1932

Abstract

Hypoxia-inducible factors (HIFs) control transcriptional responses to reduced O availability. HIFs are heterodimeric proteins composed of an O-regulated HIF-α subunit and a constitutively expressed HIF-1β subunit. HIF-α subunits are subject to prolyl hydroxylation, which targets the proteins for degradation under normoxic conditions. Small molecule prolyl hydroxylase inhibitors, which stabilize the HIF-α subunits and increase HIF-dependent expression of erythropoietin, are in phase III clinical trials for the treatment of anemia in patients with chronic kidney disease. HIFs contribute to the pathogenesis of many cancers, particularly the clear cell type of renal cell carcinoma in which loss of function of the von Hippel-Lindau tumor suppressor blocks HIF-2α degradation. A small molecule inhibitor that binds to HIF-2α and blocks dimerization with HIF-1β is in clinical trials for the treatment of renal cell carcinoma. Targeting HIFs for stabilization or inhibition may improve outcomes in diseases that are common causes of mortality in the US population.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021637
2019-01-06
2024-10-07
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021637.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021637&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Lane N, Martin W 2010. The energetics of genome complexity. Nature 467:929–34
    [Google Scholar]
  2. 2.  Mills DB, Francis WR, Vargas S, Larsen M, Elemans CP et al. 2018. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. eLife 7:e31176
    [Google Scholar]
  3. 3.  Semenza GL 2010. Oxygen homeostasis. Wiley Interdiscip. Rev. Syst. Biol. Med. 2:336–61
    [Google Scholar]
  4. 4.  Prabhakar NR, Semenza GL 2012. Adaptive and maladaptive responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92:967–1003
    [Google Scholar]
  5. 5.  Semenza GL 2011. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med. 365:54–56
    [Google Scholar]
  6. 6.  Semenza GL 2012. Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408
    [Google Scholar]
  7. 7.  Semenza GL, Wang GL 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:5447–54
    [Google Scholar]
  8. 8.  Wang GL, Semenza GL 1993. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. PNAS 90:4304–8
    [Google Scholar]
  9. 9.  Wang GL, Semenza GL 1995. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270:1230–37
    [Google Scholar]
  10. 10.  Wang GL, Jiang BH, Rue EA, Semenza GL 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. PNAS 92:5510–14
    [Google Scholar]
  11. 11.  Jiang BH, Rue E, Wang GL, Roe R, Semenza GL 1996. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271:17771–78
    [Google Scholar]
  12. 12.  Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL 1997. Transactivation and inhibitory domains of hypoxia-inducible factor 1α: modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272:19253–60
    [Google Scholar]
  13. 13.  Lau KW, Tian YM, Raval RR, Ratcliffe PJ, Pugh CW 2007. Target gene selectivity of hypoxia-inducible factor-α in renal cancer cells is conveyed by post-DNA-binding mechanisms. Br. J. Cancer 96:1284–92
    [Google Scholar]
  14. 14.  Heikkila M, Pasanen A, Kivirikko KI, Myllyharju J 2011. Roles of the human hypoxia-inducible factor (HIF)-3α variants in the hypoxia response. Cell. Mol. Life Sci. 68:3885–901
    [Google Scholar]
  15. 15.  Zhang P, Yao Q, Lu L, Li Y, Chen PJ et al. 2014. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep 6:1110–21
    [Google Scholar]
  16. 16.  Jiang BH, Semenza GL, Bauer C, Marti HH 1996. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271:C1172–80
    [Google Scholar]
  17. 17.  Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J et al. 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54
    [Google Scholar]
  18. 18.  Ivan M, Kondo K, Yang H, Kim W, Valiando J et al. 2001. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–68
    [Google Scholar]
  19. 19.  Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J et al. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–72
    [Google Scholar]
  20. 20.  Yu F, White SB, Zhao Q, Lee FS 2001. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. PNAS 98:9630–35
    [Google Scholar]
  21. 21.  Koivunen P, Tiainen P, Hyvarinen P, Williams KE, Sormunen R et al. 2007. An endoplasmic reticulum transmembrane prolyl-4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor α. J. Biol. Chem. 282:30544–52
    [Google Scholar]
  22. 22.  Salceda S, Caro J 1997. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions: Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272:22642–47
    [Google Scholar]
  23. 23.  Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC et al. 1999. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–75
    [Google Scholar]
  24. 24.  Mahon PC, Hirota K, Semenza GL 2001. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–86
    [Google Scholar]
  25. 25.  Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML et al. 2002. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 16:1466–71
    [Google Scholar]
  26. 26.  Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP et al. 1996. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271:32529–37
    [Google Scholar]
  27. 27.  Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD et al. 2005. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105:659–69
    [Google Scholar]
  28. 28.  Kelly BD, Hackett SF, Hirota K, Oshima Y, Cai Z et al. 2003. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ. Res. 93:1074–81
    [Google Scholar]
