1932

Abstract

Bile acids facilitate nutrient absorption and are endogenous ligands for nuclear receptors that regulate lipid and energy metabolism. The brain–gut–liver axis plays an essential role in maintaining overall glucose, bile acid, and immune homeostasis. Fasting and feeding transitions alter nutrient content in the gut, which influences bile acid composition and pool size. In turn, bile acid signaling controls lipid and glucose use and protection against inflammation. Altered bile acid metabolism resulting from gene mutations, high-fat diets, alcohol, or circadian disruption can contribute to cholestatic and inflammatory diseases, diabetes, and obesity. Bile acids and their derivatives are valuable therapeutic agents for treating these inflammatory metabolic diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-082018-124344
2019-08-21
2024-05-26
Loading full text...

Full text loading...

/deliver/fulltext/nutr/39/1/annurev-nutr-082018-124344.html?itemId=/content/journals/10.1146/annurev-nutr-082018-124344&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abdullah MM, Eck PK, Couture P, Lamarche B, Jones PJH 2018. The combination of single nucleotide polymorphisms rs6720173 (ABCG5), rs3808607 (CYP7A1), and rs760241 (DHCR7) is associated with differing serum cholesterol responses to dairy consumption. Appl. Physiol. Nutr. Metab. 43:1090–93
    [Google Scholar]
  2. 2.
    Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12:540–50
    [Google Scholar]
  3. 3.
    Al-Khaifi A, Straniero S, Voronova V, Chernikova D, Sokolov V et al. 2018. Asynchronous rhythms of circulating conjugated and unconjugated bile acids in the modulation of human metabolism. J. Intern. Med. 284:546–59
    [Google Scholar]
  4. 4.
    Albaugh VL, Flynn CR, Cai S, Xiao Y, Tamboli RA, Abumrad NN 2015. Early increases in bile acids post Roux-en-Y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J. Clin. Endocrinol. Metab. 100:E1225–33
    [Google Scholar]
  5. 5.
    Alemi F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F et al. 2013. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 144:145–54
    [Google Scholar]
  6. 6.
    Amador MDM, Masingue M, Debs R, Lamari F, Perlbarg V et al. 2018. Treatment with chenodeoxycholic acid in cerebrotendinous xanthomatosis: clinical, neurophysiological, and quantitative brain structural outcomes. J. Inherit. Metab. Dis. 41:799–807
    [Google Scholar]
  7. 7.
    Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L et al. 2011. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2−/−(Abcb4−/−) mouse cholangiopathy model by promoting biliary HCO−3 output. Hepatology 54:1303–12
    [Google Scholar]
  8. 8.
    Bajaj JS, Kakiyama G, Zhao D, Takei H, Fagan A et al. 2017. Continued alcohol misuse in human cirrhosis is associated with an impaired gut–liver axis. Alcohol. Clin. Exp. Res. 41:1857–65
    [Google Scholar]
  9. 9.
    Bertaggia E, Jensen KK, Castro-Perez J, Xu Y, Di Paolo G et al. 2017. Cyp8b1 ablation prevents Western diet–induced weight gain and hepatic steatosis because of impaired fat absorption. Am. J. Physiol. Endocrinol. Metab. 313:E121–33
    [Google Scholar]
  10. 10.
    Beuers U. 2006. Drug insight: Mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol. 3:318–28
    [Google Scholar]
  11. 11.
    Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle JH et al. 2018. Biliary atresia: clinical and research challenges for the twenty-first century. Hepatology 68:1163–73
    [Google Scholar]
  12. 12.
    Brunt EM. 2010. Pathology of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 7:195–203
    [Google Scholar]
  13. 13.
    Cai Q, Wang ZQ, Cai Q, Li C, Chen EZ, Jiang ZY 2014. Relationship between CYP7A1-204A>C polymorphism with gallbladder stone disease and serum lipid levels: a meta-analysis. Lipids Health Dis 13:126
    [Google Scholar]
  14. 14.
    Cariello M, Peres C, Zerlotin R, Porru E, Sabba C et al. 2017. Long-term administration of nuclear bile acid receptor FXR agonist prevents spontaneous hepatocarcinogenesis in Abcb4−/− mice. Sci. Rep. 7:11203
    [Google Scholar]
  15. 15.
