1932

Abstract

Heart failure with preserved ejection fraction (HFpEF) accounts for over half of prevalent heart failure (HF) worldwide, and prognosis after hospitalization for HFpEF remains poor. Due, at least in part, to the heterogeneous nature of HFpEF, drug development has proved immensely challenging. Currently, there are no universally accepted therapies that alter the clinical course of HFpEF. Despite these challenges, important mechanistic understandings of the disease have revealed that the pathophysiology of HFpEF is distinct from that of HF with reduced ejection fraction and have also highlighted potential new therapeutic targets for HFpEF. Of note, HFpEF is a systemic syndrome affecting multiple organ systems. Depending on the organ systems involved, certain novel therapies offer promise in reducing the morbidity of the HFpEF syndrome. In this review, we aim to discuss novel pharmacotherapies for HFpEF based on its unique pathophysiology and identify key research strategies to further elucidate mechanistic pathways to develop novel therapeutics in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021136
2019-01-06
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021136.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021136&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ et al. 2014. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 63:1123–33
    [Google Scholar]
  2. 2.  Vaduganathan M, Michel A, Hall K, Mulligan C, Nodari S et al. 2016. Spectrum of epidemiological and clinical findings in patients with heart failure with preserved ejection fraction stratified by study design: a systematic review. Eur. J. Heart Fail. 18:54–65
    [Google Scholar]
  3. 3.  Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM 2006. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med. 355:251–59
    [Google Scholar]
  4. 4.  Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R et al. 2008. Irbesartan in patients with heart failure and preserved ejection fraction. N. Engl. J. Med. 359:2456–67
    [Google Scholar]
  5. 5.  Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS et al. 2014. Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370:1383–92
    [Google Scholar]
  6. 6.  Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P et al. 2003. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362:777–81
    [Google Scholar]
  7. 7.  Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR et al. 2016. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134:73–90
    [Google Scholar]
  8. 8.  Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW et al. 2015. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131:269–79
    [Google Scholar]
  9. 9.  Patel RB, Shah SJ, Fonarow GC, Butler J, Vaduganathan M 2017. Designing future clinical trials in heart failure with preserved ejection fraction: lessons from TOPCAT. Curr. Heart Fail. Rep. 14:217–22
    [Google Scholar]
  10. 10.  Paulus WJ, Tschope C 2013. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 62:263–71
    [Google Scholar]
  11. 11.  Linke WA, Hamdani N 2014. Gigantic business: titin properties and function through thick and thin. Circ. Res. 114:1052–68
    [Google Scholar]
  12. 12.  Kovács A, Alogna A, Post H, Hamdani N 2016. Is enhancing cGMP-PKG signalling a promising therapeutic target for heart failure with preserved ejection fraction?. Neth Heart J 24:268–74
    [Google Scholar]
  13. 13.  Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA et al. 2015. Isosorbide mononitrate in heart failure with preserved ejection fraction. N. Engl. J. Med. 373:2314–24
    [Google Scholar]
  14. 14.  Borlaug BA, Koepp KE, Melenovsky V 2015. Sodium nitrite improves exercise hemodynamics and ventricular performance in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 66:1672–82