  29. 29.  Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM et al. 2009. Genome-wide association of hypoxia-inducible factor (HIF)-1α and HIF-2α binding with expression profiling of hypoxia-inducible transcripts. J. Biol. Chem. 284:16767–75
    [Google Scholar]
  30. 30.  Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ et al. 2011. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood 117:e207–17
    [Google Scholar]
  31. 31.  Camps C, Saini HK, Mole DR, Choudhry H, Reczko M et al. 2014. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol. Cancer 13:28
    [Google Scholar]
  32. 32.  Ivan M, Huang X 2014. miR-210: fine-tuning the hypoxic response. Adv. Exp. Med. Biol. 772:205–27
    [Google Scholar]
  33. 33.  Cavadas MAS, Cheong A, Taylor CT 2017. The regulation of transcriptional repression in hypoxia. Exp. Cell Res. 356:173–81
    [Google Scholar]
  34. 34.  Fraisl P, Aragones J, Carmeliet P 2009. Inhibition of oxygen sensors as a therapeutic strategy for ischemic and inflammatory disease. Nat. Rev. Drug Discov. 8:139–52
    [Google Scholar]
  35. 35.  Speer R, Ratan RR 2016. Hypoxic adaptation in the nervous system: promise for novel therapeutics for acute and chronic neurodegeneration. Adv. Exp. Med. Biol. 903:221–43
    [Google Scholar]
  36. 36.  Zhou J, Li J, Rosenbaum DM, Zhuang J, Poon C et al. 2017. The prolyl 4-hydroxylase inhibitor GSK360A decreases post-stroke brain injury and sensory, motor, and cognitive behavioral deficits. PLOS ONE 12:e0184049
    [Google Scholar]
  37. 37.  Ratan RR, Siddiq A, Smirnova N, Karpisheva K, Haskew-Layton R et al. 2007. Harnessing hypoxic adaptation to prevent, treat, and repair stroke. J. Mol. Med. 85:1331–38
    [Google Scholar]
  38. 38.  Bao W, Qin P, Needle S, Erickson-Miller CL, Duffy KJ et al. 2010. Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. J. Cardiovasc. Pharmacol. 56:147–55
    [Google Scholar]
  39. 39.  Semenza GL 2014. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol. 76:39–56
    [Google Scholar]
  40. 40.  Vogler M, Zieseniss A, Hesse AR, Levent E, Tiburcy M et al. 2015. Pre- and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Pflugers Arch 467:2141–49
    [Google Scholar]
  41. 41.  Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E et al. 1998. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149–62
    [Google Scholar]
  42. 42.  Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE et al. 2006. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J. Biol. Chem. 281:25703–11
    [Google Scholar]
  43. 43.  Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC 2007. Acute postnatal ablation of HIF-2α results in anemia. PNAS 104:2301–6
    [Google Scholar]
  44. 44.  Samanta D, Prabhakar NR, Semenza GL 2017. Systems biology of oxygen homeostasis. Wiley Interdiscip. Rev. Syst. Biol. Med. 9:4e1382
    [Google Scholar]
  45. 45.  Koury MJ, Bondurant MC, Graber SE, Sawyer ST 1988. Erythropoietin messenger RNA levels in developing mice and transfer of 125I-erythropoietin by the placenta. J. Clin. Investig. 82:154–59
    [Google Scholar]
  46. 46.  Semenza GL, Traystman MD, Gearhart JD, Antonarakis SE 1989. Polycythemia in transgenic mice expressing the human erythropoietin gene. PNAS 86:2301–5
    [Google Scholar]
  47. 47.  Semenza GL, Koury ST, Nejfelt MK, Gearhart JD, Antonarakis SE 1991. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. PNAS 88:8725–29
    [Google Scholar]
  48. 48.  Minamishima YA, Kaelin WG Jr. 2010. Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 329:407
    [Google Scholar]
  49. 49.  Tojo Y, Sekine H, Hirano I, Pan X, Souma T et al. 2015. Hypoxia signaling cascade for erythropoietin production in hepatocytes. Mol. Cell. Biol. 35:2658–72
    [Google Scholar]
  50. 50.  Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT et al. 2008. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111:3236–44
    [Google Scholar]
  51. 51.  Takeda K, Aguila HL, Parikh NS, Li X, Lamothe K et al. 2008. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 111:3229–35
    [Google Scholar]
  52. 52.  Koury ST, Koury MJ, Bondurant MC, Caro J, Graber SE 1989. Quantitation of erythropoietin-producing cells in kidneys of mice by in situ hybridization: correlation with hematocrit, renal erythropoietin mRNA, and serum erythropoietin concentration. Blood 74:645–51
    [Google Scholar]
  53. 53.  Stauffer ME, Fan T 2014. Prevalence of anemia in chronic kidney disease in the United States. PLOS ONE 9:e84943
    [Google Scholar]
  54. 54.  Souma T, Yamazaki S, Moriguchi T, Suzuki N, Hirano I et al. 2013. Plasticity of renal erythropoietin-producing cells governs fibrosis. J. Am. Soc. Nephrol. 24:1599–616
    [Google Scholar]
  55. 55.  de Seigneux S, Lundby AK, Berchtold L, Berg AH, Saudan P et al. 2016. Increased synthesis of liver erythropoietin with CKD. J. Am. Soc. Nephrol. 27:2265–69
    [Google Scholar]
  56. 56.  Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW 1987. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N. Engl. J. Med. 316:73–78
    [Google Scholar]
  57. 57.  Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S et al. 2006. Correction of anemia with epoetin alfa in chronic kidney disease. N. Engl. J. Med. 355:2085–98
    [Google Scholar]
  58. 58.  Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O et al. 2017. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem. Sci. 8:7651–68
    [Google Scholar]
  59. 59.  Ivan M, Kaelin WG Jr. 2017. The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. Mol. Cell 66:772–79
    [Google Scholar]
  60. 60.  Bernhardt WM, Wiesener MS, Scigalla P, Chou J, Schmieder RE et al. 2010. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J. Am. Soc. Nephrol. 21:2151–56