    Carino A, Cipriani S, Marchiano S, Biagioli M, Santorelli C et al. 2017. BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis. Sci. Rep. 7:42801
    [Google Scholar]
  16. 16.
    Chiang JYL. 2009. Bile acids: regulation of synthesis. J. Lipid Res. 50:1955–66
    [Google Scholar]
  17. 17.
    Chiang JYL, Ferrell JM. 2018. Bile acid metabolism in liver pathobiology. Gene Expr 18:71–87
    [Google Scholar]
  18. 18.
    Cohen JC, Horton JD, Hobbs HH 2011. Human fatty liver disease: old questions and new insights. Science 332:1519–23
    [Google Scholar]
  19. 19.
    Comeglio P, Cellai I, Mello T, Filippi S, Maneschi E et al. 2018. INT-767 prevents NASH and promotes visceral fat brown adipogenesis and mitochondrial function. J. Endocrinol. 238:107–27
    [Google Scholar]
  20. 20.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63
    [Google Scholar]
  21. 21.
    Degirolamo C, Sabba C, Moschetta A 2015. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat. Rev. Drug Discov. 15:51–69
    [Google Scholar]
  22. 22.
    Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487:104–8
    [Google Scholar]
  23. 23.
    Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C et al. 2013. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153:601–13
    [Google Scholar]
  24. 24.
    Dixon PH, Williamson C. 2016. The pathophysiology of intrahepatic cholestasis of pregnancy. Clin. Res. Hepatol. Gastroenterol. 40:141–53
    [Google Scholar]
  25. 25.
    Donepudi AC, Boehme S, Li F, Chiang JY 2017. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice. Hepatology 65:813–27
    [Google Scholar]
  26. 26.
    Donepudi AC, Ferrell JM, Boehme S, Choi HS, Chiang JYL 2018. Deficiency of cholesterol 7α-hydroxylase in bile acid synthesis exacerbates alcohol-induced liver injury in mice. Hepatol. Commun. 2:99–112
    [Google Scholar]
  27. 27.
    Droge C, Bonus M, Baumann U, Klindt C, Lainka E et al. 2017. Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J. Hepatol. 67:1253–64
    [Google Scholar]
  28. 28.
    Dussault I, Yoo HD, Lin M, Wang E, Fan M et al. 2003. Identification of an endogenous ligand that activates pregnane X receptor–mediated sterol clearance. PNAS 100:833–38
    [Google Scholar]
  29. 29.
    Dyson JK, Hirschfield GM, Adams DH, Beuers U, Mann DA et al. 2015. Novel therapeutic targets in primary biliary cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 12:147–58
    [Google Scholar]
  30. 30.
    Fang S, Suh JM, Reilly SM, Yu E, Osborn O et al. 2015. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21:159–65
    [Google Scholar]
  31. 31.
    Farrell GC, Larter CZ. 2006. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43:Suppl. 1S99–112
    [Google Scholar]
  32. 32.
    Ferdinandusse S, Denis S, Dacremont G, Wanders RJ 2009. Toxicity of peroxisomal C27-bile acid intermediates. Mol. Genet. Metab. 96:121–28
    [Google Scholar]
  33. 33.
    Ferrell JM, Chiang JY. 2015. Short-term circadian disruption impairs bile acid and lipid homeostasis in mice. Cell. Mol. Gastroenterol. Hepatol. 1:664–77
    [Google Scholar]
  34. 34.
    Fickert P, Hirschfield GM, Denk G, Marschall HU, Altorjay I et al. 2017. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J. Hepatol. 67:549–58
    [Google Scholar]
  35. 35.
    Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA et al. 2011. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152:2996–3004
    [Google Scholar]
  36. 36.
    Fu L, John LM, Adams SH, Yu XX, Tomlinson E et al. 2004. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145:2594–603
    [Google Scholar]
  37. 37.
    Gaich G, Chien JY, Fu H, Glass LC, Deeg MA et al. 2013. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–40
    [Google Scholar]
  38. 38.
    Galman C, Angelin B, Rudling M 2005. Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology 129:1445–53
    [Google Scholar]
  39. 39.
