1932

Abstract

Pain is an increasing clinical challenge affecting about half the population, with a substantial number of people suffering daily intense pain. Such suffering can be linked to the dramatic rise in opioid use and associated deaths in the United States. There is a pressing need for new analgesics with limited side effects. Here, we summarize what we know about the genetics of pain and implications for drug development. We make the case that chronic pain is not one but a set of disease states, with peripheral drive a key element in most. We argue that understanding redundancy and plasticity, hallmarks of the nervous system, is critical in developing analgesic drug strategies. We describe the exploitation of monogenic pain syndromes and genetic association studies to define analgesic targets, as well as issues associated with animal models of pain. We appraise present-day screening technologies and describe recent approaches to pain treatment that hold promise.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010617-052554
2018-01-06
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/58/1/annurev-pharmtox-010617-052554.html?itemId=/content/journals/10.1146/annurev-pharmtox-010617-052554&mimeType=html&fmt=ahah

Literature Cited

  1. Nahin RL. 1.  2015. Estimates of pain prevalence and severity in adults: United States, 2012.. J. Pain 16:769–80 [Google Scholar]
  2. Minett MS, Nassar MA, Clark AK, Passmore G, Dickenson AH. 2.  et al. 2012. Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat. Commun. 3:791 [Google Scholar]
  3. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P. 3.  et al. 2015. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18:145–53 [Google Scholar]
  4. Gasser HS. 4.  1941. The classification of nerve fibres. Ohio J. Sci. 41:145–59 [Google Scholar]
  5. Vaso A, Adahan HM, Gjika A, Zahaj S, Zhurda T. 5.  et al. 2014. Peripheral nervous system origin of phantom limb pain. Pain 155:1384–91 [Google Scholar]
  6. Thomas KR, Folger KR, Capecchi MR. 6.  1986. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–28 [Google Scholar]
  7. Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA. 7.  et al. 2004. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. PNAS 101:12706–11 [Google Scholar]
  8. Akopian AN, Wood JN. 8.  1995. Peripheral nervous system-specific genes identified by subtractive cDNA cloning. J. Biol. Chem. 270:21264–70 [Google Scholar]
  9. Minett MS, Pereira V, Sikandar S, Matsuyama A, Lolignier S. 9.  et al. 2015. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7. Nat. Commun. 6:8967 [Google Scholar]
  10. Zorina-Lichtenwalter K, Meloto C, Khoury S, Diatchenko L. 10.  2016. Genetic predictors of human chronic pain conditions. Neuroscience 338:36–62 [Google Scholar]
  11. Emery EC, Luiz AP, Sikandar S, Magnusdottir R, Dong X, Wood JN. 11.  2016. In vivo characterization of distinct modality-specific subsets of somatosensory neurons using GCaMP. Sci. Adv. 2:e1600990 [Google Scholar]
  12. Anderson M, Zheng Q, Dong X. 12.  2017. Investigation of pain mechanisms by calcium imaging approaches. Neurosci. Bull. In press. https://doi.org/10.1007/s12264-017-0139-9 [Crossref] [Google Scholar]
  13. Du X, Hao H, Yang Y, Huang S, Wang C. 13.  et al. 2017. Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission. J. Clin. Investig. 127:1741–56 [Google Scholar]
  14. Liu D, Tseng M, Epstein LF, Green L, Chan B. 14.  et al. 2016. Evaluation of recombinant monoclonal antibody SVmab1 binding to NaV1.7 target sequences and block of human NaV1.7 currents. F1000Research 5:2764 [Google Scholar]