    [Google Scholar]
  61. 61.  Holdstock L, Meadowcroft AM, Maier R, Johnson BM, Jones D et al. 2016. Four-week studies of oral hypoxia-inducible factor-prolyl hydroxylase inhibitor GSK1278863 for treatment of anemia. J. Am. Soc. Nephrol. 27:1234–44
    [Google Scholar]
  62. 62.  Smith TG, Brooks JT, Balanos GM, Lappin TR, Layton DM et al. 2006. Mutation of the von Hippel-Lindau tumor suppressor and human cardiopulmonary physiology. PLOS Med 3:e290
    [Google Scholar]
  63. 63.  Gale DP, Harten SK, Reid CD, Tuddenham EG, Maxwell PH 2008. Autosomal dominant erythrocytosis and pulmonary arterial hypertension associated with an activating HIF-2α mutation. Blood 112:919–21
    [Google Scholar]
  64. 64.  Formenti F, Beer PA, Croft QP, Dorrington KL, Gale DP et al. 2011. Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2α gain-of-function mutation. FASEB J 25:2001–11
    [Google Scholar]
  65. 65.  Gordeuk VR, Prchal JT 2006. Vascular complications in Chuvash polycythemia. Semin. Thromb. Hemost. 32:289–94
    [Google Scholar]
  66. 66.  Criqui MH, Aboyans V 2015. Epidemiology of peripheral artery disease. Circ. Res. 116:1509–26
    [Google Scholar]
  67. 67.  Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA et al. 2007. Inter-society consensus for the management of peripheral arterial disease (TASC II). J. Vasc. Surg. 45:Suppl.S5–7
    [Google Scholar]
  68. 68.  Cooke JP, Losordo DW 2015. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ. Res. 116:1561–78
    [Google Scholar]
  69. 69.  Bosch-Marcé M, Okuyama H, Wesley JB, Sarkar K, Kimura H et al. 2007. Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circ. Res. 101:1310–18
    [Google Scholar]
  70. 70.  Pajusola K, Kunnapuu J, Vuorikoski S, Soronen J, Andre H et al. 2005. Stabilized HIF-1α is superior to VEGF for angiogenesis in skeletal muscle via adeno-associated virus gene transfer. FASEB J 19:1365–67
    [Google Scholar]
  71. 71.  Patel TH, Kimura H, Weiss CR, Semenza GL, Hofmann LV 2005. Constitutively active HIF-1α improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc. Res. 68:144–54
    [Google Scholar]
  72. 72.  Sarkar K, Fox-Talbot K, Steenbergen C, Bosch-Marcé M, Semenza GL 2009. Adenoviral transfer of HIF-1α enhances vascular responses to critical limb ischemia in diabetic mice. PNAS 106:18769–74
    [Google Scholar]
  73. 73.  Rey S, Lee K, Wang CJ, Gupta K, Chen S et al. 2009. Synergistic effect of HIF-1α gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. PNAS 106:20399–404
    [Google Scholar]
  74. 74.  Rey S, Luo W, Shimoda LA, Semenza GL 2011. Metabolic reprogramming by HIF-1 promotes the survival of bone marrow-derived angiogenic cells in ischemic tissue. Blood 117:4988–98
    [Google Scholar]
  75. 75.  Takeda Y, Costa S, Delamarre E, Roncal C, Leite de Oliveira R et al. 2011. Macrophage skewing by Phd2 haplodeficiency prevents ischemia by inducing arteriogenesis. Nature 479:122–26
    [Google Scholar]
  76. 76.  Rishi MT, Selvaraju V, Thirunavukkarasu M, Shaikh IA, Takeda K et al. 2015. Deletion of prolyl hydroxylase domain proteins (PHD1, PHD3) stabilizes hypoxia inducible factor-1α, promotes neovascularization, and improves perfusion in a murine model of hind-limb ischemia. Microvasc. Res. 97:181–88
    [Google Scholar]
  77. 77.  Lijkwan MA, Hellingman AA, Bos EJ, van der Bogt KE, Huang M et al. 2014. Short hairpin RNA gene silencing of prolyl hydroxylase-2 with a minicircle vector improves neovascularization of hindlimb ischemia. Hum. Gene Ther. 25:41–49
    [Google Scholar]
  78. 78.  Paik KJ, Maan ZN, Zielins ER, Duscher D, Whittam AJ et al. 2016. Short hairpin RNA silencing of PHD2 improves neovascularization and functional outcomes in diabetic wounds and ischemic limbs. PLOS ONE 11:e0150927
    [Google Scholar]
  79. 79.  HoWangYin KY, Loinard C, Bakker W, Guérin CL, Vilar J et al. 2014. HIF-prolyl hydroxylase 2 inhibition enhances the efficiency of mesenchymal stem cell-based therapies for the treatment of critical limb ischemia. Stem Cells 32:231–43
    [Google Scholar]
  80. 80.  Olson E, Demopoulos L, Haws TF, Hu E, Fang Z et al. 2014. Short-term treatment with a novel HIF-prolyl hydroxylase inhibitor (GSK1278863) failed to improve measures of performance in subjects with claudication-limited peripheral arterial disease. Vasc. Med. 19:473–82
    [Google Scholar]
  81. 81.  Abraham C, Cho JH 2009. Inflammatory bowel disease. N. Engl. J. Med. 361:2066–78
    [Google Scholar]
  82. 82.  Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP et al. 2004. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Investig. 114:1098–106
    [Google Scholar]
  83. 83.  Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT et al. 2008. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134:145–55
    [Google Scholar]
  84. 84.  Keely S, Campbell EL, Baird AW, Hansbro PM, Shalwitz RA et al. 2014. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol 7:114–23
    [Google Scholar]
  85. 85.  Glover LE, Bowers BE, Saeedi B, Ehrentraut SF, Campbell EL et al. 2013. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. PNAS 110:19820–25
    [Google Scholar]
  86. 86.  Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ et al. 2008. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–65
    [Google Scholar]
  87. 87.  Tambuwala MM, Manresa MC, Cummins EP, Aversa V, Coulter IS et al. 2015. Targeted delivery of the hydroxylase inhibitor DMOG provides enhanced efficacy with reduced systemic exposure in a murine model of colitis. J. Control. Release 217:221–27
    [Google Scholar]
  88. 88.  Huh JW, Kim SY, Lee JH, Lee YS 2011. YC-1 attenuates hypoxia-induced pulmonary arterial hypertension in mice. Pulm. Pharmacol. Ther. 24:638–46