    Gao B, Bataller R. 2011. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141:1572–85
    [Google Scholar]
  40. 40.
    Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT et al. 2013. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 36:1859–64
    [Google Scholar]
  41. 41.
    Gomez-Ambrosi J, Gallego-Escuredo JM, Catalan V, Rodriguez A, Domingo P et al. 2017. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin. Nutr. 36:861–68
    [Google Scholar]
  42. 42.
    Gomez-Ospina N, Potter CJ, Xiao R, Manickam K, Kim MS et al. 2016. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat. Commun. 7:10713
    [Google Scholar]
  43. 43.
    Gonzalez FJ, Jiang C, Patterson AD 2016. An intestinal microbiota–farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151:845–59
    [Google Scholar]
  44. 44.
    Goodwin B, Gauthier KC, Umetani M, Watson MA, Lochansky MI et al. 2003. Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor. PNAS 100:223–28
    [Google Scholar]
  45. 45.
    Guglielmi FW, Regano N, Mazzuoli S, Fregnan S, Leogrande G et al. 2008. Cholestasis induced by total parenteral nutrition. Clin. Liver Dis. 12:97–110
    [Google Scholar]
  46. 46.
    Hadjihambi A, Arias N, Sheikh M, Jalan R 2018. Hepatic encephalopathy: a critical current review. Hepatol. Int. 12:135–47
    [Google Scholar]
  47. 47.
    Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E 2013. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 62:4184–91
    [Google Scholar]
  48. 48.
    Halilbasic E, Fiorotto R, Fickert P, Marschall HU, Moustafa T et al. 2009. Side chain structure determines unique physiologic and therapeutic properties of norursodeoxycholic acid in Mdr2−/− mice. Hepatology 49:1972–81
    [Google Scholar]
  49. 49.
    Han S, Chiang JY. 2009. Mechanism of vitamin D receptor inhibition of cholesterol 7α-hydroxylase gene transcription in human hepatocytes. Drug Metab. Dispos. 37:469–78
    [Google Scholar]
  50. 50.
    Hansen M, Sonne DP, Mikkelsen KH, Gluud LL, Vilsboll T, Knop FK 2017. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: a systematic review with meta-analysis of randomized controlled trials. J. Diabetes Complicat. 31:918–27
    [Google Scholar]
  51. 51.
    Hartmann P, Hochrath K, Horvath A, Chen P, Seebauer CT et al. 2018. Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 67:2150–66
    [Google Scholar]
  52. 52.
    Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC et al. 2015. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148:751–61.e8
    [Google Scholar]
  53. 53.
    Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y et al. 2013. An FGF21–adiponectin–ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 17:790–97
    [Google Scholar]
  54. 54.
    Huang HY, Zhou H, Wang H, Chen YX, Fang F 2016. Novel mutations in the 3β-hydroxy-Δ5-C27-steroid dehydrogenase gene (HSD3B7) in a patient with neonatal cholestasis. Chin. Med. J. 129:98–100
    [Google Scholar]
  55. 55.
    Ibrahim E, Diakonov I, Arunthavarajah D, Swift T, Goodwin M et al. 2018. Bile acids and their respective conjugates elicit different responses in neonatal cardiomyocytes: role of Gi protein, muscarinic receptors and TGR5. Sci. Rep. 8:7110
    [Google Scholar]
  56. 56.
    Iguchi Y, Nishimaki-Mogami T, Yamaguchi M, Teraoka F, Kaneko T, Une M 2011. Effects of chemical modification of ursodeoxycholic acid on TGR5 activation. Biol. Pharm. Bull. 34:1–7
    [Google Scholar]
  57. 57.
    Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL et al. 2005. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217–25
    [Google Scholar]
  58. 58.
    Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA 2008. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 8:77–83
    [Google Scholar]
  59. 59.
    Iwanicki T, Balcerzyk A, Niemiec P, Nowak T, Ochalska-Tyka A et al. 2015. CYP7A1 gene polymorphism located in the 5′ upstream region modifies the risk of coronary artery disease. Dis. Markers 2015:185969
    [Google Scholar]
  60. 60.
    Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M et al. 2018. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J. Hepatol. 68:1063–75
    [Google Scholar]
  61. 61.
    Jiang C, Xie C, Li F, Zhang L, Nichols RG et al. 2015. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Investig. 125:386–402
    [Google Scholar]
  62. 62.
    Jiang C, Xie C, Lv Y, Li J, Krausz KW et al. 2015. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6:10166
    [Google Scholar]
  63. 63.
    Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF et al. 2014. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. PNAS 111:7421–26
    [Google Scholar]
  64. 64.
    Kang DJ, Hylemon PB, Gillevet PM, Sartor RB, Betrapally NS et al. 2017. Gut microbial composition can differentially regulate bile acid synthesis in humanized mice. Hepatol. Commun. 1:61–70
    [Google Scholar]
  65. 65.
    Kaur A, Patankar JV, de Haan W, Ruddle P, Wijesekara N et al. 2015. Loss of Cyp8b1 improves glucose homeostasis by increasing GLP-1. Diabetes 64:1168–79
    [Google Scholar]
  66. 66.
    Keitel V, Gorg B, Bidmon HJ, Zemtsova I, Spomer L et al. 2010. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 58:1794–805
    [Google Scholar]
  67. 67.
    Kettner NM, Voicu H, Finegold MJ, Coarfa C, Sreekumar A et al. 2016. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30:909–24
    [Google Scholar]
  68. 68.
    Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK et al. 2007. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774–81
    [Google Scholar]
  69. 69.
    Kir S, Beddow SA, Samuel VT, Miller P, Previs SF et al. 2011. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621–24
    [Google Scholar]
  70. 70.
    Kowdley KV, Luketic V, Chapman R, Hirschfield GM, Poupon R et al. 2018. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology 67:1890–902
    [Google Scholar]
  71. 71.
    Lan T, Morgan DA, Rahmouni K, Sonoda J, Fu X et al. 2017. FGF19, FGF21, and an FGFR1/β-klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab 26:709–18.e3
    [Google Scholar]
  72. 72.
    Li B, Yang N, Li C, Li C, Gao K et al. 2018. INT-777, a bile acid receptor agonist, extenuates pancreatic acinar cells necrosis in a mouse model of acute pancreatitis. Biochem. Biophys. Res. Commun. 503:38–44
    [Google Scholar]
  73. 73.
    Li F, Jiang C, Krausz KW, Li Y, Albert I et al. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4:2384
    [Google Scholar]
  74. 74.
    Li T, Chiang JY. 2005. Mechanism of rifampicin and pregnane x receptor (PXR) inhibition of human cholesterol 7α-hydroxylase gene (CYP7A1) transcription. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G74–84
    [Google Scholar]
  75. 75.
    Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR et al. 2011. The G protein–coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol. Endocrinol. 25:1066–71
    [Google Scholar]
  76. 76.
    Li T, Matozel M, Boehme S, Kong B, Nilsson LM et al. 2011. Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 53:996–1006
    [Google Scholar]
  77. 77.
    Li T, Owsley E, Matozel M, Hsu P, Novak CM, Chiang JY 2010. Transgenic expression of cholesterol 7α-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology 52:678–90
    [Google Scholar]
  78. 78.
    Li-Hawkins J, Gafvels M, Olin M, Lund EG, Andersson U et al. 2002. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J. Clin. Investig. 110:1191–200
    [Google Scholar]
  79. 79.
    Lioudaki E, Ganotakis ES, Mikhailidis DP 2011. Lipid lowering drugs and gallstones: a therapeutic option. ? Curr. Pharm. Des. 17:3622–31
    [Google Scholar]
  80. 80.
    Liu R, Zhao R, Zhou X, Liang X, Campbell DJ et al. 2014. Conjugated bile acids promote cholangiocarcinoma cell invasive growth via activation of sphingosine 1-phosphate receptor 2. Hepatology 60:908–18
    [Google Scholar]
  81. 81.
    Loomba R, Seguritan V, Li W, Long T, Klitgord N et al. 2017. Gut microbiome–based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab 25:1054–62.e5
    [Google Scholar]
  82. 82.