    [Google Scholar]
  15. 15.  Reddy YNV, Lewis GD, Shah SJ, LeWinter M, Semigran M et al. 2017. INDIE-HFpEF (Inorganic Nitrite Delivery to Improve Exercise Capacity in Heart Failure With Preserved Ejection Fraction): rationale and design. Circ. Heart Fail. 10:e003862
    [Google Scholar]
  16. 16.  Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL et al. 2013. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–77
    [Google Scholar]
  17. 17.  Guazzi M, Vicenzi M, Arena R, Guazzi MD 2011. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation 124:164–74
    [Google Scholar]
  18. 18.  Greene SJ, Gheorghiade M, Borlaug BA, Pieske B, Vaduganathan M et al. 2013. The cGMP signaling pathway as a therapeutic target in heart failure with preserved ejection fraction. J. Am. Heart Assoc. 2:e000536
    [Google Scholar]
  19. 19.  Pieske B, Maggioni AP, Lam CSP, Pieske-Kraigher E, Filippatos G et al. 2017. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur. Heart J. 38:1119–27
    [Google Scholar]
  20. 20.  Omori K, Kotera J 2007. Overview of PDEs and their regulation. Circ. Res. 100:309–27
    [Google Scholar]
  21. 21.  McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP et al. 2014. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371:993–1004
    [Google Scholar]
  22. 22.  Solomon SD, Zile M, Pieske B, Voors A, Shah A et al. 2012. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380:1387–95
    [Google Scholar]
  23. 23.  Solomon SD, Rizkala AR, Gong J, Wang W, Anand IS et al. 2017. Angiotensin receptor neprilysin inhibition in heart failure with preserved ejection fraction: rationale and design of the PARAGON-HF Trial. JACC Heart Fail 5:471–82
    [Google Scholar]
  24. 24.  Lee DI, Zhu G, Sasaki T, Cho GS, Hamdani N et al. 2015. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519:472–76
    [Google Scholar]
  25. 25.  Su T, Zhang T, Xie S, Yan J, Wu Y et al. 2016. Discovery of novel PDE9 inhibitors capable of inhibiting Aβ aggregation as potential candidates for the treatment of Alzheimer's disease. Sci. Rep. 6:21826
    [Google Scholar]
  26. 26.  McArthur JG, Maciel T, Chen C, Fricot A, Kobayashi D et al. 2016. A novel, highly potent and selective PDE9 inhibitor for the treatment of sickle cell disease. Blood 128:268
    [Google Scholar]
  27. 27.  Vettel C, Lammle S, Ewens S, Cervirgen C, Emons J et al. 2014. PDE2-mediated cAMP hydrolysis accelerates cardiac fibroblast to myofibroblast conversion and is antagonized by exogenous activation of cGMP signaling pathways. Am. J. Physiol. Heart Circ. Physiol. 306:H1246–52
    [Google Scholar]
  28. 28.  Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD et al. 2018. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur. Heart J. 39:840–49
    [Google Scholar]
  29. 29.  ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ et al. 2016. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur. J. Heart Fail. 18:588–98
    [Google Scholar]
  30. 30.  Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A et al. 2011. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121:4393–408
    [Google Scholar]
  31. 31.  Akmal M, Barndt RR, Ansari AN, Mohler JG, Massry SG 1995. Excess PTH in CRF induces pulmonary calcification, pulmonary hypertension and right ventricular hypertrophy. Kidney Int 47:158–63
    [Google Scholar]
  32. 32.  Isakova T, Ix JH, Sprague SM, Raphael KL, Fried L et al. 2015. Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J. Am. Soc. Nephrol. 26:2328–39
    [Google Scholar]
  33. 33.  Brown NJ 2013. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat. Rev. Nephrol. 9:459–69
    [Google Scholar]
  34. 34.  Brilla CG, Matsubara LS, Weber KT 1993. Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. Am. J. Cardiol. 71:A12–16
    [Google Scholar]
