1932

Abstract

Elevated expression of the chemokine receptors CXCR4 and ACKR3 and of their cognate ligand CXCL12 is detected in a wide range of tumors and the tumor microenvironment (TME). Yet, the molecular mechanisms by which the CXCL12/CXCR4/ACKR3 axis contributes to the pathogenesis are complex and not fully understood. To dissect the role of this axis in cancer, we discuss its ability to impinge on canonical and less conventional signaling networks in different cancer cell types; its bidirectional crosstalk, notably with receptor tyrosine kinase (RTK) and other factors present in the TME; and the infiltration of immune cells that supporttumor progression. We discuss current and emerging avenues that target the CXCL12/CXCR4/ACKR3 axis. Coordinately targeting both RTKs and CXCR4/ACKR3 and/or CXCL12 is an attractive approach to consider in multitargeted cancer therapies. In addition, inhibiting infiltrating immune cells or reactivating the immune system along with modulating the CXCL12/CXCR4/ACKR3 axis in the TME has therapeutic promise.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023340
2021-01-06
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-010919-023340.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023340&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM et al. 2014. International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66:1–79
    [Google Scholar]
  2. 2. 
    Murphy PM, Heusinkveld L. 2018. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine 109:2–10
    [Google Scholar]
  3. 3. 
    Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J et al. 2005. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J. Biol. Chem. 280:35760–66
    [Google Scholar]
  4. 4. 
    Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W 2016. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 35:816–26
    [Google Scholar]
  5. 5. 
    Hattermann K, Mentlein R. 2013. An infernal trio: the chemokine CXCL12 and its receptors CXCR4 and CXCR7 in tumor biology. Ann. Anat. 195:103–10
    [Google Scholar]
  6. 6. 
    Neves M, Fumagalli A, van den Bor J, Marin P, Smit MJ, Mayor F 2019. The role of ACKR3 in breast, lung, and brain cancer. Mol. Pharmacol. 96:819–25
    [Google Scholar]
  7. 7. 
    Scala S. 2015. Molecular pathways: targeting the CXCR4-CXCL12 axis—untapped potential in the tumor microenvironment. Clin. Cancer Res. 21:4278–85
    [Google Scholar]
  8. 8. 
    Fumagalli A, Zarca A, Neves M, Caspar B, Hill SJ et al. 2019. CXCR4/ACKR3 phosphorylation and recruitment of interacting proteins: key mechanisms regulating their functional status. Mol. Pharmacol. 96:794–808
    [Google Scholar]
  9. 9. 
    Arimont M, Hoffmann C, de Graaf C, Leurs R 2019. Chemokine receptor crystal structures: What can be learned from them?. Mol. Pharmacol. 96:765–77
    [Google Scholar]
  10. 10. 
    Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C 2017. Structural analysis of chemokine receptor-ligand interactions. J. Med. Chem. 60:4735–79
    [Google Scholar]
  11. 11. 
    Gustavsson M, Wang L, van Gils N, Stephens BS, Zhang P et al. 2017. Structural basis of ligand interaction with atypical chemokine receptor 3. Nat. Commun. 8:14135
    [Google Scholar]
  12. 12. 
    Szpakowska M, Nevins AM, Meyrath M, Rhainds D, D'Huys T et al. 2018. Different contributions of chemokine N-terminal features attest to a different ligand binding mode and a bias towards activation of ACKR3/CXCR7 compared with CXCR4 and CXCR3. Br. J. Pharmacol. 175:1419–38
    [Google Scholar]
  13. 13. 
    Righetti A, Giulietti M, Sabanovic B, Occhipinti G, Principato G, Piva F 2019. CXCL12 and its isoforms: different roles in pancreatic cancer. ? J. Oncol. 2019:9681698
    [Google Scholar]
  14. 14. 
    Spinosa PC, Luker KE, Luker GD, Linderman JJ 2017. The CXCL12/CXCR7 signaling axis, isoforms, circadian rhythms, and tumor cellular composition dictate gradients in tissue. PLOS ONE 12:e0187357
    [Google Scholar]
  15. 14a. 