    [Google Scholar]
  89. 89.  Abud EM, Maylor J, Undem C, Punjabi A, Zaiman AL et al. 2012. Digoxin inhibits development of hypoxic pulmonary hypertension in mice. PNAS 109:1239–44
    [Google Scholar]
  90. 90.  Yoshida T, Zhang H, Iwase T, Shen J, Semenza GL et al. 2010. Digoxin inhibits retinal ischemia-induced HIF-1α expression and ocular neovascularization. FASEB J 24:1759–67
    [Google Scholar]
  91. 91.  DeNiro M, Al-Halafi A, Al-Mohanna FH, Alsmadi O, Al-Mohanna FA 2010. Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy. Mol. Pharmacol. 77:348–67
    [Google Scholar]
  92. 92.  Babapoor-Farrokhran S, Jee K, Puchner B, Hassan SJ, Xin X et al. 2015. Angiopoietin-like 4 is a potent angiogenic factor and a novel therapeutic target for patients with proliferative diabetic retinopathy. PNAS 112:E3030–39
    [Google Scholar]
  93. 93.  Zeng M, Shen J, Liu Y, Lu LY, Ding K et al. 2017. The HIF-1 antagonist acriflavine: visualization in retina and suppression of ocular neovascularization. J. Mol. Med. 95:417–29
    [Google Scholar]
  94. 94.  Semenza GL 2010. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–34
    [Google Scholar]
  95. 95.  Semenza GL 2014. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. Mech. Dis. 9:47–71
    [Google Scholar]
  96. 96.  Schito L, Semenza GL 2016. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2:758–70
    [Google Scholar]
  97. 97.  Semenza GL 2012. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci. 33:207–14
    [Google Scholar]
  98. 98.  Lee K, Zhang H, Qian DZ, Rey S, Liu JO et al. 2009. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. PNAS 106:17910–15
    [Google Scholar]
  99. 99.  Shay JE, Imtiyaz HZ, Sivanand S, Durham AC, Skuli N et al. 2014. Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer. Carcinogenesis 35:1067–77
    [Google Scholar]
  100. 100.  Chen W, Hill H, Christie A, Kim MS, Holloman E et al. 2016. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 539:112–17
    [Google Scholar]
  101. 101.  Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA et al. 2016. On-target efficiency of a HIF-2α antagonist in preclinical kidney cancer models. Nature 539:107–11
    [Google Scholar]
  102. 102.  Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z et al. 2016. A small-molecule antagonist of HIF-2α is efficacious in preclinical models of renal cell carcinoma. Cancer Res 76:5491–500
    [Google Scholar]
  103. 103.  Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y et al. 2013. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45:860–67
    [Google Scholar]
  104. 104. Am. Cancer Soc. 2017. Kidney cancer early detection, diagnosis, and staging Rep. Am. Cancer Soc. Atlanta, GA: https://www.cancer.org/content/dam/CRC/PDF/Public/8661.00.pdf
    [Google Scholar]
  105. 105.  Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI et al. 2018. Phase I dose-escalation trial of PT2385, a first-in-class hypoxia-inducible factor-2α antagonist in patients with previously treated advanced clear cell renal cell carcinoma. J. Clin. Oncol. 36:9867–74
    [Google Scholar]
  106. 106.  Fu L, Wang G, Shevchuk MM, Nanus DM, Gudas LJ 2011. Generation of a mouse model of von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF-1α. Cancer Res 71:6848–56
    [Google Scholar]
  107. 107.  Neely BA, Wilkins SE, Marlow LA, Mayarenko D, Kim Y et al. 2016. Proteotranscriptomic analysis reveals stage-specific changes in the molecular landscape of clear-cell renal cell carcinoma. PLOS ONE 11:e0154074
    [Google Scholar]
  108. 108.  Nargund AM, Pham CG, Dong Y, Wang PI, Osmangeyoglu HU et al. 2017. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep 12:2893–906
    [Google Scholar]
  109. 109.  Shen C, Beroukhim R, Schumacher SE, Zhou J, Chang M et al. 2011. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene. Cancer Discov 1:222–35
    [Google Scholar]
  110. 110.  Wu D, Potluri N, Lu J, Kim Y, Rastinejad F 2015. Structural integration in hypoxia-inducible factors. Nature 524:303–8
    [Google Scholar]
  111. 111.  Mazumdar J, Hickey MM, Pant DK, Durham AC, Sweet-Cordero A et al. 2010. HIF-2α deletion promotes Kras-driven lung tumor development. PNAS 107:14182–87
    [Google Scholar]
  112. 112.  Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL 2014. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. PNAS 111:E5429–38
    [Google Scholar]
  113. 113.  Samanta D, Park Y, Ni X, Li H, Zahnow CA et al. 2018. Chemotherapy induces enrichment of CD47+/CD73+/PDL1+ immune evasive triple-negative breast cancer cells. PNAS 115:E1239–48
    [Google Scholar]
  114. 114.  Wang Y, Liu Y, Malek SN, Zheng P, Liu Y 2011. Targeting HIF-1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8:399–411
    [Google Scholar]
  115. 115.  Cheloni G, Tanturli M, Tusa I, Ho DeSouza N, Shan Y et al. 2017. Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine. Blood 130:655–65
    [Google Scholar]
  116. 116.  Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG 2010. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am. J. Pathol. 177:1491–502
    [Google Scholar]
  117. 117.  Chiu DK, Xu IM, Lai RK, Tse AP, Wei LL et al. 2016. Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C–C motif) ligand 26. Hepatology 64:797–813
    [Google Scholar]
  118. 118.  Wong CC, Zhang H, Gilkes DM, Chen J, Wei H et al. 2012. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. J. Mol. Med. 90:803–15
    [Google Scholar]
  119. 119.  Moeller BJ, Cao Y, Li CY, Dewhirst MW 2004. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–41
    [Google Scholar]