  15. Yang CM, Shinkai Y. 15.  2013. Prdm12 is induced by retinoic acid and exhibits anti-proliferative properties through the cell cycle modulation of P19 embryonic carcinoma cells. Cell Struct. Funct. 38:197–206 [Google Scholar]
  16. Zakrzewska JM, Palmer J, Morisset V, Giblin GM, Obermann M. 16.  et al. 2017. Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia: a double-blind, placebo-controlled, randomised withdrawal phase 2a trial. Lancet Neurol 16:291–300 [Google Scholar]
  17. Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V. 17.  et al. 2011. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472:186–90 [Google Scholar]
  18. Isensee J, Krahe L, Moeller K, Pereira V, Sexton JE. 18.  et al. 2017. Synergistic regulation of serotonin and opioid signaling contributes to pain insensitivity in Nav1.7 knockout mice. Sci. Signaling 10:eaah4874 [Google Scholar]
  19. Kanellopoulos A, Koenig J, Huang H, Pyrski M, Millet Q. 19.  et al. 2017. Mapping protein interactions of sodium channel NaV1.7 using epitope-tagged gene targeted mice. bioRxiv 118497. https://doi.org/10.1101/118497 [Crossref]
  20. van den Boogaard M, Smemo S, Burnicka-Turek O, Arnolds DE, van de Werken HJG. 20.  et al. 2014. A common genetic variant within SCN10A modulates cardiac SCN5A expression. J. Clin. Investig. 124:1844–52 [Google Scholar]
  21. Deuis JR, Dekan Z, Wingerd JS, Smith JJ, Munasinghe NR. 21.  et al. 2017. Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Sci. Rep. 7:40883 [Google Scholar]
  22. Frost JM, DeGoey DA, Shi L, Gum RJ, Fricano MM. 22.  et al. 2016. Substituted indazoles as Nav1.7 blockers for the treatment of pain. J. Med. Chem. 59:3373–91 [Google Scholar]
  23. Roecker AJ, Egbertson M, Jones KLG, Gomez R, Kraus RL. 23.  et al. 2017. Discovery of selective, orally bioavailable, N-linked arylsulfonamide Nav1.7 inhibitors with pain efficacy in mice. Bioorg. Med. Chem. Lett. 27:2087–93 [Google Scholar]
  24. Kremeyer B, Lopera F, Cox JJ, Momin A, Rugiero F. 24.  et al. 2010. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66:671–80 [Google Scholar]
  25. Woods CG, Cox J, Springell K, Hampshire DJ, Mohamed MD. 25.  et al. 2006. Quantification of homozygosity in consanguineous individuals with autosomal recessive disease. Am. J. Hum. Genet. 78:889–96 [Google Scholar]
  26. Goldberg YP, Pimstone SN, Namdari R, Price N, Cohen C. 26.  et al. 2012. Human Mendelian pain disorders: a key to discovery and validation of novel analgesics. Clin. Genet. 82:367–73 [Google Scholar]
  27. Nahorski MS, Chen YC, Woods CG. 27.  2015. New Mendelian disorders of painlessness. Trends Neurosci 38:712–24 [Google Scholar]
  28. Habib AM, Wood JN, Cox JJ. 28.  2015. Sodium channels and pain. Handb. Exp. Pharmacol. 227:39–56 [Google Scholar]
  29. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E. 29.  et al. 2006. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–98 [Google Scholar]
  30. Yang Y, Wang Y, Li S, Xu Z, Li H. 30.  et al. 2004. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 41:171–74 [Google Scholar]
  31. Cummins TR, Dib-Hajj SD, Waxman SG. 31.  2004. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J. Neurosci. 24:8232–36 [Google Scholar]
  32. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG. 32.  2010. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci. 33:325–47 [Google Scholar]
  33. Hayden R, Grossman M. 33.  1959. Rectal, ocular, and submaxillary pain; a familial autonomic disorder related to proctalgia fugaz: report of a family. AMA J. Dis. Child 97:479–82 [Google Scholar]
  34. Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV. 34.  et al. 2006. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52:767–74 [Google Scholar]
