1932

Abstract

Molecular clocks are present in almost every cell to anticipate daily recurring and predictable changes, such as rhythmic nutrient availability, and to adapt cellular functions accordingly. At the same time, nutrient-sensing pathways can respond to acute nutrient imbalance and modulate and orient metabolism so cells can adapt optimally to a declining or increasing availability of nutrients. Organismal circadian rhythms are coordinated by behavioral rhythms such as activity–rest and feeding–fasting cycles to temporally orchestrate a sequence of physiological processes to optimize metabolism. Basic research in circadian rhythms has largely focused on the functioning of the self-sustaining molecular circadian oscillator, while research in nutrition science has yielded insights into physiological responses to caloric deprivation or to specific macronutrients. Integration of these two fields into actionable new concepts in the timing of food intake has led to the emerging practice of time-restricted eating. In this paradigm, daily caloric intake is restricted to a consistent window of 8–12 h. This paradigm has pervasive benefits on multiple organ systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082018-124320
2019-08-21
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/nutr/39/1/annurev-nutr-082018-124320.html?itemId=/content/journals/10.1146/annurev-nutr-082018-124320&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acosta-Rodriguez VA, de Groot MHM, Rijo-Ferreira F, Green CB, Takahashi JS 2017. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab 26:267–77.e2
    [Google Scholar]
  2. 2.
    Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M et al. 2014. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19:319–30
    [Google Scholar]
  3. 3.
    Akerstedt T, Knutsson A, Alfredsson L, Theorell T 1984. Shift work and cardiovascular disease. Scand. J. Work Environ. Health 10:409–14
    [Google Scholar]
  4. 4.
    Alenghat T, Meyers K, Mullican SE, Leitner K, Adeniji-Adele A et al. 2008. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456:997–1000
    [Google Scholar]
  5. 5.
    Altarejos JY, Montminy M. 2011. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12:141–51
    [Google Scholar]
  6. 6.
    Antoni R, Robertson TM, Robertson MD, Johnston JD 2018. A pilot feasibility study exploring the effects of a moderate time-restricted feeding intervention on energy intake, adiposity and metabolic physiology in free-living human subjects. J. Nutr. Sci. 7:e22
    [Google Scholar]
  7. 7.
    Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW 2009. Circadian timing of food intake contributes to weight gain. Obesity 17:2100–2
    [Google Scholar]
  8. 8.
    Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C et al. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–28
    [Google Scholar]
  9. 9.
    Asher G, Sassone-Corsi P. 2015. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161:84–92
    [Google Scholar]
  10. 10.
    Asher G, Schibler U. 2011. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab 13:125–37
    [Google Scholar]
  11. 11.
    Atger F, Gobet C, Marquis J, Martin E, Wang J et al. 2015. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. PNAS 112:E6579–88
    [Google Scholar]
  12. 12.
    Barclay JL, Husse J, Bode B, Naujokat N, Meyer-Kovac J et al. 2012. Circadian desynchrony promotes metabolic disruption in a mouse model of shiftwork. PLOS ONE 7:e37150
    [Google Scholar]
  13. 13.
    Bass J. 2012. Circadian topology of metabolism. Nature 491:348–56
    [Google Scholar]
  14. 14.
    Bass J, Takahashi JS. 2010. Circadian integration of metabolism and energetics. Science 330:1349–54
    [Google Scholar]
  15. 15.
    Birse RT, Choi J, Reardon K, Rodriguez J, Graham S et al. 2010. High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. . Cell Metab 12:533–44
    [Google Scholar]
  16. 16.
    Bouatia-Naji N, Bonnefond A, Cavalcanti-Proenca C, Sparso T, Holmkvist J et al. 2009. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat. Genet. 41:89–94
    [Google Scholar]
  17. 17.
    Bray MS, Shaw CA, Moore MW, Garcia RA, Zanquetta MM et al. 2008. Disruption of the circadian clock within the cardiomyocyte influences myocardial contractile function, metabolism, and gene expression. Am. J. Physiol. Heart Circ. Physiol. 294:H1036–47
    [Google Scholar]
  18. 18.
    Bugge A, Feng D, Everett LJ, Briggs ER, Mullican SE et al. 2012. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 26:657–67
    [Google Scholar]
  19. 19.
