1932

Abstract

Efflux mechanisms situated in various brain barrier interfaces control drug entry into the adult brain; this review considers the effectiveness of these protective mechanisms in the embryo, fetus, and newborn brain. The longstanding belief that the blood-brain barrier is absent or immature in the fetus and newborn has led to many misleading statements with potential clinical implications. The immature brain is undoubtedly more vulnerable to damage by drugs and toxins; as is reviewed here, some developmentally regulated normal brain barrier mechanisms probably contribute to this vulnerability. We propose that the functional status of brain barrier efflux mechanisms should be investigated at different stages of brain development to provide a rational basis for the use of drugs in pregnancy and in newborns, especially in those prematurely born, where protection usually provided by the placenta is no longer present.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021430
2019-01-06
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021430.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021430&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Uhl K, Kennedy DL, Kweder SL 2002. Risk management strategies in the Physicians' Desk Reference product labels for pregnancy category X drugs. Drug Saf 25:12885–92
    [Google Scholar]
  2. 2.  Rubin R 2018. Addressing barriers to inclusion of pregnant women in clinical trials. JAMA 320:8742–44
    [Google Scholar]
  3. 3.  Ansari J, Carvahlo B, Shafer SL, Flood P 2016. Pharmacokinetics and pharmacodynamics of drugs commonly used in pregnancy and parturition. Anesth. Analg. 122:3786–804
    [Google Scholar]
  4. 4.  US Food Drug Admin 2014. Pregnancy and lactation labeling final rule News Release, Dec. 3. https://www.fda.gov/biologicsbloodvaccines/guidancecomplianceregulatoryinformation/actsrulesregulations/ucm445102.htm
    [Google Scholar]
  5. 5.  Wyszynski DF, Shields KE 2016. Frequency and type of medications and vaccines used during pregnancy. Obstet. Med. 9:121–27
    [Google Scholar]
  6. 6.  Haas DM, Marsh DJ, Dang DT, Parker CB, Wing DA et al. 2018. Prescription and other medication use in pregnancy. Obstet. Gynecol. 131:789–98
    [Google Scholar]
  7. 7.  Yaffe SJ 2015. Introduction. Drugs in Pregnancy and Lactation: A Reference Guide to Fetal and Neonatal Risk GG Briggs, RK Freeman, SJ Yaffe xv–xiv Philadelphia: Lippincott, Williams & Wilkins. , 10th ed..
    [Google Scholar]
  8. 8.  Briggs GG, Freeman RK, Towers, Forinash AB, eds. 2017. Drugs in Pregnancy and Lactation: A Reference Guide to Fetal and Neonatal Risk Philadelphia: Wolters Kluwer. , 11th ed..
    [Google Scholar]
  9. 9.  Lyerly AD, Little MO, Faden R 2008. The second wave: towards responsible inclusion of pregnant women in research. Int. J. Fem. Approaches Bioeth. 1:5–22
    [Google Scholar]
  10. 10.  Saunders NR, Liddelow SA, Dziegielewska KM 2012. Barrier mechanisms in the developing brain. Front. Pharmacol. 3:46
    [Google Scholar]
  11. 11.  Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD 2018. Physiology and molecular biology of barrier mechanisms in the fetal and neonatal brain. J. Physiol. In press. https://doi.org/10.1113/JP275376
    [Crossref] [Google Scholar]
  12. 12.  Staud F, Ceckova M 2015. Regulation of drug transporter expression and function in the placenta. Expert Opin. Drug Metab. Oxicol. 11:4533–55
    [Google Scholar]
  13. 13.  Walker N, Filis P, Soffientini U, Bellingham M, O'Shaughnessy PJ, Fowler PA 2017. Placental transporter localization and expression in the Human: the importance of species, sex, and gestational age differences. Biol. Reprod. 96:4733–42
    [Google Scholar]
  14. 14.  Koren G, Ornoy A 2018. The role of the placenta in drug transport and fetal drug exposure. Expert Rev. Clin. Pharmacol. 11:373–85
    [Google Scholar]
  15. 15.  Saunders NR, Habgood MD, Møllgård K, Dziegielewska KM 2016. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system?. F1000Research 5:313
    [Google Scholar]