    Lundasen T, Galman C, Angelin B, Rudling M 2006. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J. Intern. Med. 260:530–36
    [Google Scholar]
  83. 83.
    Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H et al. 2002. Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–16
    [Google Scholar]
  84. 84.
    Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM et al. 1999. Identification of a nuclear receptor for bile acids. Science 284:1362–65
    [Google Scholar]
  85. 85.
    Marcelin G, Jo YH, Li X, Schwartz GJ, Zhang Y et al. 2014. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab. 3:19–28
    [Google Scholar]
  86. 86.
    Marrapodi M, Chiang JY. 2000. Peroxisome proliferator–activated receptor α (PPARα) and agonist inhibit cholesterol 7α-hydroxylase gene (CYP7A1) transcription. J. Lipid Res. 41:514–20
    [Google Scholar]
  87. 87.
    Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H et al. 2002. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298:714–19
    [Google Scholar]
  88. 88.
    McMillin M, DeMorrow S. 2016. Effects of bile acids on neurological function and disease. FASEB J 30:3658–68
    [Google Scholar]
  89. 89.
    McMillin M, Frampton G, Grant S, Khan S, Diocares J et al. 2017. Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice. Front. Cell. Neurosci. 11:191
    [Google Scholar]
  90. 90.
    McNeilly AD, Macfarlane DP, O'Flaherty E, Livingstone DE, Mitic T et al. 2010. Bile acids modulate glucocorticoid metabolism and the hypothalamic–pituitary–adrenal axis in obstructive jaundice. J. Hepatol. 52:705–11
    [Google Scholar]
  91. 91.
    Mueller M, Thorell A, Claudel T, Jha P, Koefeler H et al. 2015. Ursodeoxycholic acid exerts farnesoid X receptor–antagonistic effects on bile acid and lipid metabolism in morbid obesity. J. Hepatol. 62:1398–404
    [Google Scholar]
  92. 92.
    Mullenbach R, Bennett A, Tetlow N, Patel N, Hamilton G et al. 2005. ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy. Gut 54:829–34
    [Google Scholar]
  93. 93.
    Murphy C, Parini P, Wang J, Bjorkhem I, Eggertsen G, Gafvels M 2005. Cholic acid as key regulator of cholesterol synthesis, intestinal absorption and hepatic storage in mice. Biochim. Biophys. Acta 1735:167–75
    [Google Scholar]
  94. 94.
    Mutlu EA, Gillevet PM, Rangwala H, Sikaroodi M, Naqvi A et al. 2012. Colonic microbiome is altered in alcoholism. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G966–78
    [Google Scholar]
  95. 95.
    Nagahashi M, Takabe K, Liu R, Peng K, Wang X et al. 2015. Conjugated bile acid–activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology 61:1216–26
    [Google Scholar]
  96. 96.
    Nemati R, Lu J, Dokpuang D, Booth M, Plank LD, Murphy R 2018. Increased bile acids and FGF19 after sleeve gastrectomy and Roux-en-Y gastric bypass correlate with improvement in type 2 diabetes in a randomized trial. Obes. Surg. 28:2672–86
    [Google Scholar]
  97. 97.
    Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML et al. 2015. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385:956–65
    [Google Scholar]
  98. 98.
    Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C et al. 2016. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N. Engl. J. Med. 375:631–43
    [Google Scholar]
  99. 99.
    Ouyang X, Cirillo P, Sautin Y, McCall S, Bruchette JL et al. 2008. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol. 48:993–99
    [Google Scholar]
  100. 100.
    Pandak WM, Heuman DM, Hylemon PB, Chiang JY, Vlahcevic ZR 1995. Failure of intravenous infusion of taurocholate to down-regulate cholesterol 7α-hydroxylase in rats with biliary fistulas. Gastroenterology 108:533–44
    [Google Scholar]
  101. 101.
    Pathak P, Cen X, Nichols RG, Ferrell JM, Boehme S et al. 2018. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68:1574–88
    [Google Scholar]
  102. 102.
    Pathak P, Li T, Chiang JY 2013. Retinoic acid-related orphan receptor α regulates diurnal rhythm and fasting induction of sterol 12α-hydroxylase in bile acid synthesis. J. Biol. Chem. 288:37154–65
    [Google Scholar]
  103. 103.