    Buttorff C, Ruder T, Bauman M 2017. Multiple Chronic Conditions in the United States Santa Monica, CA: Rand Corp.
  20. 20.
    Cahill LE, Chiuve SE, Mekary RA, Jensen MK, Flint AJ et al. 2013. Prospective study of breakfast eating and incident coronary heart disease in a cohort of male US health professionals. Circulation 128:337–43
    [Google Scholar]
  21. 21.
    Chaix A, Lin T, Le HD, Chang MW, Panda S 2019. Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab 29:303–19.e4
    [Google Scholar]
  22. 22.
    Chaix A, Panda S. 2016. Ketone bodies signal opportunistic food-seeking activity. Trends Endocrinol. Metab. 27:350–52
    [Google Scholar]
  23. 23.
    Chaix A, Zarrinpar A, Miu P, Panda S 2014. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20:991–1005
    [Google Scholar]
  24. 24.
    Chantranupong L, Wolfson RL, Sabatini DM 2015. Nutrient-sensing mechanisms across evolution. Cell 161:67–83
    [Google Scholar]
  25. 25.
    Chavan R, Feillet C, Costa SS, Delorme JE, Okabe T et al. 2016. Liver-derived ketone bodies are necessary for food anticipation. Nat. Commun. 7:10580
    [Google Scholar]
  26. 26.
    Cho H, Zhao X, Hatori M, Yu RT, Barish GD et al. 2012. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 485:123–27
    [Google Scholar]
  27. 27.
    Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–61
    [Google Scholar]
  28. 28.
    Das SK, Roberts SB, Bhapkar MV, Villareal DT, Fontana L et al. 2017. Body-composition changes in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)-2 study: a 2-y randomized controlled trial of calorie restriction in nonobese humans. Am. J. Clin. Nutr. 105:913–27
    [Google Scholar]
  29. 29.
    Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD 2006. Chronic jet-lag increases mortality in aged mice. Curr. Biol. 16:R914–16
    [Google Scholar]
  30. 30.
    Davis S, Mirick DK, Stevens RG 2001. Night shift work, light at night, and risk of breast cancer. J. Natl. Cancer Inst. 93:1557–62
    [Google Scholar]
  31. 31.
    Di Francesco A, Di Germanio C, Bernier M, de Cabo R 2018. A time to fast. Science 362:770–75
    [Google Scholar]
  32. 32.
    Donovan R, Nelson T, Peel J, Lipsey T, Voyles W, Israel RG 2009. Cardiorespiratory fitness and the metabolic syndrome in firefighters. Occup. Med. 59:487–92
    [Google Scholar]
  33. 33.
    Dunn AY, Melville MW, Frydman J 2001. Cellular substrates of the eukaryotic chaperonin TRiC/CCT. J. Struct. Biol. 135:176–84
    [Google Scholar]
  34. 34.
    Efeyan A, Comb WC, Sabatini DM 2015. Nutrient-sensing mechanisms and pathways. Nature 517:302–10
    [Google Scholar]
  35. 35.
    Erdmann J, Stark K, Esslinger UB, Rumpf PM, Koesling D et al. 2013. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 504:432–36
    [Google Scholar]
  36. 36.
    Escobar C, Díaz-Muñoz M, Encinas F, Aguilar-Roblero R 1998. Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am. J. Physiol. 274:R1309–16
    [Google Scholar]
  37. 37.
    Everett LJ, Lazar MA. 2014. Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol. Metab. 25:586–92
    [Google Scholar]
  38. 38.
    Farhadian SF, Suarez-Farinas M, Cho CE, Pellegrino M, Vosshall LB 2012. Post-fasting olfactory, transcriptional, and feeding responses in Drosophila. Physiol. Behav 105:544–53
    [Google Scholar]
  39. 39.
    Foster JA, McVey Neufeld KA 2013. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–12
    [Google Scholar]
  40. 40.
    Gabel K, Hoddy KK, Haggerty N, Song J, Kroeger CM et al. 2018. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr. Healthy Aging 4:345–53
    [Google Scholar]
  41. 41.
    Garaulet M, Gómez-Abellán P, Alburquerque-Béjar JJ, Lee YC, Ordovás JM, Scheer FA 2013. Timing of food intake predicts weight loss effectiveness. Int. J. Obes 37:604–11 Erratum. 2013 Int. J. Obes 37:624
    [Google Scholar]
  42. 42.
    Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O et al. 2009. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23:1313–26
    [Google Scholar]
  43. 43.
    Gill S, Le HD, Melkani GC, Panda S 2015. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. . Science 347:1265–69
    [Google Scholar]
  44. 44.
    Gill S, Panda S. 2015. A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab 22:789–98
    [Google Scholar]
  45. 45.
    Güler AD, Ecker JL, Lall GS, Haq S, Altimus CM et al. 2008. Melanopsin cells are the principal conduits for rod–cone input to non-image-forming vision. Nature 453:102–5
    [Google Scholar]
  46. 46.
    Gupta NJ, Kumar V, Panda S 2017. A camera-phone based study reveals erratic eating pattern and disrupted daily eating–fasting cycle among adults in India. PLOS ONE 12:e0172852
    [Google Scholar]
  47. 47.
    Hatori M, Le H, Vollmers C, Keding SR, Tanaka N et al. 2008. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLOS ONE 3:e2451
    [Google Scholar]
  48. 48.
    Hatori M, Panda S. 2010. The emerging roles of melanopsin in behavioral adaptation to light. Trends Mol. Med. 16:435–46
    [Google Scholar]
  49. 49.
    Hatori M, Vollmers C, Zarrinpar A, Ditacchio L, Bushong EA et al. 2012. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15:848–60
    [Google Scholar]
  50. 50.
    Hattar S, Liao HW, Takao M, Berson DM, Yau KW 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–70
    [Google Scholar]
  51. 51.
    Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O et al. 2015. National Sleep Foundation's updated sleep duration recommendations: final report. Sleep Health 1:233–43
    [Google Scholar]
  52. 52.
    Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S et al. 2009. Harmonics of circadian gene transcription in mammals. PLOS Genet 5:e1000442
    [Google Scholar]
  53. 53.
    Hutchison AT, Regmi P, Manoogian EN, Fleischer JG, Wittert GA et al. 2013. Time‐restricted feeding improves glucose tolerance in men at risk for type 2 diabetes: a randomized crossover trial. Obesity 27:724–32
    [Google Scholar]
  54. 54.
    Kentish SJ, Hatzinikolas G, Li H, Frisby CA, Wittert GA, Page AJ 2018. Time restricted feeding prevents ablation of diurnal rhythms in gastric vagal afferent mechanosensitivity observed in high-fat diet-induced obese mice. J. Neurosci. 38:5088–95
    [Google Scholar]
  55. 55.
    Kentish SJ, Page AJ. 2014. Plasticity of gastro-intestinal vagal afferent endings. Physiol. Behav. 136:170–78
    [Google Scholar]
  56. 56.
    Kentish SJ, Vincent AD, Kennaway DJ, Wittert GA, Page AJ 2016. High-fat diet-induced obesity ablates gastric vagal afferent circadian rhythms. J. Neurosci. 36:3199–207
    [Google Scholar]
  57. 57.
    Knutsson A. 2003. Health disorders of shift workers. Occup. Med. 53:103–8
    [Google Scholar]
  58. 58.
    Kogevinas M, Espinosa A, Castello A, Gomez-Acebo I, Guevara M et al. 2018. Effect of mistimed eating patterns on breast and prostate cancer risk (MCC-Spain Study). Int. J. Cancer 143:2380–89
    [Google Scholar]
  59. 59.
    Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C et al. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–21
    [Google Scholar]
  60. 60.
    Koike N, Yoo SH, Huang HC, Kumar V, Lee C et al. 2012. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338:349–54
    [Google Scholar]
  61. 61.
    Konturek PC, Brzozowski T, Konturek SJ 2011. Gut clock: implication of circadian rhythms in the gastrointestinal tract. J. Physiol. Pharmacol. 62:139–50
    [Google Scholar]
  62. 62.
    Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH et al. 2011. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480:552–56
    [Google Scholar]
  63. 63.
    Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–40
    [Google Scholar]
  64. 64.
    Lavery DJ, Schibler U. 1993. Circadian transcription of the cholesterol 7α hydroxylase gene may involve the liver-enriched bZIP protein DBP. Genes Dev 7:1871–84
    [Google Scholar]
  65. 65.
    Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B et al. 2009. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLOS Biol 7:e1000181
    [Google Scholar]
  66. 66.
    LeCheminant JD, Christenson E, Bailey BW, Tucker LA 2013. Restricting night-time eating reduces daily energy intake in healthy young men: a short-term cross-over study. Br. J. Nutr. 110:2108–13
    [Google Scholar]
  67. 67.
    Liu Z, Huang M, Wu X, Shi G, Xing L et al. 2014. PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep 7:1509–20
    [Google Scholar]
  68. 68.
    Lopez-Minguez J, Saxena R, Bandín C, Scheer FA, Garaulet M 2017. Late dinner impairs glucose tolerance in MTNR1B risk allele carriers: a randomized, cross-over study. Clin. Nutr. 37:1133–40
    [Google Scholar]
  69. 69.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–128
    [Google Scholar]
  70. 70.
    Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR et al. 2017. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program's workshop on shift work at night, artificial light at night, and circadian disruption. Sci. Total Environ. 607–608:1073–84
    [Google Scholar]
  71. 71.
    Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A et al. 2009. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41:82–88
    [Google Scholar]
  72. 72.
    Marinac CR, Natarajan L, Sears DD, Gallo LC, Hartman SJ et al. 2015. Prolonged nightly fasting and breast cancer risk: findings from NHANES (2009–2010). Cancer Epidemiol. Biomark. Prev. 24:783–89
    [Google Scholar]
  73. 73.
    Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L et al. 2013. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. PNAS 110:5695–700
    [Google Scholar]
  74. 74.
    Maxfield FR, Tabas I. 2005. Role of cholesterol and lipid organization in disease. Nature 438:612–21
    [Google Scholar]
  75. 75.
    Mayr B, Montminy M. 2001. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2:599–609
    [Google Scholar]
  76. 76.
    Megdal SP, Kroenke CH, Laden F, Pukkala E, Schernhammer ES 2005. Night work and breast cancer risk: a systematic review and meta-analysis. Eur. J. Cancer 41:2023–32
    [Google Scholar]
  77. 77.
    Melkani GC, Trujillo AS, Ramos R, Bodmer R, Bernstein SI, Ocorr K 2013. Huntington's disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the Drosophila heart. PLOS Genet 9:e1004024
    [Google Scholar]
  78. 78.
    Mistlberger RE. 1994. Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18:171–95
    [Google Scholar]
  79. 79.
    Mitchell SE, Delville C, Konstantopedos P, Derous D, Green CL et al. 2016. The effects of graded levels of calorie restriction: V. Impact of short term calorie and protein restriction on physical activity in the C57BL/6 mouse. Oncotarget 7:19147–70
    [Google Scholar]
  80. 80.
    Mitchell SJ, Bernier M, Mattison JA, Aon MA, Kaiser TA et al. 2019. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab 29:221–28.e3
    [Google Scholar]
  81. 81.
    Mohren DC, Jansen NW, Kant IJ, Galama J, van den Brandt PA, Swaen GM 2002. Prevalence of common infections among employees in different work schedules. J. Occup. Environ. Med. 44:1003–11
    [Google Scholar]
  82. 82.
    Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF et al. 2016. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 14:290
    [Google Scholar]
  83. 83.
    Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J et al. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–40
    [Google Scholar]
  84. 84.
    Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P 2009. Circadian control of the NAD+ salvage pathway by CLOCK–SIRT1. Science 324:654–57
    [Google Scholar]
  85. 85.
    Nelson W, Halberg F. 1986. Meal-timing, circadian rhythms and life span of mice. J. Nutr. 116:2244–53
    [Google Scholar]
  86. 86.
    Neufeld-Cohen A, Robles MS, Aviram R, Manella G, Adamovich Y et al. 2016. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. PNAS 113:E1673–82
    [Google Scholar]
  87. 87.
    Newman JC, Covarrubias AJ, Zhao M, Yu X, Gut P et al. 2017. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab 26:547–57.e8
    [Google Scholar]
  88. 88.
    Ocorr K, Akasaka T, Bodmer R 2007. Age-related cardiac disease model of Drosophila. Mech. Ageing Dev 128:112–16
    [Google Scholar]
  89. 89.
