1932

Abstract

Many metals have biological functions and play important roles in human health. Copper (Cu) is an essential metal that supports normal cellular physiology. Significant research efforts have focused on identifying the molecules and pathways involved in dietary Cu uptake in the digestive tract. The lack of an adequate in vitro model for assessing Cu transport processes in the gut has led to contradictory data and gaps in our understanding of the mechanisms involved in dietary Cu acquisition. The recent development of organoid technology has provided a tractable model system for assessing the detailed mechanistic processes involved in Cu utilization and transport in the context of nutrition. Enteroid (intestinal epithelial organoid)-based studies have identified new links between intestinal Cu metabolism and dietary fat processing. Evidence for a metabolic coupling between the dietary uptake of Cu and uptake of fat (which were previously thought to be independent) is a new and exciting finding that highlights the utility of these three-dimensional primary culture systems. This review has three goals: () to critically discuss the roles of key Cu transport enzymes in dietary Cu uptake; () to assess the use, utility, and limitations of organoid technology in research into nutritional Cu transport and Cu-based diseases; and () to highlight emerging connections between nutritional Cu homeostasis and fat metabolism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082018-124242
2019-08-21
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/nutr/39/1/annurev-nutr-082018-124242.html?itemId=/content/journals/10.1146/annurev-nutr-082018-124242&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdel-Mageed AB, Oehme FW. 1990. A review of the biochemical roles, toxicity and interactions of zinc, copper and iron: III. Iron. Vet. Hum. Toxicol. 32:324–28
    [Google Scholar]
  2. 2.
    Aigner E, Strasser M, Haufe H, Sonnweber T, Hohla F et al. 2010. A role for low hepatic copper concentrations in nonalcoholic fatty liver disease. Am. J. Gastroenterol. 105:1978–85
    [Google Scholar]
  3. 3.
    Aigner E, Theurl I, Haufe H, Seifert M, Hohla F et al. 2008. Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease. Gastroenterology 135:680–88
    [Google Scholar]
  4. 4.
    Arredondo M, Uauy R, Gonzalez M 2000. Regulation of copper uptake and transport in intestinal cell monolayers by acute and chronic copper exposure. Biochim. Biophys. Acta Gen. Subj 1474:169–76
    [Google Scholar]
  5. 5.
    Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H, Hogan BL 2017. Lung organoids: current uses and future promise. Development 144:986–97
    [Google Scholar]
  6. 6.
    Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ et al. 2010. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6:25–36
    [Google Scholar]
  7. 7.
    Bauerly KA, Kelleher SL, Lönnerdal B 2005. Effects of copper supplementation on copper absorption, tissue distribution, and copper transporter expression in an infant rat model. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G1007–14
    [Google Scholar]
  8. 8.
    Bellomo G, Comstock JP, Wen D, Hazelwood RL 1987. Prolonged fructose feeding and aldose reductase inhibition: effect on the polyol pathway in kidneys of normal rats. Proc. Soc. Exp. Biol. Med. 186:348–54
    [Google Scholar]
  9. 9.
    Bertinato J, Iskandar M, L'Abbe MR 2003. Copper deficiency induces the upregulation of the copper chaperone for Cu/Zn superoxide dismutase in weanling male rats. J. Nutr. 133:28–31
    [Google Scholar]
  10. 10.
    Burkhead JL, Lutsenko S. 2013. The role of copper as a modifier of lipid metabolism. Lipid Metabolism RV Baez 39–60 London: InTech Open
    [Google Scholar]
  11. 11.
    Chambers A, Krewski D, Birkett N, Plunkett L, Hertzberg R et al. 2010. An exposure–response curve for copper excess and deficiency. J. Toxicol. Environ. Health B Crit. Rev. 13:546–78
    [Google Scholar]
  12. 12.
    Cheng J, Luo Z, Chen GH, Wei CC, Zhuo MQ 2017. Identification of eight copper (Cu) uptake related genes from yellow catfish Pelteobagrus fulvidraco, and their tissue expression and transcriptional responses to dietborne Cu exposure. J. Trace Elem. Med. Biol. 44:256–65
    [Google Scholar]
  13. 13.
    Chun H, Catterton T, Kim H, Lee J, Kim BE 2017. Organ-specific regulation of ATP7A abundance is coordinated with systemic copper homeostasis. Sci. Rep. 7:12001
    [Google Scholar]
  14. 14.