  120. 120.  Hirada H, Inoue M, Itasaka S, Hirota K, Morinibu A et al. 2012. Cancer cells that survive radiation therapy acquire HIF-1 activity and translocate towards tumor blood vessels. Nat. Commun. 3:783
    [Google Scholar]
  121. 121.  Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD et al. 2009. Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol. Cancer Ther. 8:1867–77
    [Google Scholar]
  122. 122.  Yin T, He S, Shen G, Wang Y 2014. HIF-1 dimerization inhibitor acriflavine enhances antitumor activity of sunitinib in breast cancer model. Oncol. Res. 22:139–45
    [Google Scholar]
  123. 123.  Weijer R, Broekgaarden M, Krekorian M, Alles LK, van Wijk AC et al. 2016. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy. Oncotarget 7:3341–56
    [Google Scholar]
  124. 124.  de la Chapelle A, Träskelin AL, Juvonen E 1993. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. PNAS 90:4495–99
    [Google Scholar]
  125. 125.  Sokol L, Luhovy M, Guan Y, Prchal JF, Semenza GL et al. 1995. Primary polycythemia: a frameshift mutation in the erythropoietin gene and increased sensitivity of erythroid progenitors to erythropoietin. Blood 86:15–22
    [Google Scholar]
  126. 126.  Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J et al. 2002. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat. Genet. 32:614–21
    [Google Scholar]
  127. 127.  Percy MJ, Furlow PW, Beer PA, Lappin TR, McMullin MF et al. 2007. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood 110:2193–96
    [Google Scholar]
  128. 128.  Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR et al. 2008. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358:162–68
    [Google Scholar]
  129. 129.  Flamme I, Oehme F, Ellinghaus M, Jeske J, Keldenich J et al. 2014. Mimicking hypoxia to treat anemia: HIF-stabilizer BAY 85–3934 (molidustat) stimulates erythropoietin production without hypertensive effects. PLOS ONE 9:e111838
    [Google Scholar]
  130. 130.  Provenzano R, Besarab A, Wright S, Dua S, Zeig S et al. 2016. Roxadustat (FG-4592) versus epoetin alfa for anemia in patients receiving maintenance hemodialysis: a phase 2, randomized, 6- to 19-week, open-label, active-comparator, dose-ranging, safety and exploratory efficacy study. Am. J. Kidney Dis. 67:912–24
    [Google Scholar]
  131. 131.  Pergola PE, Spinowitz BS, Hartman CS, Maroni BJ, Haase VH 2016. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int 90:1115–22
    [Google Scholar]
  132. 132.  Akizawa T, Hanaki K, Arai T 2015. JTZ-591, an oral novel HIF-PHD inhibitor, elevates hemoglobin in Japanese anemic patients with chronic kidney disease not on dialysis. Nephrol. Dial. Transplant. 30:Suppl. 3iii10
    [Google Scholar]
  133. 133.  Wang GL, Jiang BH, Semenza GL 1995. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. 216:669–75
    [Google Scholar]
  134. 134.  Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM et al. 2003. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3:363–75
    [Google Scholar]
  135. 135.  Escuin D, Kline ER, Giannakakou P 2005. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1α accumulation and activity by disrupting microtubule function. Cancer Res 65:9021–28
    [Google Scholar]
  136. 136.  Neckers L 2006. Chaperoning oncogenes: Hsp90 as a target of geldanamycin. Handb. Exp. Pharmacol. 172:259–77
    [Google Scholar]
  137. 137.  Liu YV, Baek JH, Zhang H, Diez R, Cole RN et al. 2007. RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol. Cell 25:207–17
    [Google Scholar]
  138. 138.  Ibrahim NO, Hahn T, Franke C, Stiehl DP, Wirthner R et al. 2005. Induction of the hypoxia-inducible factor system by low levels of heat shock protein 90 inhibitors. Cancer Res 65:11094–100
    [Google Scholar]
  139. 139.  Tan C, de Noronha RG, Roecker AJ, Pyrzynska B, Khwaja F et al. 2005. Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res 65:605–12
    [Google Scholar]
  140. 140.  Osada M, Imaoka S, Funae Y 2004. Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1α protein. FEBS Lett 575:59–63
    [Google Scholar]
  141. 141.  Liu LZ, Fang J, Zhou Q, Hu X, Shi X et al. 2005. Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer. Mol. Pharmacol. 68:635–43
    [Google Scholar]
  142. 142.  Yeo EJ, Ryu JH, Cho YS, Chun YS, Huang LE et al. 2006. Amphotericin B blunts erythropoietin response to hypoxia by reinforcing FIH-mediated repression of HIF-1. Blood 107:916–23
    [Google Scholar]
  143. 143.  Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ 2003. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 63:1764–68
    [Google Scholar]
  144. 144.  Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V et al. 2007. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12:230–38
    [Google Scholar]
  145. 145.  Ellinghaus P, Heisler I, Unterschemmann K, Haerter M, Beck H et al. 2013. BAY 87–2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I. Cancer Med 2:611–24
    [Google Scholar]
  146. 146.  Park K, Lee HE, Lee SH, Lee D, Lee T et al. 2017. Molecular and functional evaluation of a novel HIF inhibitor, benzopyranyl 1,2,3-triazole compound. Oncotarget 8:7801–13
    [Google Scholar]
  147. 147.  Lin S, Tsai SC, Lee CC, Wang BW, Liou JY et al. 2004. Berberine inhibits HIF-1α expression via enhanced proteolysis. Mol. Pharmacol. 66:612–19
    [Google Scholar]
  148. 148.  Kubo T, Maezawa N, Osada M, Katsumura S, Funae Y et al. 2004. Bisphenol A, an environmental endocrine-disrupting chemical, inhibits hypoxic response via degradation of hypoxia-inducible factor 1α (HIF-1α): structural requirement of bisphenol A for degradation of HIF-1α. Biochem. Biophys. Res. Commun. 318:1006–11
    [Google Scholar]