    Pathak P, Liu H, Boehme S, Xie C, Krausz KW et al. 2017. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism. J. Biol. Chem. 292:11055–69
    [Google Scholar]
  104. 104.
    Pauli-Magnus C, Lang T, Meier Y, Zodan-Marin T, Jung D et al. 2004. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics 14:91–102
    [Google Scholar]
  105. 105.
    Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G et al. 2002. 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 45:3569–72
    [Google Scholar]
  106. 106.
    Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E et al. 2009. Discovery of 6α-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52:7958–61
    [Google Scholar]
  107. 107.
    Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI 2015. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic–pituitary–adrenal axis. Nat. Commun. 6:6980
    [Google Scholar]
  108. 108.
    Potthoff MJ, Inagaki T, Satapati S, Ding X, He T et al. 2009. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. PNAS 106:10853–58
    [Google Scholar]
  109. 109.
    Potthoff MJ, Potts A, He T, Duarte JA, Taussig R et al. 2013. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am. J. Physiol. Gastrointest. Liver Physiol. 304:G371–80
    [Google Scholar]
  110. 110.
    Poupon R. 2012. Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action. Clin. Res. Hepatol. Gastroenterol. 36:Suppl. 1S3–12
    [Google Scholar]
  111. 111.
    Pullinger CR, Eng C, Salen G, Shefer S, Batta AK et al. 2002. Human cholesterol 7α-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J. Clin. Investig. 110:109–17
    [Google Scholar]
  112. 112.
    Puri P, Daita K, Joyce A, Mirshahi F, Santhekadur PK et al. 2018. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67:534–48
    [Google Scholar]
  113. 113.
    Raufman JP, Cheng K, Zimniak P 2003. Activation of muscarinic receptor signaling by bile acids: physiological and medical implications. Dig. Dis. Sci. 48:1431–44
    [Google Scholar]
  114. 114.
    Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M et al. 2006. Circadian orchestration of the hepatic proteome. Curr. Biol. 16:1107–15
    [Google Scholar]
  115. 115.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214
    [Google Scholar]
  116. 116.
    Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB 2016. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7:22–39
    [Google Scholar]
  117. 117.
    Risstad H, Kristinsson JA, Fagerland MW, le Roux CW, Birkeland KI et al. 2017. Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial. Surg. Obes. Relat. Dis. 13:1544–53
    [Google Scholar]
  118. 118.
    Romero-Gomez M, Montagnese S, Jalan R 2015. Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. J. Hepatol. 62:437–47
    [Google Scholar]
  119. 119.
    Salen G, Steiner RD. 2017. Epidemiology, diagnosis, and treatment of cerebrotendinous xanthomatosis (CTX). J. Inherit. Metab. Dis. 40:771–81
    [Google Scholar]
  120. 120.
    Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU et al. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 17:225–35
    [Google Scholar]
  121. 121.
    Sepe V, Renga B, Festa C, D'Amore C, Masullo D et al. 2014. Modification on ursodeoxycholic acid (UDCA) scaffold: discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1). J. Med. Chem. 57:7687–701
    [Google Scholar]
  122. 122.
    Setchell KDR, Schwarz M, O'Connell NC, Lund EG, Davis DL et al. 1998. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. J. Clin. Investig. 102:1690–703
    [Google Scholar]
  123. 123.
    Shang Q, Saumoy M, Holst JJ, Salen G, Xu G 2010. Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am. J. Physiol. Gastrointest. Liver Physiol. 298:G419–24
    [Google Scholar]
  124. 124.
    Slatis K, Gafvels M, Kannisto K, Ovchinnikova O, Paulsson-Berne G et al. 2010. Abolished synthesis of cholic acid reduces atherosclerotic development in apolipoprotein E knockout mice. J. Lipid Res. 51:3289–98
    [Google Scholar]
  125. 125.
    Smits MM, van Raalte DH, Tonneijck L, Muskiet MH, Kramer MH, Cahen DL 2016. GLP-1 based therapies: clinical implications for gastroenterologists. Gut 65:702–11
    [Google Scholar]
  126. 126.