  35. 35.  de Denus S, O'Meara E, Desai AS, Claggett B, Lewis EF et al. 2017. Spironolactone metabolites in TOPCAT—new insights into regional variation. N. Engl. J. Med. 376:1690–92
    [Google Scholar]
  36. 36.  Pfeffer MA, Claggett B, Assmann SF, Boineau R, Anand IS et al. 2015. Regional variation in patients and outcomes in the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) trial. Circulation 131:34–42
    [Google Scholar]
  37. 37.  Lopez B, Gonzalez A, Beaumont J, Querejeta R, Larman M, Diez J 2007. Identification of a potential cardiac antifibrotic mechanism of torasemide in patients with chronic heart failure. J. Am. Coll. Cardiol. 50:859–67
    [Google Scholar]
  38. 38.  Uchida T, Yamanaga K, Nishikawa M, Ohtaki Y, Kido H, Watanabe M 1991. Anti-aldosteronergic effect of torasemide. Eur. J. Pharmacol. 205:145–50
    [Google Scholar]
  39. 39.  Ellison DH, Felker GM 2018. Diuretic treatment in heart failure. N. Engl. J. Med. 378:684–85
    [Google Scholar]
  40. 40.  Smith RR, Barile L, Cho HC, Leppo MK, Hare JM et al. 2007. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908
    [Google Scholar]
  41. 41.  Gallet R, de Couto G, Simsolo E, Valle J, Sun B et al. 2016. Cardiosphere-derived cells reverse heart failure with preserved ejection fraction (HFpEF) in rats by decreasing fibrosis and inflammation. JACC Basic Transl. Sci. 1:14–28
    [Google Scholar]
  42. 42.  Lim GB 2018. Heart failure: Macrophages promote cardiac fibrosis and diastolic dysfunction. Nat. Rev. Cardiol. 15:196–97
    [Google Scholar]
  43. 43.  Hulsmans M, Sager HB, Roh JD, Valero-Munoz M, Houstis NE et al. 2018. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med. 215:423–40
    [Google Scholar]
  44. 44.  Zile MR, Baicu CF 2013. Biomarkers of diastolic dysfunction and myocardial fibrosis: application to heart failure with a preserved ejection fraction. J. Cardiovasc. Transl. Res. 6:501–15
    [Google Scholar]
  45. 45.  Tamaki S, Mano T, Sakata Y, Ohtani T, Takeda Y et al. 2013. Interleukin-16 promotes cardiac fibrosis and myocardial stiffening in heart failure with preserved ejection fraction. PLOS ONE 8:e68893
    [Google Scholar]
  46. 46.  Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL 1996. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J. Am. Coll. Cardiol. 27:1201–6
    [Google Scholar]
  47. 47.  Sullivan DE, Ferris M, Nguyen H, Abboud E, Brody AR 2009. TNF‐α induces TGF‐β1 expression in lung fibroblasts at the transcriptional level via AP‐1 activation. J. Cell Mol. Med. 13:1866–76
    [Google Scholar]
  48. 48.  Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K et al. 2011. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 4:44–52
    [Google Scholar]
  49. 49.  Yu L, Ruifrok WP, Meissner M, Bos EM, van Goor H et al. 2013. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ. Heart Fail. 6:107–17
    [Google Scholar]
  50. 50.  Kolatsi-Joannou M, Price KL, Winyard PJ, Long DA 2011. Modified citrus pectin reduces galectin-3 expression and disease severity in experimental acute kidney injury. PLOS ONE 6:e18683
    [Google Scholar]
  51. 51.  Arabacilar P, Marber M 2015. The case for inhibiting p38 mitogen-activated protein kinase in heart failure. Front. Pharmacol. 6:102
    [Google Scholar]
  52. 52.  O'Donoghue ML, Glaser R, Cavender MA, Aylward PE, Bonaca MP et al. 2016. Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial. JAMA 315:1591–99
    [Google Scholar]
  53. 53.  Paulus WJ, Dal Canto E 2018. Distinct myocardial targets for diabetes therapy in heart failure with preserved or reduced ejection fraction. JACC Heart Fail 6:270
    [Google Scholar]
  54. 54.  Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E et al. 2015. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373:2117–28
    [Google Scholar]