  149. 149.  Oh SY, Seok JY, Choi YS, Lee SH, Bae JS et al. 2015. The histone methyltransferase inhibitor BIX01294 inhibits HIF-1α stability and angiogenesis. Mol. Cells 38:528–34
    [Google Scholar]
  150. 150.  Kaluz S, Kaluzová M, Stanbridge EJ 2006. Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1α C-terminal activation domain. Mol. Cell. Biol. 26:5895–907
    [Google Scholar]
  151. 151.  Parhira S, Zhu GY, Chen M, Bai LP, Jiang ZH 2016. Cardenolides from Calotropis gigantea as potent inhibitors of hypoxia-inducible factor 1 transcriptional activity. J. Ethnopharmacol. 194:930–36
    [Google Scholar]
  152. 152.  Hu N, Jiang D, Huang E, Liu X, Li R et al. 2013. BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J. Cell Sci. 126:532–41
    [Google Scholar]
  153. 153.  Kung AL, Zabludoff SD, France DS, Freedman SJ, Tanner EA et al. 2004. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 6:33–43
    [Google Scholar]
  154. 154.  Pham E, Yin M, Peters CG, Lee CR, Brown D et al. 2016. Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate, in treatment of metastatic triple-negative breast cancer. Cancer Res 76:4493–503
    [Google Scholar]
  155. 155.  Tian X, Nguyen M, Foote HP, Caster JM, Roche KC et al. 2017. CRLX101, a nanoparticle-drug conjugate containing camptothecin, improves rectal cancer chemoradiotherapy by inhibiting DNA repair and HIF-1α. Cancer Res 77:112–22
    [Google Scholar]
  156. 156.  Dat NT, Jin X, Lee JH, Lee D, Hong YS, Lee K et al. 2007. Abietane diterpenes from Salvia miltiorrhiza inhibit the activation of hypoxia-inducible factor-1. J. Nat. Prod. 70:1093–97
    [Google Scholar]
  157. 157.  Bae MK, Kim SH, Jeong JW, Lee YM, Kim HS et al. 2006. Curcumin inhibits hypoxia-induced angiogenesis via down-regulation of HIF-1. Oncol. Rep. 15:1557–62
    [Google Scholar]
  158. 158.  Choi H, Chun YS, Kim SW, Kim MS, Park JW 2006. Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol. Pharmacol. 70:1664–71
    [Google Scholar]
  159. 159.  Lee K, Qian DZ, Rey S, Wei H, Liu JO et al. 2009. Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. PNAS 106:2353–58
    [Google Scholar]
  160. 160.  Zhang H, Qian DZ, Tan YS, Lee K, Gao P et al. 2008. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. PNAS 105:19579–86
    [Google Scholar]
  161. 161.  Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH et al. 2005. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65:9047–55
    [Google Scholar]
  162. 162.  Moser C, Lang SA, Mori A, Hellerbrand C, Schlitt HJ et al. 2008. ENMD-1198, a novel tubulin-binding agent reduces HIF-1α and STAT3 activity in human hepatocellular carcinoma (HCC) cells, and inhibits growth and vascularization in vivo. BMC Cancer 8:206
    [Google Scholar]
  163. 163.  Zhou YD, Kim YP, Mohammed KA, Jones DK, Muhammad I et al. 2005. Terpenoid tetrahydroisoquinoline alkaloids emetine, klugine, and isocephaeline inhibit the activation of hypoxia-inducible factor-1 in breast tumor cells. J. Nat. Prod. 68:947–50
    [Google Scholar]
  164. 164.  Block KM, Wang H, Szabó LZ, Polaske NW, Henchey LK et al. 2009. Direct inhibition of hypoxia-inducible transcription factor complex with designed dimeric epidithiodiketopiperazine. J. Am. Chem. Soc. 131:18078–88
    [Google Scholar]
  165. 165.  Jeong W, Park SR, Rapisarda A, Fer N, Kinders RJ et al. 2014. Weekly EZN-2208 (PEGylated SN-38) in combination with bevacizumab in patients with refractory solid tumors. Investig. New Drugs 32:340–46
    [Google Scholar]
  166. 166.  Jeong W, Rapisarda A, Park SR, Kinders RJ, Chen A et al. 2014. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor 1α (HIF-1α), in patients with refractory solid tumors. Cancer Chemother. Pharmacol. 73:343–48
    [Google Scholar]
  167. 167.  Coltella N, Valsecchi R, Ponente M, Ponzoni M, Bernardi R 2015. Synergistic leukemia eradication by combined treatment with retinoic acid and HIF inhibition by EZN-2208 (PEG-SN38) in preclinical models of PML-RARα and PLZF-RARα-driven leukemia. Clin. Cancer Res. 21:3685–94
    [Google Scholar]
  168. 168.  Greenberger LM, Horak ID, Filpula D, Sapra P, Westergaard M et al. 2008. A RNA antagonist of hypoxia-inducible factor 1α, EZN-2968, inhibits tumor cell growth. Mol. Cancer Ther. 7:3598–608
    [Google Scholar]
  169. 169.  Lee YM, Kim SH, Kim HS, Son MJ, Nakajima H et al. 2003. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1α activity. Biochem. Biophys. Res. Commun. 300:241–46
    [Google Scholar]
  170. 170.  Newcomb EW, Ali MA, Schnee T, Lan L, Lukyanov Y et al. 2005. Flavopiridol downregulates hypoxia-mediated hypoxia-inducible factor-1α expression in human glioma cells by a proteasome-independent pathway: implications for in vivo therapy. Neuro-oncology 7:225–35
    [Google Scholar]
  171. 171.  Moreno-Manzano V, Rodríguez-Jiménez FJ, Aceña-Bonilla JL, Fustero-Lardíes S, Erceg S et al. 2010. FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status. J. Biol. Chem. 285:1333–42
    [Google Scholar]
  172. 172.  Xiang L, Gilkes DM, Chaturvedi P, Luo W, Hu H et al. 2014. Ganetespib blocks HIF-1 activity and inhibits tumor growth, vascularization, stem cell maintenance, invasion, and metastasis in orthotopic mouse models of triple-negative breast cancer. J. Mol. Med. 92:151–64
    [Google Scholar]
  173. 173.  Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F et al. 2002. Hsp90 regulates a von Hippel-Lindau-dependent hypoxia-inducible factor 1α degradative pathway. J. Biol. Chem. 277:29936–44
    [Google Scholar]
  174. 174.  Mabjeesh NJ, Post DE, Willard MT, Kaur B, Van Meir EG et al. 2002. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteasome pathway in prostate cancer cells. Cancer Res 62:2478–82
    [Google Scholar]