    Church SJ, Begley P, Kureishy N, McHarg S, Bishop PN et al. 2015. Deficient copper concentrations in dried-defatted hepatic tissue from ob/ob mice: a potential model for study of defective copper regulation in metabolic liver disease. Biochem. Biophys. Res. Commun. 460:549–54
    [Google Scholar]
  15. 15.
    Crampton RF, Matthews DM, Poisner R 1965. Observations on the mechanism of absorption of copper by the small intestine. J. Physiol. 178:111–26
    [Google Scholar]
  16. 16.
    Dekkers JF, Berkers G, Kruisselbrink E, Vonk A, de Jonge HR et al. 2016. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8:344ra384
    [Google Scholar]
  17. 17.
    Donley SA, Ilagan BJ, Rim H, Linder MC 2002. Copper transport to mammary gland and milk during lactation in rats. Am. J. Physiol. Endocrinol. Metab. 283:E667–675
    [Google Scholar]
  18. 18.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF et al. 2003. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–70
    [Google Scholar]
  19. 19.
    Dutta D, Heo I, Clevers H 2017. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23:393–410
    [Google Scholar]
  20. 20.
    Engle TE, Spears JW. 2000. Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers. J. Anim. Sci. 78:2452–58
    [Google Scholar]
  21. 21.
    Fan Y, Zhang C, Bu J 2017. Relationship between selected serum metallic elements and obesity in children and adolescent in the U.S. Nutrients 9:104
    [Google Scholar]
  22. 22.
    Foulke-Abel J, In J, Kovbasnjuk O, Zachos NC, Ettayebi K et al. 2014. Human enteroids as an ex-vivo model of host–pathogen interactions in the gastrointestinal tract. Exp. Biol. Med. 239:1124–34
    [Google Scholar]
  23. 23.
    Foulke-Abel J, In J, Yin J, Zachos NC, Kovbasnjuk O et al. 2016. Human enteroids as a model of upper small intestinal ion transport physiology and pathophysiology. Gastroenterology 150:638–49.e638
    [Google Scholar]
  24. 24.
    Freestone D, Cater MA, Ackland ML, Paterson D, Howard DL et al. 2014. Copper and lactational hormones influence the CTR1 copper transporter in PMC42-LA mammary epithelial cell culture models. J. Nutr. Biochem. 25:377–87
    [Google Scholar]
  25. 25.
    Freestone D, Denoyer D, Jakab M, Leigh Ackland M, Cater MA, Michalczyk A 2016. Ceruloplasmin is regulated by copper and lactational hormones in PMC42-LA mammary epithelial cell culture models. Metallomics 8:941–50
    [Google Scholar]
  26. 26.
    Friel JK, Andrews WL, Jackson SE, Longerich HP, Mercer C et al. 1999. Elemental composition of human milk from mothers of premature and full-term infants during the first 3 months of lactation. Biol. Trace Elem. Res. 67:225–47
    [Google Scholar]
  27. 27.
    Greggio C, De Franceschi F, Figueiredo-Larsen M, Grapin-Botton A 2014. In vitro pancreas organogenesis from dispersed mouse embryonic progenitors. J. Vis. Exp. 89:51725
    [Google Scholar]
  28. 28.
    Griffith DP, Liff DA, Ziegler TR, Esper GJ, Winton EF 2009. Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery. Obesity 17:827–31
    [Google Scholar]
  29. 29.
    Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O et al. 2015. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–55
    [Google Scholar]
  30. 30.
    Hamza I, Prohaska J, Gitlin JD 2003. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. PNAS 100:1215–20
    [Google Scholar]
  31. 31.
    Heffern MC, Park HM, Au-Yeung HY, Van de Bittner GC, Ackerman CM et al. 2016. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. PNAS 113:14219–24
    [Google Scholar]
  32. 32.
    Held M, Santeramo I, Wilm B, Murray P, Levy R 2018. Ex vivo live cell tracking in kidney organoids using light sheet fluorescence microscopy. PLOS ONE 13:e0199918
    [Google Scholar]
  33. 33.
    Hoogeveen RC, Reaves SK, Reid PM, Reid BL, Lei KY 1994. Copper deficiency shifts energy substrate utilization from carbohydrate to fat and reduces fat mass in rats. J. Nutr. 124:1660–66
    [Google Scholar]
  34. 34.