    Meyrath M, Szpakowska M, Zeiner J, Massotte L, Merz MPet al 2020. The atypical chemokine receptor ACKR3/CXCR7 is a broad-spectrum scavenger for opioid peptides. Nat. Commun. 11:3033
    [Google Scholar]
  16. 15. 
    Jankauskas SS, Wong DWL, Bucala R, Djudjaj S, Boor P 2019. Evolving complexity of MIF signaling. Cell. Signal. 57:76–88
    [Google Scholar]
  17. 16. 
    Sjoberg E, Meyrath M, Chevigne A, Ostman A, Augsten M, Szpakowska M 2020. The diverse and complex roles of atypical chemokine receptors in cancer: from molecular biology to clinical relevance and therapy. Adv. Cancer Res. 145:99–138
    [Google Scholar]
  18. 17. 
    Martinez-Munoz L, Villares R, Rodriguez-Fernandez JL, Rodriguez-Frade JM, Mellado M 2018. Remodeling our concept of chemokine receptor function: from monomers to oligomers. J. Leukoc. Biol. 104:323–31
    [Google Scholar]
  19. 18. 
    Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N et al. 2017. Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Sci. Signal. 10:eaah5756
    [Google Scholar]
  20. 19. 
    Koenen J, Bachelerie F, Balabanian K, Schlecht-Louf G, Gallego C 2019. Atypical chemokine receptor 3 (ACKR3): a comprehensive overview of its expression and potential roles in the immune system. Mol. Pharmacol. 96:809–18
    [Google Scholar]
  21. 20. 
    Berahovich RD, Zabel BA, Penfold ME, Lewen S, Wang Y et al. 2010. CXCR7 protein is not expressed on human or mouse leukocytes. J. Immunol. 185:5130–39
    [Google Scholar]
  22. 21. 
    Infantino S, Moepps B, Thelen M 2006. Expression and regulation of the orphan receptor RDC1 and its putative ligand in human dendritic and B cells. J. Immunol. 176:2197–207
    [Google Scholar]
  23. 22. 
    Gerrits H, van Ingen Schenau DS, Bakker NE, van Disseldorp AJ, Strik A et al. 2008. Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice. Genesis 46:235–45
    [Google Scholar]
  24. 23. 
    Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T et al. 1998. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. PNAS 95:9448–53
    [Google Scholar]
  25. 24. 
    Sierro F, Biben C, Martinez-Munoz L, Mellado M, Ransohoff RM et al. 2007. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. PNAS 104:14759–64
    [Google Scholar]
  26. 25. 
    Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K et al. 1998. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–94
    [Google Scholar]
  27. 26. 
    Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–99
    [Google Scholar]
  28. 27. 
    Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J et al. 2003. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat. Genet. 34:70–74
    [Google Scholar]
  29. 28. 
    Beaussant Cohen S, Fenneteau O, Plouvier E, Rohrlich PS, Daltroff G et al. 2012. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet. J. Rare Dis. 7:71
    [Google Scholar]
  30. 29. 
    Moustafa A, Xie C, Kirkness E, Biggs W, Wong E et al. 2017. The blood DNA virome in 8,000 humans. PLOS Pathog 13:e1006292
    [Google Scholar]
  31. 30. 
    Stern J, Miller G, Li X, Saxena D 2019. Virome and bacteriome: two sides of the same coin. Curr. Opin. Virol. 37:37–43
    [Google Scholar]
  32. 31. 
    Strickley JD, Messerschmidt JL, Awad ME, Li T, Hasegawa T et al. 2019. Immunity to commensal papillomaviruses protects against skin cancer. Nature 575:519–22
    [Google Scholar]
  33. 32. 
    Chow KY, Brotin E, Ben Khalifa Y, Carthagena L, Teissier S et al. 2010. A pivotal role for CXCL12 signaling in HPV-mediated transformation of keratinocytes: clues to understanding HPV-pathogenesis in WHIM syndrome. Cell Host Microbe 8:523–33
    [Google Scholar]
  34. 33. 