  35. Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C. 35.  et al. 2012. Gain of function Nav1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71:26–39 [Google Scholar]
  36. Faber CG, Lauria G, Merkies ISJ, Cheng X, Han C. 36.  et al. 2012. Gain-of-function Nav1.8 mutations in painful neuropathy. PNAS 109:19444–49 [Google Scholar]
  37. Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JG. 37.  et al. 2014. Gain-of-function mutations in sodium channel Nav1.9 in painful neuropathy. Brain 137:1627–42 [Google Scholar]
  38. Chambers JC, Zhao J, Terracciano CMN, Bezzina CR, Zhang W. 38.  et al. 2010. Genetic variation in SCN10A influences cardiac conduction. Nat. Genet. 42:149–52 [Google Scholar]
  39. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud JB. 39.  et al. 2013. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat. Genet. 45:1044–49 [Google Scholar]
  40. Hu D, Barajas-Martínez H, Pfeiffer R, Dezi F, Pfeiffer J. 40.  et al. 2014. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. J. Am. Coll. Cardiol. 64:66–79 [Google Scholar]
  41. Leipold E, Liebmann L, Korenke GC, Heinrich T, Gießelmann S. 41.  et al. 2013. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet. 45:1399–404 [Google Scholar]
  42. Woods CG, Babiker MOE, Horrocks I, Tolmie J, Kurth I. 42.  2015. The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur. J. Hum. Genet. 23:561–63 [Google Scholar]
  43. Phatarakijnirund V, Mumm S, McAlister WH, Novack DV, Wenkert D. 43.  et al. 2016. Congenital insensitivity to pain: fracturing without apparent skeletal pathobiology caused by an autosomal dominant, second mutation in SCN11A encoding voltage-gated sodium channel 1.9. Bone 84:289–98 [Google Scholar]
  44. Zhang XY, Wen J, Yang W, Wang C, Gao L. 44.  et al. 2013. Gain-of-function mutations in SCN11A cause familial episodic pain. Am. J. Hum. Genet. 93:957–66 [Google Scholar]
  45. Han C, Yang Y, te Morsche RH, Drenth JPH, Politei JM. 45.  et al. 2017. Familial gain-of-function Nav1.9 mutation in a painful channelopathy. J. Neurol. Neurosurg. Psychiatry 88:233–40 [Google Scholar]
  46. Leng XR, Qi XH, Zhou YT, Wang YP. 46.  2017. Gain-of-function mutation p.Arg225Cys in SCN11A causes familial episodic pain and contributes to essential tremor. J. Hum. Genet. 62:641–46 [Google Scholar]
  47. Rotthier A, Baets J, Timmerman V, Janssens K. 47.  2012. Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat. Rev. Neurol. 8:73–85 [Google Scholar]
  48. Holmes D. 48.  2012. Anti-NGF painkillers back on track?. Nat. Rev. Drug. Discov. 11:337–38 [Google Scholar]
  49. Hirose M, Kuroda Y, Murata E. 49.  2016. NGF/TrkA signaling as a therapeutic target for pain. Pain Pract 16:175–82 [Google Scholar]
  50. Chen YC, Auer-Grumbach M, Matsukawa S, Zitzelsberger M, Themistocleous AC. 50.  et al. 2015. Transcriptional regulator PRDM12 is essential for human pain perception. Nat. Genet. 47:803–8 [Google Scholar]
  51. Zhang S, Sharif SM, Chen YC, Valente EM, Ahmed M. 51.  et al. 2016. Clinical features for diagnosis and management of patients with PRDM12 congenital insensitivity to pain. J. Med. Genet. 53:533–35 [Google Scholar]
  52. Nagy V, Cole T, Van Campenhout C, Khoung TM, Leung C. 52.  et al. 2015. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception. Cell Cycle 14:1799–808 [Google Scholar]
  53. Mogil JS. 53.  2012. Pain genetics: past, present and future. Trends Genet 28:258–66 [Google Scholar]
  54. Foulkes T, Wood JN. 54.  2008. Pain genes. PLOS Genet 4:e1000086 [Google Scholar]
  55. Norbury TA, MacGregor AJ, Urwin J, Spector TD, McMahon SB. 55.  2007. Heritability of responses to painful stimuli in women: a classical twin study. Brain 130:3041–49 [Google Scholar]