    Huch M, Bonfanti P, Boj SF, Sato T, Loomans CJ et al. 2013. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32:2708–21
    [Google Scholar]
  35. 35.
    Huch M, Dorrell C, Boj SF, van Es JH, Li VS et al. 2013. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–50
    [Google Scholar]
  36. 36.
    Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F et al. 2015. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312
    [Google Scholar]
  37. 37.
    In J, Foulke-Abel J, Zachos NC, Hansen AM, Kaper JB et al. 2016. Enterohemorrhagic Escherichia coli reduces mucus and intermicrovillar bridges in human stem cell–derived colonoids. Cell. Mol. Gastroenterol. Hepatol. 2:48–62.e3
    [Google Scholar]
  38. 38.
    Jabaji Z, Brinkley GJ, Khalil HA, Sears CM, Lei NY et al. 2014. Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLOS ONE 9:e107814
    [Google Scholar]
  39. 39.
    Jattan J, Rodia C, Li D, Diakhate A, Dong H et al. 2017. Using primary murine intestinal enteroids to study dietary TAG absorption, lipoprotein synthesis, and the role of apoC-III in the intestine. J. Lipid Res. 58:853–65
    [Google Scholar]
  40. 40.
    Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R et al. 2014. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159:163–75
    [Google Scholar]
  41. 41.
    Kasagi Y, Chandramouleeswaran PM, Whelan KA, Tanaka K, Giroux V et al. 2018. The esophageal organoid system reveals functional interplay between Notch and cytokines in reactive epithelial changes. Cell. Mol. Gastroenterol. Hepatol. 5:333–52
    [Google Scholar]
  42. 42.
    Kaya A, Altiner A, Ozpinar A 2006. Effect of copper deficiency on blood lipid profile and haematological parameters in broilers. J. Vet. Med. A Physiol. Pathol. Clin. Med. 53:399–404
    [Google Scholar]
  43. 43.
    Kelleher SL, Lönnerdal B. 2006. Mammary gland copper transport is stimulated by prolactin through alterations in Ctr1 and Atp7A localization. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291:R1181–91
    [Google Scholar]
  44. 44.
    Kelly EJ, Palmiter RD. 1996. A murine model of Menkes disease reveals a physiological function of metallothionein. Nat. Genet. 13:219–22
    [Google Scholar]
  45. 45.
    Klevay LM. 2000. Cardiovascular disease from copper deficiency—a history. J. Nutr. 130:489S–92S
    [Google Scholar]
  46. 46.
    Kodama H, Murata Y, Kobayashi M 1999. Clinical manifestations and treatment of Menkes disease and its variants. Pediatr. Int. 41:423–29
    [Google Scholar]
  47. 47.
    Koo BK, Sasselli V, Clevers H 2013. Retroviral gene expression control in primary organoid cultures. Curr. Protoc. Stem Cell Biol. 27: 5A:6.1–5A.6.8
    [Google Scholar]
  48. 48.
    Kozuka K, He Y, Koo-McCoy S, Kumaraswamy P, Nie B et al. 2017. Development and characterization of a human and mouse intestinal epithelial cell monolayer platform. Stem Cell Rep 9:1976–90
    [Google Scholar]
  49. 49.
    Krishnamoorthy L, Cotruvo JA Jr, Chan J, Kaluarachchi H, Muchenditsi A et al. 2016. Copper regulates cyclic-AMP-dependent lipolysis. Nat. Chem. Biol. 12:586–92
    [Google Scholar]
  50. 50.
    Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS et al. 2013. Cerebral organoids model human brain development and microcephaly. Nature 501:373–79
    [Google Scholar]
  51. 51.
    Laperrousaz B, Porte S, Gerbaud S, Harma V, Kermarrec F et al. 2018. Direct transfection of clonal organoids in Matrigel microbeads: a promising approach toward organoid-based genetic screens. Nucleic Acids Res 46:e70
    [Google Scholar]
  52. 52.
    Lee J, Pena MM, Nose Y, Thiele DJ 2002. Biochemical characterization of the human copper transporter Ctr1. J. Biol. Chem. 277:4380–87
    [Google Scholar]
  53. 53.
    Lei L, Xiaoyi S, Fuchang L 2017. Effect of dietary copper addition on lipid metabolism in rabbits. Food Nutr. Res. 61:1348866
    [Google Scholar]
  54. 54.