  55. 55.  Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G et al. 2017. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377:644–57
    [Google Scholar]
  56. 56.  Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI 2017. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation 136:1643–58
    [Google Scholar]
  57. 57.  Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J et al. 2013. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 369:1317–26
    [Google Scholar]
  58. 58.  Masoudi FA, Wang Y, Inzucchi SE, Setaro JF, Havranek EP et al. 2003. Metformin and thiazolidinedione use in Medicare patients with heart failure. JAMA 290:81–85
    [Google Scholar]
  59. 59.  Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH et al. 2016. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 316:500–8
    [Google Scholar]
  60. 60.  Marx N, McGuire DK 2016. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Eur. Heart J. 37:3192–200
    [Google Scholar]
  61. 61.  Goldin A, Beckman JA, Schmidt AM, Creager MA 2006. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605
    [Google Scholar]
  62. 62.  Valero-Munoz M, Li S, Wilson RM, Hulsmans M, Aprahamian T et al. 2016. Heart failure with preserved ejection fraction induces beiging in adipose tissue. Circ. Heart Fail. 9:e002724
    [Google Scholar]
  63. 63.  Sawaki D, Czibik G, Pini M, Ternacle J, Suffee N et al. 2018. Visceral adipose tissue drives cardiac aging through modulation of fibroblast senescence by osteopontin production. Circulation 138:809–22
    [Google Scholar]
  64. 64.  Lenga Y, Koh A, Perera AS, McCulloch CA, Sodek J, Zohar R 2008. Osteopontin expression is required for myofibroblast differentiation. Circ. Res. 102:319–27
    [Google Scholar]
  65. 65.  Fayyaz AU, Edwards WD, Maleszewski JJ, Konik EA, DuBrock HM et al. 2017. Global pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation 137:1796–810
    [Google Scholar]
  66. 66.  Melenovsky V, Hwang SJ, Lin G, Redfield MM, Borlaug BA 2014. Right heart dysfunction in heart failure with preserved ejection fraction. Eur. Heart J. 35:3452–62
    [Google Scholar]
  67. 67.  Burke MA, Katz DH, Beussink L, Selvaraj S, Gupta DK et al. 2014. Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ. Heart Fail. 7:288–99
    [Google Scholar]
  68. 68.  Andersen MJ, Hwang SJ, Kane GC, Melenovsky V, Olson TP et al. 2015. Enhanced pulmonary vasodilator reserve and abnormal right ventricular: pulmonary artery coupling in heart failure with preserved ejection fraction. Circ. Heart Fail. 8:542–50
    [Google Scholar]
  69. 69.  Rosevear PR, Finley N 2003. Molecular mechanism of levosimendan action: an update. J. Mol. Cell Cardiol. 35:1011–15
    [Google Scholar]
  70. 70.  van Hees HW, Andrade Acuna G, Linkels M, Dekhuijzen PN, Heunks LM 2011. Levosimendan improves calcium sensitivity of diaphragm muscle fibres from a rat model of heart failure. Br. J. Pharmacol. 162:566–73
    [Google Scholar]
  71. 71.  van Hees HW, Dekhuijzen PN, Heunks LM 2009. Levosimendan enhances force generation of diaphragm muscle from patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit Care Med. 179:41–47
    [Google Scholar]
  72. 72.  Kaye DM, Nanayakkara S, Vizi D, Byrne M, Mariani JA 2016. Effects of milrinone on rest and exercise hemodynamics in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 67:2554–56
    [Google Scholar]
  73. 73.  Polsinelli VB, Sinha A, Shah SJ 2017. Visceral congestion in heart failure: right ventricular dysfunction, splanchnic hemodynamics, and the intestinal microenvironment. Curr. Heart Fail. Rep. 14:519–28
    [Google Scholar]
  74. 74.  Spencer AG, Labonte ED, Rosenbaum DP, Plato CF, Carreras CW et al. 2014. Intestinal inhibition of the Na+/H+ exchanger 3 prevents cardiorenal damage in rats and inhibits Na+ uptake in humans. Sci. Transl. Med. 6:227ra36