  16. 16.  Brightman MW, Reese TS 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:3648–77
    [Google Scholar]
  17. 17.  Neuwelt EA 2004. Mechanisms of disease: the blood-brain barrier. Neurosurgery 54:131–40
    [Google Scholar]
  18. 18.  Ek CJ, Dziegielewska KM, Stolp H, Saunders NR 2006. Functional effectiveness of the blood-brain barrier to small water-soluble molecules in developing and adult opossum (Monodelphis domestica). J. Comp. Neurol. 496:113–26
    [Google Scholar]
  19. 19.  Ek CJ, Habgood MD, Dziegielewska KM, Saunders NR 2003. Structural characteristics and barrier properties of the choroid plexuses in developing brain of the opossum (Monodelphis domestica). J. Comp. Neurol. 460:4451–64
    [Google Scholar]
  20. 20.  Krish B, Leonhardt H 1978. The functional and structural border of the neurohemal region of the median eminence. Cell Tissue Res 192:2327–39
    [Google Scholar]
  21. 21.  Price CJ, Hoyda TD Ferguson AV. 2008. The area postrema: a brain monitor and integrator of systemic autonomic state. Neuroscientist 14:2182–94
    [Google Scholar]
  22. 22.  Møllgård K, Balslev Y, Lauritzen B, Saunders NR 1987. Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: a CSF-brain barrier. J. Neurocytol. 16:4433–44
    [Google Scholar]
  23. 23.  Whish S, Dziegielewska K, Møllgård K, Noor NM, Liddelow SA, Habgood M et al. 2015. The inner CSF-brain barrier: developmentally controlled access to the brain via intercellular junctions. Front. Neurosci. 9:16
    [Google Scholar]
  24. 24.  Brøchner CB, Holst CB, Møllgård K 2015. Outer brain barriers in rat and human development. Front. Neurosci. 9:75
    [Google Scholar]
  25. 25.  Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG 2018. Efflux proteins at the blood-brain barrier. Xenobiotica 48:506–32
    [Google Scholar]
  26. 26.  Nies AT, Jedlitschky G, König J, Herold-Mende C, Steiner HH et al. 2004. Expression and immunolocalization of the multidrug resistance proteins, MRP1-MRP6 (ABCC1-ABCC6), in human brain. Neuroscience 129:349–60
    [Google Scholar]
  27. 27.  Roberts LM, Black DS, Raman C, Woodford K, Zhou M et al. 2008. Subcellular localization of transporters along the rat blood-brain barrier and blood-cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 155:423–38
    [Google Scholar]
  28. 28.  Suhy AM, Webb A, Papp AC, Geier EG, Sadee W 2017. Expression and splicing of ABC and SLC transporters in the human blood-brain barrier measured with RNAseq. Eur. J. Pharm. Sci. 103:47–51
    [Google Scholar]
  29. 29.  Ek CJ, Johansson PA, Dziegielewska KM, Saunders NR 2010. Efflux mechanisms at developing brain barriers: ABC-transporters in fetal and postnatal rat. Toxicol. Lett. 197:51–59
    [Google Scholar]
  30. 30.  Strazielle N, Ghersi-Egea J-F 2015. Efflux transporters in blood-brain interfaces of the developing brain. Front. Neurosci. 9:21
    [Google Scholar]
  31. 31.  Yasuda K, Cline C, Vogel P, Onciu M, Fatima S et al. 2013. Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metab. Dispos. 41:4923–31
    [Google Scholar]
  32. 32.  Møllgård K, Dziegielewska KM, Holst CB, Habgood MD, Saunders NR 2017. Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci. Rep. 7:111603
    [Google Scholar]
  33. 33.  Tsai CE, Daood MJ, Lane RH, Hansen TW, Gruetzmacher EM, Watchko JF 2002. P-glycoprotein expression in mouse brain increases with maturation. Biol. Neonate 81:158–64
    [Google Scholar]
  34. 34.  Petropoulos S, Gibb W, Matthews SG 2010. Developmental expression of multidrug resistance phosphoglycoprotein (P-gp) in the mouse fetal brain and glucocorticoid regulation. Brain Res 1357:9–18
    [Google Scholar]
  35. 35.  Kalabis GM, Petropoulos S, Gibb W, Matthews SG 2007. Breast cancer resistance protein (Bcrp1/Abcg2) in mouse placenta and yolk sac: ontogeny and its regulation by progesterone. Placenta 28:101073–81
    [Google Scholar]
  36. 36.  Petropoulos S, Gibb W, Matthews SG 2011. Breast cancer-resistance protein (BCRP1) in the fetal mouse brain: development and glucocorticoid regulation. Biol. Reprod. 84:783–89