  56. Nielsen CS, Knudsen GP, Steingrímsdóttir ÓA. 56.  2012. Twin studies of pain. Clin. Genet. 82:331–40 [Google Scholar]
  57. Kato K, Sullivan PF, Evengård B, Pedersen NL. 57.  2006. Importance of genetic influences on chronic widespread pain. Arthritis Rheum 54:1682–86 [Google Scholar]
  58. Clark JD. 58.  2002. Chronic pain prevalence and analgesic prescribing in a general medical population. J. Pain Symptom Manag. 23:131–37 [Google Scholar]
  59. Angst MS, Phillips NG, Drover DR, Tingle M, Ray A. 59.  et al. 2012. Pain sensitivity and opioid analgesia: a pharmacogenomic twin study. Pain 153:1397–409 [Google Scholar]
  60. Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A. 60.  et al. 2005. Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum. Mol. Genet. 14:135–43 [Google Scholar]
  61. Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T. 61.  et al. 2003. Executive subprocesses in working memory: relationship to catechol-O-methyltransferase Val158Met genotype and schizophrenia. Arch. Gene. Psychiatry 60:889–96 [Google Scholar]
  62. Zubieta J-K, Heitzeg MM, Smith YR, Bueller JA, Xu K. 62.  et al. 2003. COMT val158met genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science 299:1240–43 [Google Scholar]
  63. Tunbridge EM, Harrison PJ, Weinberger DR. 63.  2006. Catechol-o-methyltransferase, cognition, and psychosis: Val158Met and beyond. Biol. Psychiatry 60:141–51 [Google Scholar]
  64. McLean SA, Diatchenko L, Lee YM, Swor RA, Domeier RM. 64.  et al. 2011. Catechol O-methyltransferase haplotype predicts immediate musculoskeletal neck pain and psychological symptoms after motor vehicle collision. J. Pain 12:101–7 [Google Scholar]
  65. Michelotti A, Liguori R, Toriello M, D'Antò V, Vitale D. 65.  et al. 2014. Catechol-O-methyltransferase (COMT) gene polymorphisms as risk factor in temporomandibular disorders patients from southern Italy. Clin. J. Pain 30:129–33 [Google Scholar]
  66. Meloto CB, Segall SK, Smith S, Parisien M, Shabalina SA. 66.  et al. 2015. COMT gene locus: new functional variants. Pain 156:2072–83 [Google Scholar]
  67. Tegeder I, Costigan M, Griffin RS, Abele A, Belfer I. 67.  et al. 2006. GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12:1269–77 [Google Scholar]
  68. Young EE, Lariviere WR, Belfer I. 68.  2011. Genetic basis of pain variability: recent advances. J. Med. Genet. 49:1–9 [Google Scholar]
  69. Kim H, Clark D, Dionne RA. 69.  2009. Genetic contributions to clinical pain and analgesia: avoiding pitfalls in genetic research. J. Pain 10:663–93 [Google Scholar]
  70. Freilinger T, Anttila V, de Vries B, Malik R, Kallela M. 70.  et al. 2012. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat. Genet. 44:777–82 [Google Scholar]
  71. Cox HC, Lea RA, Bellis C, Carless M, Dyer TD. 71.  et al. 2012. A genome-wide analysis of “Bounty” descendants implicates several novel variants in migraine susceptibility. Neurogenetics 13:261–66 [Google Scholar]
  72. Chasman DI, Schürks M, Anttila V, de Vries B, Schminke U. 72.  et al. 2011. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat. Genet. 43:695–98 [Google Scholar]
  73. Anttila V, Stefansson H, Kallela M, Todt U, Terwindt GM. 73.  et al. 2010. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat. Genet. 42:869–73 [Google Scholar]
  74. Gormley P, Anttila V, Winsvold BS, Palta P, Esko T. 74.  et al. 2016. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48:856–66 [Google Scholar]
  75. Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F. 75.  et al. 2013. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat. Genet. 45:912–17 [Google Scholar]