    [Google Scholar]
  75. 75.  Tang WH, Wang Z, Fan Y, Levison B, Hazen JE et al. 2014. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J. Am. Coll. Cardiol. 64:1908–14
    [Google Scholar]
  76. 76.  Borlaug BA 2014. The pathophysiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 11:507–15
    [Google Scholar]
  77. 77.  Van Tassell BW, Raleigh JM, Abbate A 2015. Targeting interleukin-1 in heart failure and inflammatory heart disease. Curr. Heart Fail. Rep. 12:33–41
    [Google Scholar]
  78. 78.  Patel RB, Vaduganathan M, Shah SJ, Butler J 2017. Atrial fibrillation in heart failure with preserved ejection fraction: insights into mechanisms and therapeutics. Pharmacol. Ther. 176:32–39
    [Google Scholar]
  79. 79.  Van Tassell BW, Arena R, Biondi-Zoccai G, Canada JM, Oddi C et al. 2014. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am. J. Cardiol. 113:321–27
    [Google Scholar]
  80. 80.  Van Tassell BW, Buckley LF, Carbone S, Trankle CR, Canada JM et al. 2017. Interleukin-1 blockade in heart failure with preserved ejection fraction: rationale and design of the Diastolic Heart Failure Anakinra Response Trial 2 (D-HART2). Clin. Cardiol. 40:626–32
    [Google Scholar]
  81. 81.  Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH et al. 2017. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377:1119–31
    [Google Scholar]
  82. 82.  Maier LS, Layug B, Karwatowska-Prokopczuk E, Belardinelli L, Lee S et al. 2013. RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail 1:115–22
    [Google Scholar]
  83. 83.  Gheorghiade M, Blair JE, Filippatos GS, Macarie C, Ruzyllo W et al. 2008. Hemodynamic, echocardiographic, and neurohormonal effects of istaroxime, a novel intravenous inotropic and lusitropic agent: a randomized controlled trial in patients hospitalized with heart failure. J. Am. Coll. Cardiol. 51:2276–85
    [Google Scholar]
  84. 84.  Shah SJ, Blair JE, Filippatos GS, Macarie C, Ruzyllo W et al. 2009. Effects of istaroxime on diastolic stiffness in acute heart failure syndromes: results from the Hemodynamic, Echocardiographic, and Neurohormonal Effects of Istaroxime, a Novel Intravenous Inotropic and Lusitropic Agent: a Randomized Controlled Trial in Patients Hospitalized with Heart Failure (HORIZON-HF) trial. Am. Heart J. 157:1035–41
    [Google Scholar]
  85. 85.  Lim GB 2018. Heart failure: histone deacetylases and diastolic dysfunction. Nat. Rev. Cardiol. 15:196
    [Google Scholar]
  86. 86.  Jeong MY, Lin YH, Wennersten SA, Demos-Davies KM, Cavasin MA et al. 2018. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci. Transl. Med. 10:eaao0144
    [Google Scholar]
  87. 87.  Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I et al. 2005. Cardiomyocyte stiffness in diastolic heart failure. Circulation 111:774–81
    [Google Scholar]
  88. 88.  Borbely A, Falcao-Pires I, van Heerebeek L, Hamdani N, Edes I et al. 2009. Hypophosphorylation of the stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ. Res. 104:780–86
    [Google Scholar]
  89. 89.  Methawasin M, Strom JG, Slater RE, Fernandez V, Saripalli C, Granzier H 2016. Experimentally increasing the compliance of titin through RNA binding motif-20 (RBM20) inhibition improves diastolic function in a mouse model of heart failure with preserved ejection fraction. Circulation 134:1085–99
    [Google Scholar]
  90. 90.  Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM et al. 2016. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351:617–21
    [Google Scholar]
  91. 91.  Jacoby D, Lester S, Owens A, Wang A, Young D et al. 2018. PIONEER-HCM Cohort B results: reduction in left ventricular outflow tract gradient with mavacamten in symptomatic obstructive hypertrophic cardiomyopathy patients Rep., MyoKardia, Inc. San Francisco: http://www.myokardia.com/docs/Pioneer_part%20B_ACC2018_FINAL.PDF