    [Google Scholar]
  37. 37.  Kratzer I, Liddelow SA, Saunders NR, Dziegielewska KM, Strazielle N, Ghersi-Egea JF 2013. Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection. Fluids Barriers CNS 10:125
    [Google Scholar]
  38. 38.  Cygalova L, Ceckova M, Pavek P, Staud F 2008. Role of breast cancer resistance protein (Bcrp/Abcg2) in fetal protection during gestation in rat. Toxicol. Lett. 178:3176–80
    [Google Scholar]
  39. 39.  Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Møllgård K et al. 2005. Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res 322:3353–64
    [Google Scholar]
  40. 40.  Fossan G, Cavanagh ME, Evans CA, Malinowska DH, Møllgård K et al. 1985. CSF-brain permeability in the immature sheep fetus: a CSF-brain barrier. Brain Res 350:1–2113–24
    [Google Scholar]
  41. 41.  Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA 2010. Mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLOS ONE 5:10e13741
    [Google Scholar]
  42. 42.  Bhuiyan M, Petropoulos S, Gibb W, Matthews SG 2012. Sertraline alters multidrug resistance phosphoglycoprotein activity in mouse placenta and fetal blood-brain barrier. Reprod. Sci. 19:407–15
    [Google Scholar]
  43. 43.  Stergiakouli E, Thapar A, Davey Smith G 2016. Association of acetaminophen use during pregnancy with behavioral problems in childhood: evidence against confounding. JAMA Pediatr 170:10964–70
    [Google Scholar]
  44. 44.  Little MO, Wickremsinhe MN, Lyerly AD 2017. Acetaminophen in pregnancy and adverse childhood neurodevelopment. JAMA Pediatr 171:4395–96
    [Google Scholar]
  45. 45.  Beale DJ 2017. Acetaminophen in pregnancy and adverse childhood neurodevelopment. JAMA Pediatr 171:4394–95
    [Google Scholar]
  46. 46.  Saunders NR, Habgood MD 2017. Acetaminophen in pregnancy and adverse childhood neurodevelopment. JAMA Pediatr 171:4395
    [Google Scholar]
  47. 47.  Hay-Schmidt A, Finkielman OTE, Jensen BAH, Høgsbro CF, Bak Holm J et al. 2017. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour. Reproduction 154:2145–52
    [Google Scholar]
  48. 48.  Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E et al. 2017. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8:15062
    [Google Scholar]
  49. 49.  Enokizono J, Kusuhara H, Sugiyama Y 2007. Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol. Pharmacol. 72:4967–75
    [Google Scholar]
  50. 50.  Wang L, He K, Maxwell B, Grossman SJ, Tremaine LM et al. 2011. Tissue distribution and elimination of [14C]apixaban in rats. Drug Metab. Dispos. 39:2256–64
    [Google Scholar]
  51. 51.  Saljé K, Lederer K, Oswald S, Dazert E, Warzok R, Siegmund W 2012. Effects of rifampicin, dexamethasone, St. John's Wort and Thyroxine on maternal and foetal expression of Abcb1 and organ distribution of talinolol in pregnant rats. Basic Clin. Pharmacol. Toxicol. 111:299–105
    [Google Scholar]
  52. 52.  Daud AN, Bergman JE, Bakker MK, Wang H, de Walle HE et al. 2014. Pharmacogenetics of drug-induced birth defects: the role of polymorphisms of placental transporter proteins. Pharmacogenomics 15:71029–41
    [Google Scholar]
  53. 53.  Li Y, Revalde J, Paxton JW 2017. The effects of dietary and herbal phytochemicals on drug transporters. Adv. Drug Deliv. Rev. 116:45–62
    [Google Scholar]
  54. 54.  Spencer PS, Palmer VS 2012. Interrelationships of undernutrition and neurotoxicity: food for thought and research attention. Neurotoxicology 33:3605–16
    [Google Scholar]
  55. 55.  Spencer PS, Palmer VS 2017. Food plant chemicals linked with neurological and neurodegenerative disease. Environmental Factors in Neurodegenerative Diseases, Vol. 1 M Aschner, LG Costa 247–78 New York: Elsevier
    [Google Scholar]
  56. 56.  Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR 2012. Barriers in the developing brain and Neurotoxicology. . Neurotoxicology 33:3586–604
    [Google Scholar]
  57. 57.  Saunders NR, Dreifuss JJ, Dziegielewska KM, Johansson PA, Habgood MD et al. 2014. The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Front. Neurosci. 8:404