  76. Ligthart L, De Vries B, Smith AV, Ikram MA, Amin N. 76.  et al. 2011. Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur. J. Hum. Genet. 19:901–7 [Google Scholar]
  77. Kobayashi D, Nishizawa D, Takasaki Y, Kasai S, Kakizawa T. 77.  et al. 2013. Genome-wide association study of sensory disturbances in the inferior alveolar nerve after bilateral sagittal split ramus osteotomy. Mol. Pain 9:34 [Google Scholar]
  78. Meng W, Deshmukh H, Zuydam N, Liu Y, Donnelly L. 78.  et al. 2015. A genome‐wide association study suggests an association of Chr8p21. 3 (GFRA2) with diabetic neuropathic pain. Eur. J. Pain 19:392–99 [Google Scholar]
  79. Meng W, Deshmukh HA, Donnelly LA. 79. Wellcome Trust Case Control Consort. 2 (WTCCC2), Surrog. markers Micro- Macro-vasc. hard endpoints Innov. diabetes Tools (SUMMIT) study group et al. 2015. A genome-wide association study provides evidence of sex-specific involvement of Chr1p35. 1 (ZSCAN20-TLR12P) and Chr8p23. 1 (HMGB1P46) with diabetic neuropathic pain. EBioMedicine 2:1386–93 [Google Scholar]
  80. Reyes-Gibby CC, Wang J, Silvas MRT, Yu RK, Hanna EY, Shete S. 80.  2016. Genome-wide association study suggests common variants within RP11-634B7.4 gene influencing severe pre-treatment pain in head and neck cancer patients. Sci. Rep. 6:34206 [Google Scholar]
  81. Peters MJ, Broer L, Willemen HL, Eiriksdottir G, Hocking LJ. 81.  et al. 2013. Genome-wide association study meta-analysis of chronic widespread pain: evidence for involvement of the 5p15.2 region. Ann. Rheumatic Dis. 72:427–36 [Google Scholar]
  82. Kim H, Ramsay E, Lee H, Wahl S, Dionne RA. 82.  2009. Genome-wide association study of acute post-surgical pain in humans. Pharmacogenomics 10:171–79 [Google Scholar]
  83. Foley KP. 83.  1999. Inbred Versus Outbred Strains Farmington, CT: UConn Health Cent. Mouse Genome Modif https://health.uconn.edu/mouse-genome-modification/resources/inbred-versus-outbred-strains/ [Google Scholar]
  84. Wieland HA, Michaelis M, Kirschbaum BJ, Rudolphi KA. 84.  2005. Osteoarthritis — an untreatable disease?. Nat. Rev. Drug. Discov. 4:331–44 [Google Scholar]
  85. Suri S, Walsh DA. 85.  2012. Osteochondral alterations in osteoarthritis. Bone 51:204–11 [Google Scholar]
  86. Bedson J, Croft PR. 86.  2008. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet. Disord 9:116 [Google Scholar]
  87. Thakur M, Rahman W, Hobbs C, Dickenson AH, Bennett DL. 87.  2012. Characterisation of a peripheral neuropathic component of the rat monoiodoacetate model of osteoarthritis. PLOS ONE 7:e33730 [Google Scholar]
  88. Fernihough J, Gentry C, Malcangio M, Fox A, Rediske J. 88.  et al. 2004. Pain related behaviour in two models of osteoarthritis in the rat knee. Pain 112:83–93 [Google Scholar]
  89. Fang H, Beier F. 89.  2014. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat. Rev. Rheumatol. 10:413–21 [Google Scholar]
  90. Glasson SS, Blanchet TJ, Morris EA. 90.  2007. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil. 15:1061–69 [Google Scholar]
  91. Loeser RF, Olex AL, McNulty MA, Carlson CS, Callahan M. 91.  et al. 2013. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLOS ONE 8:e54633 [Google Scholar]
  92. Hannan MT, Felson DT, Pincus T. 92.  2000. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol. 27:1513–17 [Google Scholar]
  93. DeSantana JM, da Cruz KM, Sluka KA. 93.  2013. Animal models of fibromyalgia. Arthritis Res. Ther. 15:222 [Google Scholar]
  94. Sluka KA, Clauw DJ. 94.  2016. Neurobiology of fibromyalgia and chronic widespread pain. Neuroscience 338:114–29 [Google Scholar]