    Lin WH, Chen MD, Wang CC, Lin PY 1995. Dietary copper supplementation increases the catecholamine levels in genetically obese (ob/ob) mice. Biol. Trace Elem. Res. 50:243–47
    [Google Scholar]
  55. 55.
    Liu J, Walker NM, Cook MT, Ootani A, Clarke LL 2012. Functional Cftr in crypt epithelium of organotypic enteroid cultures from murine small intestine. Am. J. Physiol. Cell Physiol. 302:C1492–1503
    [Google Scholar]
  56. 56.
    Lönnerdal B. 2008. Intestinal regulation of copper homeostasis: a developmental perspective. Am. J. Clin. Nutr. 88:846S–50S
    [Google Scholar]
  57. 57.
    Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY 2007. Function and regulation of human copper-transporting ATPases. Physiol. Rev. 87:1011–46
    [Google Scholar]
  58. 58.
    Malinouski M, Hasan NM, Zhang Y, Seravalli J, Lin J et al. 2014. Genome-wide RNAi ionomics screen reveals new genes and regulation of human trace element metabolism. Nat. Commun. 5:3301
    [Google Scholar]
  59. 59.
    Mariani J, Simonini MV, Palejev D, Tomasini L, Coppola G et al. 2012. Modeling human cortical development in vitro using induced pluripotent stem cells. PNAS 109:12770–75
    [Google Scholar]
  60. 60.
    Matano M, Date S, Shimokawa M, Takano A, Fujii M et al. 2015. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat. Med. 21:256–62
    [Google Scholar]
  61. 61.
    McCracken KW, Howell JC, Wells JM, Spence JR 2011. Generating human intestinal tissue from pluripotent stem cells in vitro. Nat. Protoc. 6:1920–28
    [Google Scholar]
  62. 62.
    Medici V, Weiss KH. 2017. Genetic and environmental modifiers of Wilson disease. Handb. Clin. Neurol. 142:35–41
    [Google Scholar]
  63. 63.
    Menkes JH. 1972. Kinky hair disease. Pediatrics 50:181–83
    [Google Scholar]
  64. 64.
    Menkes JH, Alter M, Steigleder GK, Weakley DR, Sung JH 1962. A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics 29:764–79
    [Google Scholar]
  65. 65.
    Michalczyk A, Bastow E, Greenough M, Camakaris J, Freestone D et al. 2008. ATP7B expression in human breast epithelial cells is mediated by lactational hormones. J. Histochem. Cytochem. 56:389–99
    [Google Scholar]
  66. 66.
    Millo H, Werman MJ. 2000. Hepatic fructose-metabolizing enzymes and related metabolites: role of dietary copper and gender. J. Nutr. Biochem. 11:374–81
    [Google Scholar]
  67. 67.
    Miyayama T, Ogra Y, Osima Y, Suzuki KT 2008. Narrow-bore HPLC–ICP–MS for speciation of copper in mutant mouse neonates bearing a defect in Cu metabolism. Anal. Bioanal. Chem. 390:1799–803
    [Google Scholar]
  68. 68.
    Monty JF, Llanos RM, Mercer JF, Kramer DR 2005. Copper exposure induces trafficking of the Menkes protein in intestinal epithelium of ATP7A transgenic mice. J. Nutr. 135:2762–66
    [Google Scholar]
  69. 69.
    Moon C, VanDussen KL, Miyoshi H, Stappenbeck TS 2014. Development of a primary mouse intestinal epithelial cell monolayer culture system to evaluate factors that modulate IgA transcytosis. Mucosal Immunol 7:818–28
    [Google Scholar]
  70. 70.
    Morrell A, Tallino S, Yu L, Burkhead JL 2017. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 69:263–70
    [Google Scholar]
  71. 71.
    Nadella SR, Grosell M, Wood CM 2007. Mechanisms of dietary Cu uptake in freshwater rainbow trout: evidence for Na-assisted Cu transport and a specific metal carrier in the intestine. J. Comp. Physiol. B 177:433–46
    [Google Scholar]
  72. 72.
    Nadella SR, Hung CC, Wood CM 2011. Mechanistic characterization of gastric copper transport in rainbow trout. J. Comp. Physiol. B 181:27–41
    [Google Scholar]
  73. 73.