    Meuris F, Carthagena L, Jaracz-Ros A, Gaudin F, Cutolo P et al. 2016. The CXCL12/CXCR4 signaling pathway: a new susceptibility factor in human papillomavirus pathogenesis. PLOS Pathog 12:e1006039
    [Google Scholar]
  35. 34. 
    Meuris F, Gaudin F, Aknin ML, Hemon P, Berrebi D, Bachelerie F 2016. Symptomatic improvement in human papillomavirus-induced epithelial neoplasia by specific targeting of the CXCR4 chemokine receptor. J. Investig. Dermatol. 136:473–80
    [Google Scholar]
  36. 35. 
    McDermott DH, Liu Q, Ulrick J, Kwatemaa N, Anaya-O'Brien S et al. 2011. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood 118:4957–62
    [Google Scholar]
  37. 36. 
    McDermott DH, Liu Q, Velez D, Lopez L, Anaya-O'Brien S et al. 2014. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood 123:2308–16
    [Google Scholar]
  38. 37. 
    McDermott DH, Pastrana DV, Calvo KR, Pittaluga S, Velez D et al. 2019. Plerixafor for the treatment of WHIM syndrome. N. Engl. J. Med. 380:163–70
    [Google Scholar]
  39. 38. 
    Balabanian K, Brotin E, Biajoux V, Bouchet-Delbos L, Lainey E et al. 2012. Proper desensitization of CXCR4 is required for lymphocyte development and peripheral compartmentalization in mice. Blood 119:5722–30
    [Google Scholar]
  40. 39. 
    McDermott DH, Gao JL, Liu Q, Siwicki M, Martens C et al. 2015. Chromothriptic cure of WHIM syndrome. Cell 160:686–99
    [Google Scholar]
  41. 40. 
    Cao Y, Hunter ZR, Liu X, Xu L, Yang G et al. 2015. The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia. Leukemia 29:169–76
    [Google Scholar]
  42. 41. 
    Hunter ZR, Xu L, Yang G, Zhou Y, Liu X et al. 2014. The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood 123:1637–46
    [Google Scholar]
  43. 42. 
    Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T et al. 2005. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood 105:2449–57
    [Google Scholar]
  44. 43. 
    Janssens R, Struyf S, Proost P 2018. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev 44:51–68
    [Google Scholar]
  45. 44. 
    Luker KE, Lewin SA, Mihalko LA, Schmidt BT, Winkler JS et al. 2012. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 31:4750–58
    [Google Scholar]
  46. 45. 
    Desnoyer A, Dupin N, Assoumou L, Carlotti A, Gaudin F et al. 2016. Expression pattern of the CXCL12/CXCR4-CXCR7 trio in Kaposi sarcoma skin lesions. Br. J. Dermatol. 175:1251–62
    [Google Scholar]
  47. 46. 
    Freitas C, Desnoyer A, Meuris F, Bachelerie F, Balabanian K, Machelon V 2014. The relevance of the chemokine receptor ACKR3/CXCR7 on CXCL12-mediated effects in cancers with a focus on virus-related cancers. Cytokine Growth Factor Rev 25:307–16
    [Google Scholar]
  48. 47. 
    Heuninck J, Perpina Viciano C, Isbilir A, Caspar B, Capoferri D et al. 2019. Context-dependent signaling of CXC chemokine receptor 4 and atypical chemokine receptor 3. Mol. Pharmacol. 96:778–93
    [Google Scholar]
  49. 48. 
    Busillo JM, Armando S, Sengupta R, Meucci O, Bouvier M, Benovic JL 2010. Site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases and results in differential modulation of CXCR4 signaling. J. Biol. Chem. 285:7805–17
    [Google Scholar]
  50. 49. 