  95. Clauw DJ, Crofford LJ. 95.  2003. Chronic widespread pain and fibromyalgia: what we know, and what we need to know. Best Pract. Res. Clin. Rheumatol. 17:685–701 [Google Scholar]
  96. Sluka KA, Kalra A, Moore SA. 96.  2001. Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24:37–46 [Google Scholar]
  97. Yokoyama T, Lisi TL, Moore SA, Sluka KA. 97.  2007. Muscle fatigue increases the probability of developing hyperalgesia in mice. J. Pain 8:692–99 [Google Scholar]
  98. Bonaterra GA, Then H, Oezel L, Schwarzbach H, Ocker M. 98.  et al. 2016. Morphological alterations in gastrocnemius and soleus muscles in male and female mice in a fibromyalgia model. PLOS ONE 11:e0151116 [Google Scholar]
  99. Fillingim RB, King CD, Ribeiro-Dasilva MC, Rahim-Williams B, Riley JL III. 99.  2009. Sex, gender, and pain: a review of recent clinical and experimental findings. J. Pain 10:447–85 [Google Scholar]
  100. Mogil JS. 100.  2012. Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nat. Rev. Neurosci. 13:859–66 [Google Scholar]
  101. Bartley EJ, Fillingim RB. 101.  2013. Sex differences in pain: a brief review of clinical and experimental findings. Br. J. Anaesth. 111:52–58 [Google Scholar]
  102. Mogil JS, Chanda ML. 102.  2005. The case for the inclusion of female subjects in basic science studies of pain. Pain 117:1–5 [Google Scholar]
  103. Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S. 103.  et al. 2015. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat. Neurosci. 18:1081–83 [Google Scholar]
  104. Joseph EK, Parada CA, Levine JD. 104.  2003. Hyperalgesic priming in the rat demonstrates marked sexual dimorphism. Pain 105:143–50 [Google Scholar]
  105. Sorge RE, LaCroix-Fralish ML, Tuttle AH, Sotocinal SG, Austin JS. 105.  et al. 2011. Spinal cord Toll-like receptor 4 mediates inflammatory and neuropathic hypersensitivity in male but not female mice. J. Neurosci. 31:15450–54 [Google Scholar]
  106. Woller SA, Corr M, Yaksh TL. 106.  2015. Differences in cisplatin-induced mechanical allodynia in male and female mice. Eur. J. Pain 19:1476–85 [Google Scholar]
  107. Aloisi AM, Albonetti ME, Carli G. 107.  1994. Sex differences in the behavioural response to persistent pain in rats. Neurosci. Lett. 179:79–82 [Google Scholar]
  108. Khomula EV, Ferrari LF, Araldi D, Levine JD. 108.  2017. Sexual dimorphism in a reciprocal interaction of ryanodine and IP3 receptors in the induction of hyperalgesic priming. J. Neurosci. 37:2032–44 [Google Scholar]
  109. Rosen S, Ham B, Mogil JS. 109.  2017. Sex differences in neuroimmunity and pain. J. Neurosci. Res. 95:500–8 [Google Scholar]
  110. Mogil JS, Wilson SG, Bon K, Lee SE, Chung K. 110.  et al. 1999. Heritability of nociception I: responses of 11 inbred mouse strains on 12 measures of nociception. Pain 80:67–82 [Google Scholar]
  111. Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V. 111.  et al. 2013. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol 14:R82 [Google Scholar]
  112. Festing MF. 112.  2010. Improving toxicity screening and drug development by using genetically defined strains. Methods Mol. Biol. 602:1–21 [Google Scholar]
  113. Mogil JS. 113.  2009. Animal models of pain: progress and challenges. Nat. Rev. Neurosci. 10:283–94 [Google Scholar]
  114. Chapman CR, Casey KL, Dubner R, Foley KM, Gracely RH, Reading AE. 114.  1985. Pain measurement: an overview. Pain 22:1–31 [Google Scholar]
  115. Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S. 115.  et al. 2014. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 11:629–32 [Google Scholar]