    Ohayon M, Wickwire EM, Hirshkowitz M, Albert SM, Avidan A et al. 2017. National Sleep Foundation's sleep quality recommendations: first report. Sleep Health 3:6–19
    [Google Scholar]
  90. 90.
    Panda S. 2016. Circadian physiology of metabolism. Science 354:1008–15
    [Google Scholar]
  91. 91.
    Paschos GK, FitzGerald GA. 2010. Circadian clocks and vascular function. Circ. Res. 106:833–41
    [Google Scholar]
  92. 92.
    Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL et al. 2015. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350:aac4250
    [Google Scholar]
  93. 93.
    Persaud SJ, Jones PM. 2016. A wake-up call for type 2 diabetes?. N. Engl. J. Med. 375:1090–92
    [Google Scholar]
  94. 94.
    Puttonen S, Harma M, Hublin C 2010. Shift work and cardiovascular disease—pathways from circadian stress to morbidity. Scand. J. Work Environ. Health 36:96–108
    [Google Scholar]
  95. 95.
    Ramirez-Plascencia OD, Saderi N, Escobar C, Salgado-Delgado RC 2017. Feeding during the rest phase promotes circadian conflict in nuclei that control energy homeostasis and sleep–wake cycle in rats. Eur. J. Neurosci. 45:1325–32
    [Google Scholar]
  96. 96.
    Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–54
    [Google Scholar]
  97. 97.
    Reddy AB, O'Neill JS. 2010. Healthy clocks, healthy body, healthy mind. Trends Cell Biol 20:36–44
    [Google Scholar]
  98. 98.
    Reinke H, Saini C, Fleury-Olela F, Dibner C, Benjamin IJ, Schibler U 2008. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev 22:331–45
    [Google Scholar]
  99. 99.
    Reiter RJ. 1991. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12:151–80
    [Google Scholar]
  100. 100.
    Rey G, Cesbron F, Rougemont J, Reinke H, Brunner M, Naef F 2011. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLOS Biol 9:e1000595
    [Google Scholar]
  101. 101.
    Roberts MN, Wallace MA, Tomilov AA, Zhou Z, Marcotte GR et al. 2017. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab 26:539–46.e5
    [Google Scholar]
  102. 102.
    Ronn T, Wen J, Yang Z, Lu B, Du Y et al. 2009. A common variant in MTNR1B, encoding melatonin receptor 1B, is associated with type 2 diabetes and fasting plasma glucose in Han Chinese individuals. Diabetologia 52:830–33
    [Google Scholar]
  103. 103.
    Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S et al. 2004. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLOS Biol 2:e377
    [Google Scholar]
  104. 104.
    Rudic RD, McNamara P, Reilly D, Grosser T, Curtis AM et al. 2005. Bioinformatic analysis of circadian gene oscillation in mouse aorta. Circulation 112:2716–24
    [Google Scholar]
  105. 105.
    Salgado-Delgado R, Angeles-Castellanos M, Saderi N, Buijs RM, Escobar C 2010. Food intake during the normal activity phase prevents obesity and circadian desynchrony in a rat model of night work. Endocrinology 151:1019–29
    [Google Scholar]
  106. 106.
    Scheer FA, Morris CJ, Shea SA 2013. The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity 21:421–23
    [Google Scholar]
  107. 107.
    Schenck CH, Mahowald MW. 1994. Review of nocturnal sleep-related eating disorders. Int. J. Eat. Disord. 15:343–56
    [Google Scholar]
  108. 108.
    Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ et al. 2003. Night-shift work and risk of colorectal cancer in the nurses’ health study. J. Natl. Cancer Inst. 95:825–28
    [Google Scholar]
  109. 109.
    Sherman H, Genzer Y, Cohen R, Chapnik N, Madar Z, Froy O 2012. Timed high-fat diet resets circadian metabolism and prevents obesity. FASEB J 26:3493–502
    [Google Scholar]
  110. 110.
    Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH 2013. Circadian disruption leads to insulin resistance and obesity. Curr. Biol. 23:372–81
    [Google Scholar]
  111. 111.
    Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y et al. 2005. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. PNAS 102:12071–76
    [Google Scholar]
  112. 112.
    Soteriades ES, Smith DL, Tsismenakis AJ, Baur DM, Kales SN 2011. Cardiovascular disease in US firefighters: a systematic review. Cardiol. Rev. 19:202–15
    [Google Scholar]
  113. 113.
