107.  2009. Age-dependent increase in blood pressure in two different Native American communities in Brazil. J. Hypertens. 27:1753–60 [Google Scholar]
  108. Mill JG, Silva AB, Baldo MP, Molina MC, Rodrigues SL. 108.  2012. Correlation between sodium and potassium excretion in 24- and 12-h urine samples. Braz. J. Med. Biol. Res. 45:799–805 [Google Scholar]
  109. Millett C, Laverty AA, Stylianou N, Bibbins-Domingo K, Pape UJ. 109.  2012. Impacts of a national strategy to reduce population salt intake in England: serial cross sectional study. PLOS ONE 7:e29836 [Google Scholar]
  110. Mozaffarian D, Fahimi S, Singh GM, Micha R, Khatibzadeh S. 110.  et al. 2014. Global sodium consumption and death from cardiovascular causes. N. Engl. J. Med. 371:624–34 [Google Scholar]
  111. Murakami K, Sasaki S, Takahashi Y, Uenishi K, Watanabe T. 111.  et al. 2008. Sensitivity and specificity of published strategies using urinary creatinine to identify incomplete 24-h urine collection. Nutrition 24:16–22 [Google Scholar]
  112. 112. Natl. Diet Nutr. Surv 2014. Results from Years 1 to 4 (Combined) of the Rolling Programme for 2008 and 2009 to 2011 and 2012. London: Public Health Engl https://www.gov.uk/government/statistics/national-diet-and-nutrition-survey-results-from-years-1-to-4-combined-of-the-rolling-programme-for-2008-and-2009-to-2011-and-2012 [Google Scholar]
  113. O'Donnell M, Mente A, Rangarajan S, McQueen MJ, Wang X. 113.  et al. 2014. Urinary sodium and potassium excretion, mortality, and cardiovascular events. N. Engl. J. Med. 371:612–23 [Google Scholar]
  114. O'Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF. 114.  et al. 2011. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA 306:2229–38 [Google Scholar]
  115. Ortega RM, Lopez-Sobaler AM, Ballesteros JM, Perez-Farinos N, Rodriguez-Rodriguez E. 115.  et al. 2011. Estimation of salt intake by 24h urinary sodium excretion in a representative sample of Spanish adults. Br. J. Nutr. 105:787–94 [Google Scholar]
  116. Palacios C, Wigertz K, Martin BR, Jackman L, Pratt JH. 116.  et al. 2004. Sodium retention in black and white female adolescents in response to salt intake. J. Clin. Endocrinol. Metab. 89:1858–63 [Google Scholar]
  117. Palmer MS, Spriet LL. 117.  2008. Sweat rate, salt loss, and fluid intake during an intense on-ice practice in elite Canadian male junior hockey players. Appl. Physiol. Nutr. Metab. 33:263–71 [Google Scholar]
  118. Pfeiffer CM, Hughes JP, Cogswell ME, Burt VL, Lacher DA. 118.  et al. 2014. Urine sodium excretion increased slightly among U.S. adults between 1988 and 2010. J. Nutr. 144:698–705 [Google Scholar]
  119. Pietinen PI, Findley TW, Clausen JD, Finnerty FA Jr, Altschul AM. 119.  1976. Studies in community nutrition: estimation of sodium output. Prev. Med. 5:400–7 [Google Scholar]
  120. Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P. 120.  et al. 2013. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 3:e003733 [Google Scholar]
  121. Lewington S, Whitlock G, Clarke R, Sherliker P. 121.  Prospect. Stud. Collab et al. 2007. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370:1829–39 [Google Scholar]
  122. Rakova N, Juttner K, Dahlmann A, Schroder A, Linz P. 122.  et al. 2013. Long-term space flight simulation reveals infradian rhythmicity in human Na+ balance. Cell Metab. 17:125–31 [Google Scholar]
  123. Rhee MY, Shin SJ, Park SH, Kim SW. 123.  2013. Sodium intake of a city population in Korea estimated by 24-h urine collection method. Eur. J. Clin. Nutr. 67:875–80 [Google Scholar]
  124. Ribic CH, Zakotnik JM, Vertnik L, Vegnuti M, Cappuccio FP. 124.  2010. Salt intake of the Slovene population assessed by 24 h urinary sodium excretion. Public Health Nutr. 13:1803–9 [Google Scholar]
  125. Rodrigues SL, Baldo MP, de Sa Cunha R, Andreao RV, Del Carmen Bisi Molina M. 125.  et al. 2009. Salt excretion in normotensive individuals with metabolic syndrome: a population-based study. Hypertens. Res. 32:906–10 [Google Scholar]
  126. Rose G, Stamler J. 126.  1989. The INTERSALT study: background, methods and main results. INTERSALT Co-operative Research Group. J. Hum. Hypertens. 3:283–88 [Google Scholar]
  127. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA. 127.  et al. 2001. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 344:3–10 [Google Scholar]
  128. 128. Scott. Cent. Soc. Res 2011. A Survey of 24 Hour Urinary Sodium Excretion in a Representative Sample of the Scottish Population as a Measure of Salt Intake. http://www.food.gov.uk/scotland/researchscot/scotlandresearch/ScotlandProjectList/s14047 [Google Scholar]