    [Google Scholar]
  58. 58.  Costa LG, Giordano G, Faustman EM 2010. Domoic acid as a developmental neurotoxin. Neurotoxicology 31:409–23
    [Google Scholar]
  59. 59.  Ahmed AE, Campbell GA, Jacob S 2005. Neurological impairment in fetal mouse brain by drinking water disinfectant byproducts. Neurotoxicology 26:633–40
    [Google Scholar]
  60. 60.  Risau W, Hallmann R, Albrecht U 1986. Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev. Biol. 117:537–45
    [Google Scholar]
  61. 61.  Wakai S, Hirokawa N 1978. Development of the blood-brain barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res 195:2195–203
    [Google Scholar]
  62. 62.  Bito LZ, Myers RE 1970. The ontogenesis of haematoencephalic cation transport processes in the rhesus monkey. J. Physiol. 208:1153–70
    [Google Scholar]
  63. 63.  Bradbury MW, Crowder J, Desai S, Reynolds JM, Reynolds M, Saunders NR 1972. Electrolytes and water in the brain and cerebrospinal fluid of the foetal sheep and guinea-pig. J. Physiol. 227:2591–610
    [Google Scholar]
  64. 64.  Amtorp O, Sørensen SC 1974. The ontogenetic development of concentration differences for protein and ions between plasma and cerebrospinal fluid in rabbits and rats. J. Physiol. 243:2387–400
    [Google Scholar]
  65. 65.  Heine W, Hobusch D, Drescher U 1981. [Cerebrospinal fluid protein levels and blood-cerebrospinal fluid ratio of glucose and electrolytes in infants and children]. Helv Paediatr. Acta. 36:3217–27 (In German)
    [Google Scholar]
  66. 66.  Kim Y, Ha EH, Park H, Ha M, Kim Y et al. 2013. Prenatal lead and cadmium co-exposure and infant neurodevelopment at 6 months of age: the Mothers and Children's Environmental Health (MOCEH) study. Neurotoxicology 35:15–22
    [Google Scholar]
  67. 67.  Hossain S, Bhowmick S, Jahan S, Rozario L, Sarkar M et al. 2016. Maternal lead exposure decreases the levels of brain development and cognition-related proteins with concomitant upsurges of oxidative stress, inflammatory response and apoptosis in the offspring rats. Neurotoxicology 56:150–58
    [Google Scholar]
  68. 68.  Miyazaki W, Fujiwara Y, Katoh T 2016. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the development and function of the blood-brain barrier. Neurotoxicology 52:64–71
    [Google Scholar]
  69. 69.  Parmalee NL, Aschner M 2016. Manganese and aging. Neurotoxicology 56:262–68
    [Google Scholar]
  70. 70.  Brohi RD, Wang L, Talpur HS, Wu D, Khan FA et al. 2017. Toxicity of nanoparticles on the reproductive system in animal models: a review. Front. Pharmacol. 8:606
    [Google Scholar]
  71. 71.  Taylor CM, Kordas K, Golding J, Emond AM 2017. Effects of low-level prenatal lead exposure on child IQ at 4 and 8 years in a UK birth cohort study. Neurotoxicology 62:162–69
    [Google Scholar]
  72. 72.  Toews AD, Kolber A, Hayward J, Krigman MR, Morell P 1978. Experimental lead encephalopathy in the suckling rat: concentration of lead in cellular fractions enriched in brain capillaries. Brain Res 147:1131–38
    [Google Scholar]
  73. 73.  Adinolfi M 1985. The development of the human blood-CSF-brain barrier. Dev. Med. Child. Neurol. 27:4532–37
    [Google Scholar]
  74. 74.  Johanson CE 1980. Permeability and vascularity of the developing brain: cerebellum vs cerebral cortex. Brain Res 190:13–16
    [Google Scholar]
  75. 75.  Dziegielewska KM, Evans CA, Malinowska DH, Møllgård K, Reynolds ML, Saunders NR 1980. Blood-cerebrospinal fluid transfer of plasma proteins during fetal development in the sheep. J. Physiol. 300:457–765
    [Google Scholar]
  76. 76.  Dziegielewska KM, Habgood MD, Møllgård K, Stagaard M, Saunders NR 1991. Species-specific transfer of plasma albumin from blood into different cerebrospinal fluid compartments in the fetal sheep. J. Physiol. 439:215–37
    [Google Scholar]
  77. 77.  Habgood MD, Sedgwick JE, Dziegielewska KM, Saunders NR 1992. A developmentally regulated blood-cerebrospinal fluid transfer mechanism for albumin in immature rats. J. Physiol. 456:181–92