    St-Onge MP, Ard J, Baskin ML, Chiuve SE, Johnson HM et al. 2017. Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation 135:e96–121
    [Google Scholar]
  114. 114.
    Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M 2001. Entrainment of the circadian clock in the liver by feeding. Science 291:490–93
    [Google Scholar]
  115. 115.
    Sturis J, Scheen AJ, Leproult R, Polonsky KS, van Cauter E 1995. 24-hour glucose profiles during continuous or oscillatory insulin infusion: demonstration of the functional significance of ultradian insulin oscillations. J. Clin. Investig. 95:1464–71
    [Google Scholar]
  116. 116.
    Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM 2018. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 27:1212–21.e3114
    [Google Scholar]
  117. 117.
    Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18:164–79
    [Google Scholar]
  118. 118.
    Thaiss CA, Levy M, Korem T, Dohnalova L, Shapiro H et al. 2016. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167:1495–510.e12
    [Google Scholar]
  119. 119.
    Thaiss CA, Zeevi D, Levy M, Segal E, Elinav E 2015. A day in the life of the meta-organism: diurnal rhythms of the intestinal microbiome and its host. Gut Microbes 6:137–42
    [Google Scholar]
  120. 120.
    Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J et al. 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–29
    [Google Scholar]
  121. 121.
    Tinsley GM, Forsse JS, Butler NK, Paoli A, Bane AA et al. 2017. Time-restricted feeding in young men performing resistance training: a randomized controlled trial. Eur. J. Sport Sci. 17:200–7
    [Google Scholar]
  122. 122.
    Tuomi T, Nagorny CL, Singh P, Bennet H, Yu Q et al. 2016. Increased melatonin signaling is a risk factor for type 2 diabetes. Cell Metab 23:1067–77
    [Google Scholar]
  123. 123.
    Van Cauter E, Desir D, Decoster C, Fery F, Balasse EO 1989. Nocturnal decrease in glucose tolerance during constant glucose infusion. J. Clin. Endocrinol. Metab. 69:604–11
    [Google Scholar]
  124. 124.
    Viswanathan AN, Hankinson SE, Schernhammer ES 2007. Night shift work and the risk of endometrial cancer. Cancer Res 67:10618–22
    [Google Scholar]
  125. 125.
    Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S 2009. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. PNAS 106:21453–58
    [Google Scholar]
  126. 126.
    Wang HB, Loh DH, Whittaker DS, Cutler T, Howland D, Colwell CS 2018. Time-restricted feeding improves circadian dysfunction as well as motor symptoms in the Q175 mouse model of Huntington's disease. eNeuro 5:0431–17 2017.
    [Google Scholar]
  127. 127.
    Welsh DK, Takahashi JS, Kay SA 2010. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72:551–77
    [Google Scholar]
  128. 128.
    Whittaker DS, Loh DH, Wang HB, Tahara Y, Kuljis D et al. 2018. Circadian-based treatment strategy effective in the BACHD mouse model of Huntington's disease. J. Biol. Rhythms 33:535–54
    [Google Scholar]
  129. 129.
    Wittmann M, Dinich J, Merrow M, Roenneberg T 2006. Social jetlag: misalignment of biological and social time. Chronobiol. Int. 23:497–509
    [Google Scholar]
  130. 130.
    Wolf MJ, Rockman HA. 2008. Drosophila melanogaster as a model system for genetics of postnatal cardiac function. Drug Discov. Today Dis. Models 5:117–23
    [Google Scholar]
  131. 131.
    Wood B, Rea MS, Plitnick B, Figueiro MG 2013. Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Appl. Ergon. 44:237–40
    [Google Scholar]
  132. 132.
    Yaffe MB, Farr GW, Miklos D, Horwich AL, Sternlicht ML, Sternlicht H 1992. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358:245–48
    [Google Scholar]
  133. 133.
    Zarrinpar A, Chaix A, Yooseph S, Panda S 2014. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20:1006–17
    [Google Scholar]
  134. 134.
    Zhang EE, Liu Y, Dentin R, Pongsawakul PY, Liu AC et al. 2010. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16:1152–56
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082018-124320
Loading
/content/journals/10.1146/annurev-nutr-082018-124320
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error