    Marchese A. 2014. Endocytic trafficking of chemokine receptors. Curr. Opin. Cell Biol. 27:72–77
    [Google Scholar]
  51. 50. 
    Naumann U, Cameroni E, Pruenster M, Mahabaleshwar H, Raz E et al. 2010. CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLOS ONE 5:e9175
    [Google Scholar]
  52. 51. 
    Odemis V, Boosmann K, Heinen A, Kury P, Engele J 2010. CXCR7 is an active component of SDF-1 signalling in astrocytes and Schwann cells. J. Cell Sci. 123:1081–88
    [Google Scholar]
  53. 52. 
    Becker JH, Gao Y, Soucheray M, Pulido I, Kikuchi E et al. 2019. CXCR7 reactivates ERK signaling to promote resistance to EGFR kinase inhibitors in NSCLC. Cancer Res 79:4439–52
    [Google Scholar]
  54. 53. 
    Li S, Fong KW, Gritsina G, Zhang A, Zhao JC et al. 2019. Activation of MAPK signaling by CXCR7 leads to enzalutamide resistance in prostate cancer. Cancer Res 79:2580–92
    [Google Scholar]
  55. 54. 
    Rajagopal S, Kim J, Ahn S, Craig S, Lam CM et al. 2010. β-Arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. PNAS 107:628–32
    [Google Scholar]
  56. 55. 
    Luker KE, Steele JM, Mihalko LA, Ray P, Luker GD 2010. Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene 29:4599–610
    [Google Scholar]
  57. 56. 
    Abe P, Mueller W, Schutz D, MacKay F, Thelen M et al. 2014. CXCR7 prevents excessive CXCL12-mediated downregulation of CXCR4 in migrating cortical interneurons. Development 141:1857–63
    [Google Scholar]
  58. 57. 
    Sanchez-Alcaniz JA, Haege S, Mueller W, Pla R, Mackay F et al. 2011. Cxcr7 controls neuronal migration by regulating chemokine responsiveness. Neuron 69:77–90
    [Google Scholar]
  59. 58. 
    Montpas N, St-Onge G, Nama N, Rhainds D, Benredjem B et al. 2018. Ligand-specific conformational transitions and intracellular transport are required for atypical chemokine receptor 3-mediated chemokine scavenging. J. Biol. Chem. 293:893–905
    [Google Scholar]
  60. 59. 
    Saaber F, Schutz D, Miess E, Abe P, Desikan S et al. 2019. ACKR3 regulation of neuronal migration requires ACKR3 phosphorylation, but not β-arrestin. Cell Rep 26:1473–88.e9
    [Google Scholar]
  61. 60. 
    Lipfert J, Odemis V, Engele J 2013. Grk2 is an essential regulator of CXCR7 signalling in astrocytes. Cell. Mol. Neurobiol. 33:111–18
    [Google Scholar]
  62. 61. 
    Gentilini A, Caligiuri A, Raggi C, Rombouts K, Pinzani M et al. 2019. CXCR7 contributes to the aggressive phenotype of cholangiocarcinoma cells. Biochim. Biophys. Acta Mol. Basis Dis. 1865:2246–56
    [Google Scholar]
  63. 62. 
    Xu S, Tang J, Wang C, Liu J, Fu Y, Luo Y 2019. CXCR7 promotes melanoma tumorigenesis via Src kinase signaling. Cell Death Dis 10:191
    [Google Scholar]
  64. 63. 
    Hattermann K, Holzenburg E, Hans F, Lucius R, Held-Feindt J, Mentlein R 2014. Effects of the chemokine CXCL12 and combined internalization of its receptors CXCR4 and CXCR7 in human MCF-7 breast cancer cells. Cell Tissue Res 357:253–66
    [Google Scholar]
  65. 64. 
    Nogues L, Reglero C, Rivas V, Neves M, Penela P, Mayor F Jr 2017. G-protein-coupled receptor kinase 2 as a potential modulator of the hallmarks of cancer. Mol. Pharmacol. 91:220–28
    [Google Scholar]
  66. 65. 