    [Google Scholar]
  78. 78.  Knott GW, Dziegielewska KM, Habgood MD, Li ZS, Saunders NR 1997. Albumin transfer across the choroid plexus of South American opossum (Monodelphis domestica). J. Physiol. 499:Pt. 1179–94
    [Google Scholar]
  79. 79.  Saunders NR 1992. Ontogenic development of brain barrier mechanisms. Physiology and Pharmacology of the Blood-Brain Barrier MWB Bradbury 327–69 Berlin: Springer-Verlag
    [Google Scholar]
  80. 80.  Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK et al. 2017. Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age. EFSA J 15:54849
    [Google Scholar]
  81. 81.  Heyer DB, Meredith RM 2017. Environmental toxicology: sensitive periods of development and neurodevelopmental disorders. Neurotoxicology 58:23–41
    [Google Scholar]
  82. 82.  Muñoz-Rocha TV, Tamayo Y Ortiz M, Romero M, Pantic I, Schnaas L et al. 2017. Prenatal co-exposure to manganese and depression and 24-months neurodevelopment. Neurotoxicology 64:134–41
    [Google Scholar]
  83. 83.  Schmitt G, Parrott N, Prinssen E, Barrow P 2017. The great barrier belief: the blood-brain barrier and considerations for juvenile toxicity studies. Reprod. Toxicol. 72:129–35
    [Google Scholar]
  84. 84.  Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Liddelow SA et al. 2006. Blood-CSF barrier function in the rat embryo. Eur. J. Neurosci. 24:65–76
    [Google Scholar]
  85. 85.  Liddelow SA, Dziegielewska KM, Ek CJ, Johansson PA, Potter AM, Saunders NR 2009. Cellular transfer of macromolecules across the developing choroid plexus of Monodelphis domestica. Eur. J. Neurosci. 29:2253–66
    [Google Scholar]
  86. 86.  Saunders NR 2001. Issue area 5: function of the blood-brain barrier in infants, children and the unborn. Exploration of Perinatal Pharmacokinetic Issues5–15-20 Springfield, VA: Versar Inc https://www.epa.gov/sites/production/files/2014-11/documents/perinatal_pharmacokinetic.pdf
    [Google Scholar]
  87. 87.  Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC et al. 2017. Blood-brain barrier development: systems modeling and predictive toxicology. Birth Defects Res 109:201680–710
    [Google Scholar]
  88. 88.  Liddelow SA, Temple S, Møllgård K, Gehwolf R, Wagner A, et al. 2012. Molecular characterisation of transport mechanisms at developing mouse blood-CSF interface. PLOS ONE 7:3e33554
    [Google Scholar]
  89. 89.  Virgintino D, Errede M, Girolamo F, Capobianco C, Robertson D et al. 2008. Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development. J. Neuropathol. Exp. Neurol. 67:50–61
    [Google Scholar]
  90. 90.  Lam J, Baello S, Iqbal M, Kelly LE, Shannon PT et al. 2015. The ontogeny of P-glycoprotein in the developing human blood-brain barrier: implication for opioid toxicity in neonates. Pediatr. Res. 78:4417–21
    [Google Scholar]
  91. 91.  Daood M, Tsai C, Ahdab-Barmada M, Watchko JF 2008. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 39:211–18
    [Google Scholar]
  92. 92.  Aronica E, Gorter JA, Redeker S, van Vliet EA, Ramkema M et al. 2005. Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia 46:6849–57
    [Google Scholar]
  93. 93.  Cooray HC, Blackmore CG, Maskell L, Barrand MA 2002. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13:2059–63
    [Google Scholar]
  94. 94.  Rao VV, Dahlheimer JL, Bardgett ME, Snyder AZ, Finch RA, Sartorelli AC et al. 1999. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood–cerebrospinal-fluid drug-permeability barrier. PNAS 96:3900–5
    [Google Scholar]
  95. 95.  Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD et al. 2008. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J. Comp. Neurol. 510:497–507
    [Google Scholar]
  96. 96.  Caley DW, Maxwell DS 1970. Development of the blood vessels and extracellular spaces during postnatal maturation of rat cerebral cortex. J. Comp. Neurol. 138:31–48
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021430
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021430
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error