  175. 175.  Chang H, Shyu KG, Lee CC, Tsai SC, Wang BW et al. 2003. GL331 inhibits HIF-1α expression in a lung cancer model. Biochem. Biophys. Res. Commun. 302:95–100
    [Google Scholar]
  176. 176.  Lee SH, Jee JG, Bae JS, Liu KH, Lee YM 2015. A group of novel HIF-1α inhibitors, glyceollins, blocks HIF-1α synthesis and decreases its stability via inhibition of the PI3K/AKT/mTOR pathway and Hsp90 binding. J. Cell. Physiol. 230:853–62
    [Google Scholar]
  177. 177.  Lu J, Zhang K, Chen S, Wen W 2009. Grape seed extract inhibits VEGF expression via reducing HIF-1α protein expression. Carcinogenesis 30:636–44
    [Google Scholar]
  178. 178.  Palayoor ST, Tofilon PJ, Coleman CN 2003. Ibuprofen-mediated reduction of hypoxia-inducible factors HIF-1α and HIF-2α in prostate cancer cells. Clin. Cancer Res. 9:3150–57
    [Google Scholar]
  179. 179.  Pang Y, Yang C, Schovanek J, Wang H, Bullova P et al. 2017. Anthracyclines suppress pheochromocytoma cell characteristics, including metastasis, through inhibition of the hypoxia signaling pathway. Oncotarget 8:22313–24
    [Google Scholar]
  180. 180.  Ban HS, Naik R, Kim HM, Kim BK, Lee H et al. 2016. Identification of targets of the HIF-1 inhibitor IDF-11774 using alkyne-conjugated photoaffinity probes. Bioconjug. Chem. 27:1911–20
    [Google Scholar]
  181. 181.  Minegishi H, Fukashiro S, Ban HS, Nakamura H 2013. Discovery of indenopyrazoles as a new class of hypoxia inducible factor (HIF)-1 inhibitors. ACS Med. Chem. Lett. 4:297–301
    [Google Scholar]
  182. 182.  Jones MK, Szabó IL, Kawanaka H, Husain SS, Tarnawski AS 2002. von Hippel Lindau tumor suppressor and HIF-1α: new targets of NSAIDs inhibition of hypoxia-induced angiogenesis. FASEB J 16:264–66
    [Google Scholar]
  183. 183.  Guérin E, Raffelsberger W, Pencreach E, Maier A, Neuville A et al. 2012. In vivo topoisomerase I inhibition attenuates the expression of hypoxia-inducible factor 1α target genes and decreases tumor angiogenesis. Mol. Med. 18:83–94
    [Google Scholar]
  184. 184.  Mylonis I, Lakka A, Tsakalof A, Simos G 2010. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochem. Biophys. Res. Commun. 398:74–78
    [Google Scholar]
  185. 185.  Narita T, Yin S, Gelin CF, Moreno CS, Yepes M et al. 2009. Identification of a novel small molecule HIF-1α translation inhibitor. Clin. Cancer Res. 15:6128–36
    [Google Scholar]
  186. 186.  Lee S, Kwon OS, Lee CS, Won M, Ban HS et al. 2017. Synthesis and biological evaluation of kresoxim-methyl analogues as novel inhibitors of hypoxia-inducible factor (HIF)-1 accumulation in cancer cells. Bioorg. Med. Chem. Lett. 27:3026–29
    [Google Scholar]
  187. 187.  Qian DZ, Kachhap SK, Collis SJ, Verheul HM, Carducci MA et al. 2006. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1α. Cancer Res 66:8814–21
    [Google Scholar]
  188. 188.  Yao ZG, Li WH, Hua F, Cheng HX, Zhao MQ et al. 2017. LBH589 inhibits glioblastoma growth and angiogenesis through suppression of HIF-1α expression. J. Neuropathol. Exp. Neurol. 76:1000–7
    [Google Scholar]
  189. 189.  Mohammed KA, Hossain CF, Zhang L, Bruick RK, Zhou YD et al. 2004. Laurenditerpenol, a new diterpene from the tropical marine alga Laurencia intricata that potently inhibits HIF-1 mediated hypoxic signaling in breast tumor cells. J. Nat. Prod. 67:2002–7
    [Google Scholar]
  190. 190.  Lee K, Kang JE, Park SK, Jin Y, Chung KS et al. 2010. LW6, a novel HIF-1 inhibitor, promotes proteasomal degradation of HIF-1α via upregulation of VHL in a colon cancer cell line. Biochem. Pharmacol. 80:982–89
    [Google Scholar]
  191. 191.  Hodges TW, Hossain CF, Kim YP, Zhou YD, Nagle DG 2004. Molecular-targeted antitumor agents: The Saururus cernuus dineolignans manassantin B and 4-O-demethylmanassantin B are potent inhibitors of hypoxia-activated HIF-1. J. Nat. Prod. 67:767–71
    [Google Scholar]
  192. 192.  Wheaton WW, Weinberg SE, Hamanaka RB, Soberanes S, Sullivan LB et al. 2014. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3:e02242
    [Google Scholar]
  193. 193.  Chintala S, Najrana T, Toth K, Cao S, Durrani FA et al. 2012. Prolyl hydroxylase 2 dependent and Von-Hippel-Lindau independent degradation of hypoxia-inducible factor 1 and 2 alpha by selenium in clear cell renal cell carcinoma leads to tumor growth inhibition. BMC Cancer 12:293
    [Google Scholar]
  194. 194.  Huang YC, Huang FI, Mehndiratta S, Lai SC, Liou JP et al. 2015. Anticancer activity of MPT0G157, a derivative of indolylbenzenesulfonamide, inhibits tumor growth and angiogenesis. Oncotarget 6:18590–601
    [Google Scholar]
  195. 195.  Pore N, Gupta AK, Cerniglia GJ, Jiang Z, Bernhard EJ et al. 2006. Nelfinavir down-regulates hypoxia-inducible factor 1α and VEGF expression and increases tumor oxygenation: implications for radiotherapy. Cancer Res 66:9252–59
    [Google Scholar]
  196. 196.  Kim KH, Kim D, Park JY, Jung HJ, Cho YH et al. 2015. NNC 55-0396, a T-type Ca2+ channel inhibitor, inhibits angiogenesis via suppression of hypoxia-inducible factor-1α signal transduction. J. Mol. Med. 93:499–509
    [Google Scholar]
  197. 197.  Newcomb EW, Lukyanov Y, Schnee T, Ali MA, Lan L, Zagzag D 2006. Noscapine inhibits hypoxia-mediated HIF-1α expression and angiogenesis in vitro: a novel function for an old drug. Int. J. Oncol. 28:1121–30
    [Google Scholar]
  198. 198.  Chau NM, Rogers P, Aherne W, Carroll V, Collins I et al. 2005. Identification of novel small molecule inhibitors of hypoxia-inducible factor-1 that differentially block hypoxia-inducible factor-1 activity and hypoxia-inducible factor-1α induction in response to hypoxic stress and growth factors. Cancer Res 65:4918–28
    [Google Scholar]