  92. 92.  Planelles-Herrero VJ, Hartman JJ, Robert-Paganin J, Malik FI, Houdusse A 2017. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun. 8:190
    [Google Scholar]
  93. 93.  Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL et al. 2017. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 14:238–50
    [Google Scholar]
  94. 94.  Aubert G, Martin OJ, Horton JL, Lai L, Vega RB et al. 2016. The failing heart relies on ketone bodies as a fuel. Circulation 133:698–705
    [Google Scholar]
  95. 95.  Phan TT, Abozguia K, Nallur Shivu G, Mahadevan G, Ahmed I et al. 2009. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J. Am. Coll. Cardiol. 54:402–9
    [Google Scholar]
  96. 96.  Molina AJ, Bharadwaj MS, Van Horn C, Nicklas BJ, Lyles MF et al. 2016. Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail 4:636–45
    [Google Scholar]
  97. 97.  Greene SJ, Sabbah HN, Butler J, Voors AA, Albrecht-Kupper BE et al. 2016. Partial adenosine A1 receptor agonism: a potential new therapeutic strategy for heart failure. Heart Fail. Rev. 21:95–102
    [Google Scholar]
  98. 98.  Dinh W, Albrecht-Kupper B, Gheorghiade M, Voors AA, van der Laan M, Sabbah HN 2017. Partial adenosine A1 agonist in heart failure. Handb. Exp. Pharmacol. 243:177–203
    [Google Scholar]
  99. 99.  Xiang F, Huang YS, Zhang DX, Chu ZG, Zhang JP, Zhang Q 2010. Adenosine A1 receptor activation reduces opening of mitochondrial permeability transition pores in hypoxic cardiomyocytes. Clin. Exp. Pharmacol. Physiol. 37:343–49
    [Google Scholar]
  100. 100.  DeVay RM, Dominguez-Ramirez L, Lackner LL, Hoppins S, Stahlberg H, Nunnari J 2009. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J. Cell Biol. 186:793–803
    [Google Scholar]
  101. 101.  Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K 2016. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ. Heart Fail. 9:e002206
    [Google Scholar]
  102. 102.  Guzman Mentesana G, Baez AL, Lo Presti MS, Dominguez R, Cordoba R et al. 2014. Functional and structural alterations of cardiac and skeletal muscle mitochondria in heart failure patients. Arch. Med. Res. 45:237–46
    [Google Scholar]
  103. 103.  McDonagh T, Macdougall IC 2015. Iron therapy for the treatment of iron deficiency in chronic heart failure: intravenous or oral?. Eur. J. Heart Fail. 17:248–62
    [Google Scholar]
  104. 104.  Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L et al. 2012. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. PNAS 109:4152–57
    [Google Scholar]
  105. 105.  Chang HC, Shapiro JS, Ardehali H 2016. Getting to the “heart” of cardiac disease by decreasing mitochondrial iron. Circ. Res. 119:1164–66
    [Google Scholar]
  106. 106.  Jankowska EA, von Haehling S, Anker SD, Macdougall IC, Ponikowski P 2013. Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur. Heart J. 34:816–29
    [Google Scholar]
  107. 107.  Shah SJ 2017. Precision medicine for heart failure with preserved ejection fraction: an overview. J. Cardiovasc. Transl. Res. 10:233–44
    [Google Scholar]
  108. 108.  Shah SJ 2017. Innovative clinical trial designs for precision medicine in heart failure with preserved ejection fraction. J. Cardiovasc. Transl. Res. 10:322–36
    [Google Scholar]
  109. 109.  Valero-Munoz M, Backman W, Sam F 2017. Murine models of heart failure with preserved ejection fraction: a “fishing expedition. .” JACC Basic Transl. Sci. 2:770–89
    [Google Scholar]
  110. 110.  Gomberg-Maitland M, Shah SJ, Guazzi M 2016. Inflammation in heart failure with preserved ejection fraction: time to put out the fire. JACC Heart Fail 4:325–28
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021136
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021136
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error