  116. Chesler EJ, Wilson SG, Lariviere WR, Rodriguez-Zas SL, Mogil JS. 116.  2002. Influences of laboratory environment on behavior. Nat. Neurosci. 5:1101–2 [Google Scholar]
  117. Aloisi AM, Ceccarelli I, Lupo C. 117.  1998. Behavioural and hormonal effects of restraint stress and formalin test in male and female rats. Brain Res. Bull. 47:57–62 [Google Scholar]
  118. McMullan S, Simpson DA, Lumb BM. 118.  2004. A reliable method for the preferential activation of C- or A-fibre heat nociceptors. J. Neurosci. Methods 138:133–39 [Google Scholar]
  119. Minett MS, Eijkelkamp N, Wood JN. 119.  2014. Significant determinants of mouse pain behaviour. PLOS ONE 9:e104458 [Google Scholar]
  120. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. 120.  2006. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur. J. Pain 10:287–333 [Google Scholar]
  121. Jirkof P. 121.  2014. Burrowing and nest building behavior as indicators of well-being in mice. J. Neurosci. Methods 234:139–46 [Google Scholar]
  122. Jirkof P, Cesarovic N, Rettich A, Nicholls F, Seifert B, Arras M. 122.  2010. Burrowing behavior as an indicator of post-laparotomy pain in mice. Front. Behav. Neurosci. 4:165 [Google Scholar]
  123. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE. 123.  et al. 2010. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 7:447–49 [Google Scholar]
  124. Wu J, Zhao Z, Zhu X, Renn CL, Dorsey SG, Faden AI. 124.  2016. Cell cycle inhibition limits development and maintenance of neuropathic pain following spinal cord injury. Pain 157:488–503 [Google Scholar]
  125. Kim JY, Tillu DV, Quinn TL, Mejia GL, Shy A. 125.  et al. 2015. Spinal dopaminergic projections control the transition to pathological pain plasticity via a D1/D5-mediated mechanism. J. Neurosci. 35:6307–17 [Google Scholar]
  126. Roughan JV, Bertrand HGMJ, Isles HM. 126.  2016. Meloxicam prevents COX-2-mediated post-surgical inflammation but not pain following laparotomy in mice. Eur. J. Pain 20:231–40 [Google Scholar]
  127. Miller AL, Leach MC. 127.  2015. The mouse grimace scale: a clinically useful tool?. PLOS ONE 10:e0136000 [Google Scholar]
  128. Navratilova E, Porreca F. 128.  2014. Reward and motivation in pain and pain relief. Nat. Neurosci. 17:1304–12 [Google Scholar]
  129. Navratilova E, Xie JY, King T, Porreca F. 129.  2013. Evaluation of reward from pain relief. Ann. N. Y. Acad. Sci. 1282:1–11 [Google Scholar]
  130. Schofield D, Sleeman MA, Chessell IP, Hatcher J, Lowe D. 130.  2015. Chimeric protein composed of NGF antagonist domain and a TNFA antagonist domain WO Patent No. 2015/114150 [Google Scholar]
  131. Leipold E, Hanson-Kahn A, Frick M, Gong P, Bernstein JA. 131.  et al. 2015. Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant. Nat. Commun. 6:10049 [Google Scholar]
  132. Bejaoui K, Wu C, Scheffler MD, Haan G, Ashby P. 132.  et al. 2001. SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat. Genet. 27:261–62 [Google Scholar]
  133. Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA. 133.  2001. Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 27:309–12 [Google Scholar]
  134. Rotthier A, Auer-Grumbach M, Janssens K, Baets J, Penno A. 134.  et al. 2010. Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am. J. Hum. Genet. 87:513–22 [Google Scholar]
  135. Guelly C, Zhu PP, Leonardis L, Papić L, Zidar J. 135.  et al. 2011. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I. Am. J. Hum. Genet. 88:99–105 [Google Scholar]
  136. Lafrenière RG, MacDonald MLE, Dubé MP, MacFarlane J, O'Driscoll M. 136.  et al. 2004. Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the Study of Canadian Genetic Isolates. Am. J. Hum. Genet. 74:1064–73 [Google Scholar]