    Penela P, Ribas C, Sanchez-Madrid F, Mayor F Jr 2019. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell. Mol. Life Sci. 76:4423–46
    [Google Scholar]
  67. 66. 
    Peterson YK, Luttrell LM. 2017. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol. Rev. 69:256–97
    [Google Scholar]
  68. 67. 
    Bagnato A, Rosano L. 2019. New routes in GPCR/β-arrestin-driven signaling in cancer progression and metastasis. Front. Pharmacol. 10:114
    [Google Scholar]
  69. 68. 
    Nogues L, Palacios-Garcia J, Reglero C, Rivas V, Neves M et al. 2018. G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin. Cancer Biol. 48:78–90
    [Google Scholar]
  70. 69. 
    Woerner BM, Luo J, Brown KR, Jackson E, Dahiya SM et al. 2012. Suppression of G-protein-coupled receptor kinase 3 expression is a feature of classical GBM that is required for maximal growth. Mol. Cancer Res. 10:156–66
    [Google Scholar]
  71. 70. 
    Balabanian K, Levoye A, Klemm L, Lagane B, Hermine O et al. 2008. Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. J. Clin. Investig. 118:1074–84
    [Google Scholar]
  72. 71. 
    Billard MJ, Fitzhugh DJ, Parker JS, Brozowski JM, McGinnis MW et al. 2016. G protein coupled receptor kinase 3 regulates breast cancer migration, invasion, and metastasis. PLOS ONE 11:e0152856
    [Google Scholar]
  73. 72. 
    Nogues L, Reglero C, Rivas V, Salcedo A, Lafarga V et al. 2016. G protein-coupled receptor kinase 2 (GRK2) promotes breast tumorigenesis through a HDAC6-Pin1 axis. EBioMedicine 13:132–45
    [Google Scholar]
  74. 73. 
    Babcock GJ, Farzan M, Sodroski J 2003. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J. Biol. Chem. 278:3378–85
    [Google Scholar]
  75. 74. 
    Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B 2009. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113:6085–93
    [Google Scholar]
  76. 75. 
    Percherancier Y, Berchiche YA, Slight I, Volkmer-Engert R, Tamamura H et al. 2005. Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J. Biol. Chem. 280:9895–903
    [Google Scholar]
  77. 76. 
    Boldajipour B, Mahabaleshwar H, Kardash E, Reichman-Fried M, Blaser H et al. 2008. Control of chemokine-guided cell migration by ligand sequestration. Cell 132:463–73
    [Google Scholar]
  78. 77. 
    Stephens B, Handel TM. 2013. Chemokine receptor oligomerization and allostery. Prog. Mol. Biol. Transl. Sci. 115:375–420
    [Google Scholar]
  79. 78. 
    Liu X, Xiao Q, Bai X, Yu Z, Sun M et al. 2014. Activation of STAT3 is involved in malignancy mediated by CXCL12-CXCR4 signaling in human breast cancer. Oncol. Rep. 32:2760–68
    [Google Scholar]
  80. 79. 
    Pfeiffer M, Hartmann TN, Leick M, Catusse J, Schmitt-Graeff A, Burger M 2009. Alternative implication of CXCR4 in JAK2/STAT3 activation in small cell lung cancer. Br. J. Cancer 100:1949–56
    [Google Scholar]
  81. 80. 
    Teicher BA, Fricker SP. 2010. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 16:2927–31
    [Google Scholar]
  82. 81. 
    Xu C, Zhao H, Chen H, Yao Q 2015. CXCR4 in breast cancer: oncogenic role and therapeutic targeting. Drug Des. Dev. Ther. 9:4953–64
    [Google Scholar]
  83. 82. 
    Gu Y, Liu Y, Fu L, Zhai L, Zhu J et al. 2019. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG. Nat. Med. 25:312–22
    [Google Scholar]
  84. 83. 