    Song KH, Li T, Owsley E, Strom S, Chiang JY 2009. Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 49:297–305
    [Google Scholar]
  127. 127.
    Srivastava A. 2014. Progressive familial intrahepatic cholestasis. J. Clin. Exp. Hepatol. 4:25–36
    [Google Scholar]
  128. 128.
    Studer E, Zhou X, Zhao R, Wang Y, Takabe K et al. 2012. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55:267–76
    [Google Scholar]
  129. 129.
    Takahashi S, Fukami T, Masuo Y, Brocker CN, Xie C et al. 2016. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J. Lipid Res. 57:2130–37
    [Google Scholar]
  130. 130.
    Talukdar S, Zhou Y, Li D, Rossulek M, Dong J et al. 2016. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab 23:427–40
    [Google Scholar]
  131. 131.
    Thomas C, Auwerx J, Schoonjans K 2008. Bile acids and the membrane bile acid receptor TGR5—connecting nutrition and metabolism. Thyroid 18:167–74
    [Google Scholar]
  132. 132.
    Thomas C, Gioiello A, Noriega L, Strehle A, Oury J et al. 2009. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10:167–77
    [Google Scholar]
  133. 133.
    Tsaousidou MK, Ouahchi K, Warner TT, Yang Y, Simpson MA et al. 2008. Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am. J. Hum. Genet. 82:510–15
    [Google Scholar]
  134. 134.
    Vaz FM, Ferdinandusse S. 2017. Bile acid analysis in human disorders of bile acid biosynthesis. Mol. Asp. Med. 56:10–24
    [Google Scholar]
  135. 135.
    Venkat VL, Shneider BL, Magee JC, Turmelle Y, Arnon R et al. 2014. Total serum bilirubin predicts fat-soluble vitamin deficiency better than serum bile acids in infants with biliary atresia. J. Pediatr. Gastroenterol. Nutr. 59:702–7
    [Google Scholar]
  136. 136.
    Wahlstrom A, Sayin SI, Marschall HU, Backhed F 2016. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24:41–50
    [Google Scholar]
  137. 137.
    Widlansky ME, Puppala VK, Suboc TM, Malik M, Branum A et al. 2017. Impact of DPP-4 inhibition on acute and chronic endothelial function in humans with type 2 diabetes on background metformin therapy. Vasc. Med. 22:189–96
    [Google Scholar]
  138. 138.
    Wouters K, van Gorp PJ, Bieghs V, Gijbels MJ, Duimel H et al. 2008. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 48:474–86
    [Google Scholar]
  139. 139.
    Wu X, Lv YG, Du YF, Hu M, Reed MN et al. 2018. Inhibitory effect of INT-777 on lipopolysaccharide-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 88:360–74
    [Google Scholar]
  140. 140.
    Xie C, Jiang C, Shi J, Gao X, Sun D et al. 2017. An intestinal farnesoid X receptor–ceramide signaling axis modulates hepatic gluconeogenesis in mice. Diabetes 66:613–26
    [Google Scholar]
  141. 141.
    Yang JY, Lee YS, Kim Y, Lee SH, Ryu S et al. 2017. Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol 10:104–16
    [Google Scholar]
  142. 142.
    Yang XF, Liu GS, Li MX 2015. Analysis of mutations of MDR3 exons 9 and 23 in infants with parenteral nutrition–associated cholestasis. Exp. Ther. Med. 10:2361–65
    [Google Scholar]
  143. 143.
    Yao L, Seaton SC, Ndousse-Fetter S, Adhikari AA, DiBenedetto N et al. 2018. A selective gut bacterial bile salt hydrolase alters host metabolism. eLife 7:e37182
    [Google Scholar]
  144. 144.
    Yeap SP, Harley H, Thompson R, Williamson KD, Bate J et al. 2018. Biliary transporter gene mutations in severe intrahepatic cholestasis of pregnancy: diagnostic and management implications. J. Gastroenterol. Hepatol. 34:425–35
    [Google Scholar]
  145. 145.
    Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L et al. 2018. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15:11–20
    [Google Scholar]
/content/journals/10.1146/annurev-nutr-082018-124344
Loading
/content/journals/10.1146/annurev-nutr-082018-124344
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error