  137. Indo Y, Tsuruta M, Hayashida Y, Karim MA, Ohta K. 137.  et al. 1996. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat. Genet. 13:485–88 [Google Scholar]
  138. Einarsdottir E, Carlsson A, Minde J, Toolanen G, Svensson O. 138.  et al. 2004. A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception. Hum. Mol. Genet. 13:799–805 [Google Scholar]
  139. Carvalho OP, Thornton GK, Hertecant J, Houlden H, Nicholas AK. 139.  et al. 2011. A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy. J. Med. Genet. 48:131–35 [Google Scholar]
  140. Nahorski MS, Al-Gazali L, Hertecant J, Owen DJ, Borner GH. 140.  et al. 2015. A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development. Brain 138:2147–60 [Google Scholar]
  141. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ. 141.  et al. 1996. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–52 [Google Scholar]
  142. De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L. 142.  et al. 2003. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit associated with familial hemiplegic migraine type 2. Nat. Genet. 33:192–96 [Google Scholar]
  143. Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B. 143.  et al. 2005. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366:371–77 [Google Scholar]
  144. Lötsch J, Belfer I, Kirchhof A, Mishra BK, Max MB. 144.  et al. 2007. Reliable screening for a pain-protective haplotype in the GTP cyclohydrolase 1 gene (GCH1) through the use of 3 or fewer single nucleotide polymorphisms. Clin. Chem. 53:1010–15 [Google Scholar]
  145. Kim H, Neubert JK, San Miguel A, Xu K, Krishnaraju RK. 145.  et al. 2004. Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament. Pain 109:488–96 [Google Scholar]
  146. Olesen AE, Sato H, Nielsen LM, Staahl C, Droney J. 146.  et al. 2015. The genetic influences on oxycodone response characteristics in human experimental pain. Fundam. Clin. Pharmacol. 29:417–25 [Google Scholar]
  147. Kim H, Mittal D, Iadarola M, Dionne R. 147.  2006. Genetic predictors for acute experimental cold and heat pain sensitivity in humans. J. Med. Genet. 43:e40 [Google Scholar]
  148. Binder A, May D, Baron R, Maier C, Tölle TR. 148.  et al. 2011. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients. PLOS ONE 6:e17387 [Google Scholar]
  149. Valdes AM, De Wilde G, Doherty SA, Lories RJ, Vaughn FL. 149.  et al. 2011. The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis. Ann. Rheumatic Dis. 70:1556–61 [Google Scholar]
  150. Reimann F, Cox JJ, Belfer I, Diatchenko L, Zaykin DV. 150.  et al. 2010. Pain perception is altered by a nucleotide polymorphism in SCN9A. PNAS 107:5148–53 [Google Scholar]
  151. Langford DJ, West C, Elboim C, Cooper BA, Abrams G. 151.  et al. 2014. Variations in potassium channel genes are associated with breast pain in women prior to breast cancer surgery. J. Neurogenet. 28:122–35 [Google Scholar]
  152. Greenbaum L, Tegeder I, Barhum Y, Melamed E, Roditi Y, Djaldetti R. 152.  2012. Contribution of genetic variants to pain susceptibility in Parkinson disease. Eur. J. Pain 16:1243–50 [Google Scholar]
  153. Mogil JS, Wilson SG, Chesler EJ, Rankin AL, Nemmani KVS. 153.  et al. 2003. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. PNAS 100:4867–72 [Google Scholar]
  154. Brousseau DC, McCarver DG, Drendel AL, Divakaran K, Panepinto JA. 154.  2007. The effect of CYP2D6 polymorphisms on the response to pain treatment for pediatric sickle cell pain crisis. J. Pediatr. 150:623–26 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010617-052554
Loading
/content/journals/10.1146/annurev-pharmtox-010617-052554
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error