    Nantasanti S, Spee B, Kruitwagen HS, Chen C, Geijsen N et al. 2015. Disease modeling and gene therapy of copper storage disease in canine hepatic organoids. Stem Cell Rep 5:895–907
    [Google Scholar]
  74. 74.
    Nobili V, Siotto M, Bedogni G, Rava L, Pietrobattista A et al. 2013. Levels of serum ceruloplasmin associate with pediatric nonalcoholic fatty liver disease. J. Pediatr. Gastroenterol. Nutr. 56:370–75
    [Google Scholar]
  75. 75.
    Noel G, Baetz NW, Staab JF, Donowitz M, Kovbasnjuk O et al. 2017. A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host–pathogen interactions. Sci. Rep. 7:45270
    [Google Scholar]
  76. 76.
    Nose Y, Kim BE, Thiele DJ 2006. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab 4:235–44
    [Google Scholar]
  77. 77.
    Nose Y, Wood LK, Kim BE, Prohaska JR, Fry RS et al. 2010. Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. J. Biol. Chem. 285:32385–92
    [Google Scholar]
  78. 78.
    Nyasae L, Bustos R, Braiterman L, Eipper B, Hubbard A 2007. Dynamics of endogenous ATP7A (Menkes protein) in intestinal epithelial cells: copper-dependent redistribution between two intracellular sites. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G1181–94
    [Google Scholar]
  79. 79.
    O'Donnell KB, Simmons M. 2011. Early-onset copper deficiency following Roux-en-Y gastric bypass. Nutr. Clin. Pract. 26:66–69
    [Google Scholar]
  80. 80.
    Ohgami RS, Campagna DR, McDonald A, Fleming MD 2006. The Steap proteins are metalloreductases. Blood 108:1388–94
    [Google Scholar]
  81. 81.
    Okkelman IA, Foley T, Papkovsky DB, Dmitriev RI 2017. Live cell imaging of mouse intestinal organoids reveals heterogeneity in their oxygenation. Biomaterials 146:86–96
    [Google Scholar]
  82. 82.
    Papamargaritis D, Aasheim ET, Sampson B, le Roux CW 2015. Copper, selenium and zinc levels after bariatric surgery in patients recommended to take multivitamin–mineral supplementation. J. Trace Elem. Med. Biol. 31:167–72
    [Google Scholar]
  83. 83.
    Perrone L, Gialanella G, Moro R, Feng SL, Boccia E et al. 1998. Zinc, copper, and iron in obese children and adolescents. Nutr. Res. 18:183–89
    [Google Scholar]
  84. 84.
    Pierson H, Muchenditsi A, Kim BE, Ralle M, Zachos N et al. 2018. The function of ATPase copper transporter ATP7B in intestine. Gastroenterology 154:168–80.e165
    [Google Scholar]
  85. 85.
    Ravia JJ, Stephen RM, Ghishan FK, Collins JF 2005. Menkes copper ATPase (Atp7a) is a novel metal-responsive gene in rat duodenum, and immunoreactive protein is present on brush-border and basolateral membrane domains. J. Biol. Chem. 280:36221–27
    [Google Scholar]
  86. 86.
    Ruhl CE, Everhart JE. 2015. Fatty liver indices in the multiethnic United States National Health and Nutrition Examination Survey. Aliment. Pharmacol. Ther. 41:65–76
    [Google Scholar]
  87. 87.
    Safavi SM, Ziaei R, Maracy MR 2012. Association of serum ceruloplasmin level with obesity: some components of metabolic syndrome and high-sensitive C-reactive protein in Iran. J. Obes. 2012:951093
    [Google Scholar]
  88. 88.
    Sartore RC, Cardoso SC, Lages YV, Paraguassu JM, Stelling MP et al. 2017. Trace elements during primordial plexiform network formation in human cerebral organoids. PeerJ 5:e2927
    [Google Scholar]
  89. 89.
    Sato T, Clevers H. 2013. Primary mouse small intestinal epithelial cell cultures. Methods Mol. Biol. 945:319–28
    [Google Scholar]
  90. 90.
    Sato T, Stange DE, Ferrante M, Vries RGJ, van Es JH et al. 2011. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–72
    [Google Scholar]
  91. 91.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N et al. 2009. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459:262–65
    [Google Scholar]
  92. 92.