  129. 129. Scott. Gov 2014. Scottish Health Survey 2013 2 Technical Report. http://www.scotland.gov.uk/Publications/2014/12/6634/20 [Google Scholar]
  130. Shirreffs SM, Aragon-Vargas L, Chamorro M, Maughan RJ, Serratosa L, Zachwieja JJ. 130.  2005. The sweating response of elite professional soccer players to training in the heat. Int. J. Sports Med. 26:90–95 [Google Scholar]
  131. Shirreffs SM, Maughan RJ. 131.  2008. Water and salt balance in young male football players in training during the holy month of Ramadan. J. Sports Sci. 26:Suppl. 3S47–54 [Google Scholar]
  132. Singh GM, Danaei G, Farzadfar F, Stevens GA, Woodward M. 132.  et al. 2013. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLOS ONE 8:e65174 [Google Scholar]
  133. Son YJ, Lee Y, Song EK. 133.  2011. Adherence to a sodium-restricted diet is associated with lower symptom burden and longer cardiac event-free survival in patients with heart failure. J. Clin. Nurs. 20:3029–38 [Google Scholar]
  134. Staessen J, Broughton PM, Fletcher AE, Markowe HL, Marmot MG. 134.  et al. 1991. The assessment of the relationship between blood pressure and sodium intake using whole-day, daytime and overnight urine collections. J. Hypertens. 9:111035–40 [Google Scholar]
  135. Stamler J, Elliott P, Dennis B, Dyer AR, Kesteloot H. 135.  et al. 2003. INTERMAP: background, aims, design, methods, and descriptive statistics (nondietary). J. Hum. Hypertens. 17:591–608 [Google Scholar]
  136. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerova J. 136.  et al. 2011. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA 305:1777–85 [Google Scholar]
  137. Strauss MB, Lamdin E, Smith WP, Bleifer DJ. 137.  1958. Surfeit and deficit of sodium; a kinetic concept of sodium excretion. AMA Arch. Intern. Med. 102:527–36 [Google Scholar]
  138. Subar AF, Midthune D, Tasevska N, Kipnis V, Freedman LS. 138.  2013. Checking for completeness of 24-h urine collection using para-amino benzoic acid not necessary in the Observing Protein and Energy Nutrition study. Eur. J. Clin. Nutr. 67:863–67 [Google Scholar]
  139. Thomas MC, Moran J, Forsblom C, Harjutsalo V, Thorn L. 139.  et al. 2011. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes. Diabetes Care 34:861–66 [Google Scholar]
  140. Thompson FE, Subar A. 140.  2013. Chapter 1. Dietary assessment methodology. Nutrition in the Prevention and Treatment of Disease AM Coulston, CJ Boushey, M Ferruzzi 5–46 Oxford, UK: Academic/Elsevier, 3rd ed.. [Google Scholar]
  141. Titze J. 141.  2014. Sodium balance is not just a renal affair. Curr. Opin. Nephrol. Hypertens. 23:101–5 [Google Scholar]
  142. Tuomilehto J, Jousilahti P, Rastenyte D, Moltchanov V, Tanskanen A. 142.  et al. 2001. Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study. Lancet 357:848–51 [Google Scholar]
  143. Van Dam RM, Hunter D. 143.  2012. Biochemical indicators of dietary intake. See Ref. 147 150–212
  144. Vegter S, Perna A, Postma MJ, Navis G, Remuzzi G, Ruggenenti P. 144.  2012. Sodium intake, ACE inhibition, and progression to ESRD. J. Am. Soc. Nephrol. 23:165–73 [Google Scholar]
  145. Wang CY, Cogswell ME, Loria CM, Chen TC, Pfeiffer CM. 145.  et al. 2013. Urinary excretion of sodium, potassium, and chloride, but not iodine, varies by timing of collection in a 24-hour calibration study. J. Nutr. 143:1276–82 [Google Scholar]
  146. Webster J, Trieu K, Dunford E, Hawkes C. 146.  2014. Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods. Nutrients 6:3274–87 [Google Scholar]
  147. Willett W. 147.  2012. Nutritional Epidemiology New York: Oxford Univ. Press, 3rd ed.. [Google Scholar]
  148. Wolf HK, Kuulasmaa K, Tolonen H, Ruokokoski E. 148.  for the WHO MONICA Proj 1998. Participation Rates, Quality of Sampling Frames and Sampling Fractions in the MONICA Surveys Geneva: World Health Organ http://www.thl.fi/publications/monica/nonres/nonres.htm#rate [Google Scholar]
  149. 149. World Health Organ./Pan Am. Health Organ. Reg. Expert Group Cardiovasc. Dis. Prev. Through Popul.-Wide Diet. Salt Reduct 2010. Protocol for Population Level Sodium Determination in 24-Hour Urine Samples http://new.paho.org/hq/dmdocuments/2010/pahosaltprotocol.pdf [Google Scholar]
  150. Young DS. 150.  1997. Effects of Preanalytic Variables on Clinical Laboratory Tests Washington, DC: AACC Press, 2nd ed.. [Google Scholar]
  151. Zhang J, Temme EH, Sasaki S, Kesteloot H. 151.  2000. Under- and overreporting of energy intake using urinary cations as biomarkers: relation to body mass index. Am. J. Epidemiol. 152:453–62 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error