  199. 199.  Baker LC, Boult JK, Walker-Samuel S, Chung YL, Jamin Y et al. 2012. The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumor activity while maintaining vascular function. Br. J. Cancer 106:1638–47
    [Google Scholar]
  200. 200.  Creighton-Gutteridge M, Cardellina JH 2nd, Stephen AG, Rapisarda A, Uranchimeg B et al. 2007. Cell type-specific, topoisomerase II-dependent inhibition of hypoxia-inducible factor 1α protein accumulation by NSC 644221. Clin. Cancer Res. 13:1010–18
    [Google Scholar]
  201. 201.  Karar J, Cerniglia GJ, Lindsten T, Koumenis C, Maity A 2012. Dual PI3K/mTOR inhibitor NVP-BEZ235 suppresses hypoxia-inducible factor (HIF)-1α expression by blocking protein translation and increases cell death under hypoxia. Cancer Biol. Ther. 13:1102–11
    [Google Scholar]
  202. 202.  Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL et al. 2003. The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1α and vascular endothelial growth factor formation. Mol. Cancer Ther. 2:235–43
    [Google Scholar]
  203. 203.  Li MH, Miao ZH, Tan WF, Yue JM, Zhang C et al. 2004. Pseudolaric acid B inhibits angiogenesis and reduces hypoxia-inducible factor 1α by promoting proteasome-mediated degradation. Clin. Cancer Res. 10:8266–74
    [Google Scholar]
  204. 204.  Kim YH, Coon A, Baker AF, Powis G 2011. Antitumor agent PX-12 inhibits HIF-1α protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase. Cancer Chemother. Pharmacol. 68:405–13
    [Google Scholar]
  205. 205.  Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G 2004. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor 1α. Mol. Cancer Ther. 3:233–44
    [Google Scholar]
  206. 206.  Lee K, Kim HM 2011. A novel approach to cancer therapy using PX-478 as a HIF-1α inhibitor. Arch. Pharm. Res. 34:1583–85
    [Google Scholar]
  207. 207.  Mysore VS, Szablowski J, Dervan PB, Frost PJ 2016. A DNA-binding molecule targeting the adaptive hypoxic response in multiple myeloma has potent anti-tumor activity. Mol. Cancer Res. 14:253–66
    [Google Scholar]
  208. 208.  Weng Q, Zhang J, Cao J, Xia Q, Wang D et al. 2011. Q39, a quinoxaline 1,4-di-N-oxide derivative, inhibits hypoxia-inducible factor-1α expression and the Akt/mTOR/4E-BP1 signaling pathway in human hepatoma cells. Investig. New Drugs 29:1177–87
    [Google Scholar]
  209. 209.  Huang W, Huang R, Attene-Ramos MS, Sakamuru S, Englund EE et al. 2011. Synthesis and evaluation of quinazolin-4-ones as hypoxia-inducible factor-1α inhibitors. Bioorg. Med. Chem. Lett. 21:5239–43
    [Google Scholar]
  210. 210.  Hur E, Kim HH, Choi SM, Kim JH, Yim S et al. 2002. Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1α/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol. Mol. Pharmacol. 62:975–82
    [Google Scholar]
  211. 211.  Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C et al. 2000. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60:1541–45
    [Google Scholar]
  212. 212.  Han JY, Oh SH, Morgillo F, Myers JN, Kim E et al. 2005. Hypoxia-inducible factor 1α and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer. J. Natl. Cancer Inst. 97:1272–86
    [Google Scholar]
  213. 213.  Miranda E, Nordgren IK, Male AL, Lawrence CE, Hoakwie F et al. 2013. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J. Am. Chem. Soc. 135:10418–25
    [Google Scholar]
  214. 214.  Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F et al. 2006. Anti-angiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66:5549–54
    [Google Scholar]
  215. 215.  Zhang J, Cao J, Weng Q, Wu R, Yan Y et al. 2010. Suppression of hypoxia-inducible factor 1α (HIF-1α) by tirapazamine is dependent on eIF2α phosphorylation rather than the mTORC1/4E-BP1 pathway. PLOS ONE 5:e13910
    [Google Scholar]
  216. 216.  Rapisarda A, Uranchimeg B, Sordet O, Pommier Y, Shoemaker RH et al. 2004. Topoisomerase I-mediated inhibition of hypoxia-inducible factor 1: mechanism and therapeutic implications. Cancer Res 64:1475–82
    [Google Scholar]
  217. 217.  Rapisarda A, Zalek J, Hollingshead M, Braunschweig T, Uranchimeg B et al. 2004. Schedule-dependent inhibition of hypoxia-inducible factor 1α protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res 64:6845–48
    [Google Scholar]
  218. 218.  Kong X, Lin Z, Liang D, Fath D, Sang N et al. 2006. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α. Mol. Cell. Biol. 26:2019–28
    [Google Scholar]
  219. 219.  Hutt DM, Roth DM, Vignaud H, Cullin C, Bouchecareilh M 2014. The histone deacetylase inhibitor, vorinostat, represses hypoxia inducible factor 1α expression through translational inhibition. PLOS ONE 9:e106224
    [Google Scholar]
  220. 220.  Zhang C, Yang C, Feldman MJ, Wang H, Pang Y et al. 2017. Vorinostat suppresses hypoxia signaling by modulating nuclear translocation of hypoxia inducible factor 1α. Oncotarget 8:56110–25
    [Google Scholar]
  221. 221.  Song X, Yao J, Wang F, Zhou M, Zhou Y et al. 2013. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein. Toxicol. Appl. Pharmacol. 271:144–55
    [Google Scholar]
  222. 222.  Chun YS, Yeo EJ, Choi E, Teng CM, Bae JM et al. 2001. Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochem. Pharmacol. 61:947–54
    [Google Scholar]
  223. 223.  Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC et al. 2003. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl. Cancer Inst. 95:516–25
    [Google Scholar]
  224. 224.  Kim HL, Yeo EJ, Chun YS, Park JW A domain responsible for HIF-1α degradation by YC-1, a novel anticancer agent. Int. J. Oncol. 29:255–60
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021637
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021637
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error