    Sinha G. 2017. The organoid architect. Science 357:746–49
    [Google Scholar]
  93. 93.
    Sinnett-Smith PA, Woolliams JA. 1987. Antilipogenic but not lipolytic effects of recombinant DNA-derived bovine somatotropin treatment on ovine adipose tissue: variation with genetic type. Int. J. Biochem. 21:535–40
    [Google Scholar]
  94. 94.
    Song M, Schuschke DA, Zhou Z, Chen T, Pierce WM Jr et al. 2012. High fructose feeding induces copper deficiency in Sprague-Dawley rats: a novel mechanism for obesity related fatty liver. J. Hepatol. 56:433–40
    [Google Scholar]
  95. 95.
    Song M, Schuschke DA, Zhou Z, Chen T, Shi X et al. 2013. Modest fructose beverage intake causes liver injury and fat accumulation in marginal copper deficient rats. Obesity 21:1669–75
    [Google Scholar]
  96. 96.
    Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE et al. 2011. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–9
    [Google Scholar]
  97. 97.
    Tallino S, Duffy M, Ralle M, Cortes MP, Latorre M, Burkhead JL 2015. Nutrigenomics analysis reveals that copper deficiency and dietary sucrose up-regulate inflammation, fibrosis and lipogenic pathways in a mature rat model of nonalcoholic fatty liver disease. J. Nutr. Biochem. 26:996–1006
    [Google Scholar]
  98. 98.
    Theophilos MB, Cox DW, Mercer JF 1996. The toxic milk mouse is a murine model of Wilson disease. Hum. Mol. Genet. 5:1619–24
    [Google Scholar]
  99. 99.
    Trumbo P, Yates AA, Schlicker S, Poos M 2001. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 101:294–301
    [Google Scholar]
  100. 100.
    Ussing HH, Zerahn K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23:110–27
    [Google Scholar]
  101. 101.
    Wang Y, Zhu S, Hodgkinson V, Prohaska JR, Weisman GA et al. 2012. Maternofetal and neonatal copper requirements revealed by enterocyte-specific deletion of the Menkes disease protein. Am. J. Physiol. Gastrointest. Liver Physiol. 303:G1236–44
    [Google Scholar]
  102. 102.
    Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N et al. 2014. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20:1310–14
    [Google Scholar]
  103. 103.
    Weiss KH, Wurz J, Gotthardt D, Merle U, Stremmel W, Fullekrug J 2008. Localization of the Wilson disease protein in murine intestine. J. Anat. 213:232–40
    [Google Scholar]
  104. 104.
    Williamson IA, Arnold JW, Samsa LA, Gaynor L, DiSalvo M et al. 2018. A high-throughput organoid microinjection platform to study gastrointestinal microbiota and luminal physiology. Cell. Mol. Gastroenterol. Hepatol. 6:301–19
    [Google Scholar]
  105. 105.
    Wilson SAK. 1912. Progressive lenticular degeneration: a familial nervous disease associated with cirrhosis of the liver. Brain 34:295–507
    [Google Scholar]
  106. 106.
    Yang H, Ralle M, Wolfgang MJ, Dhawan N, Burkhead JL et al. 2018. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLOS Biol 16:e2006519
    [Google Scholar]
  107. 107.
    Yerlikaya FH, Toker A, Aribas A 2013. Serum trace elements in obese women with or without diabetes. Indian J. Med. Res. 137:339–45
    [Google Scholar]
  108. 108.
    Zerounian NR, Redekosky C, Malpe R, Linder MC 2003. Regulation of copper absorption by copper availability in the Caco-2 cell intestinal model. Am. J. Physiol. Gastrointest. Liver Physiol. 284:G739–47
    [Google Scholar]
  109. 109.
    Zimnicka AM, Ivy K, Kaplan JH 2011. Acquisition of dietary copper: a role for anion transporters in intestinal apical copper uptake. Am. J. Physiol. Cell Physiol. 300:C588–99
    [Google Scholar]
  110. 110.
    Zimnicka AM, Maryon EB, Kaplan JH 2007. Human copper transporter hCTR1 mediates basolateral uptake of copper into enterocytes: implications for copper homeostasis. J. Biol. Chem. 282:26471–80
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082018-124242
Loading
/content/journals/10.1146/annurev-nutr-082018-124242
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error