    Cronin PA, Wang JH, Redmond HP 2010. Hypoxia increases the metastatic ability of breast cancer cells via upregulation of CXCR4. BMC Cancer 10:225
    [Google Scholar]
  85. 84. 
    Lopez-Haber C, Barrio-Real L, Casado-Medrano V, Kazanietz MG 2016. Heregulin/ErbB3 signaling enhances CXCR4-driven Rac1 activation and breast cancer cell motility via hypoxia-inducible factor 1α. Mol. Cell. Biol. 36:2011–26
    [Google Scholar]
  86. 85. 
    Bao Y, Wang Z, Liu B, Lu X, Xiong Y et al. 2019. A feed-forward loop between nuclear translocation of CXCR4 and HIF-1α promotes renal cell carcinoma metastasis. Oncogene 38:881–95
    [Google Scholar]
  87. 86. 
    Li YM, Pan Y, Wei Y, Cheng X, Zhou BP et al. 2004. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6:459–69
    [Google Scholar]
  88. 87. 
    Tsai MF, Chang TH, Wu SG, Yang HY, Hsu YC et al. 2015. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway. Sci. Rep. 5:13574
    [Google Scholar]
  89. 88. 
    Sosa MS, Lopez-Haber C, Yang C, Wang H, Lemmon MA et al. 2010. Identification of the Rac-GEF P-Rex1 as an essential mediator of ErbB signaling in breast cancer. Mol. Cell 40:877–92
    [Google Scholar]
  90. 89. 
    Jung K, Heishi T, Khan OF, Kowalski PS, Incio J et al. 2017. Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J. Clin. Investig. 127:3039–51
    [Google Scholar]
  91. 90. 
    Wang Z. 2016. Transactivation of epidermal growth factor receptor by G protein-coupled receptors: recent progress, challenges and future research. Int. J. Mol. Sci. 17:95
    [Google Scholar]
  92. 91. 
    Mustafi R, Dougherty U, Mustafi D, Ayaloglu-Butun F, Fletcher M et al. 2017. ADAM17 is a tumor promoter and therapeutic target in Western diet-associated colon cancer. Clin. Cancer Res. 23:549–61
    [Google Scholar]
  93. 92. 
    Cabioglu N, Summy J, Miller C, Parikh NU, Sahin AA et al. 2005. CXCL-12/stromal cell–derived factor-1α transactivates HER2-neu in breast cancer cells by a novel pathway involving Src kinase activation. Cancer Res 65:6493–97
    [Google Scholar]
  94. 93. 
    Pattarozzi A, Gatti M, Barbieri F, Wurth R, Porcile C et al. 2008. 17β-Estradiol promotes breast cancer cell proliferation-inducing stromal cell-derived factor-1-mediated epidermal growth factor receptor transactivation: reversal by gefitinib pretreatment. Mol. Pharmacol. 73:191–202
    [Google Scholar]
  95. 94. 
    Mills SC, Goh PH, Kudatsih J, Ncube S, Gurung R et al. 2016. Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells. Cell. Signal. 28:316–24
    [Google Scholar]
  96. 95. 
    Porcile C, Bajetto A, Barbieri F, Barbero S, Bonavia R et al. 2005. Stromal cell-derived factor-1α (SDF-1α/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Exp. Cell Res. 308:241–53
    [Google Scholar]
  97. 96. 
    Conley-LaComb MK, Semaan L, Singareddy R, Li Y, Heath EI et al. 2016. Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol. Cancer 15:68
    [Google Scholar]
  98. 97. 
    Kallifatidis G, Munoz D, Singh RK, Salazar N, Hoy JJ, Lokeshwar BL 2016. β-Arrestin-2 counters CXCR7-mediated EGFR transactivation and proliferation. Mol. Cancer Res. 14:493–503
    [Google Scholar]
  99. 98. 
    Liu B, Song S, Setroikromo R, Chen S, Hu W et al. 2019. CX chemokine receptor 7 contributes to survival of KRAS-mutant non-small cell lung cancer upon loss of epidermal growth factor receptor. Cancers 11:45455
    [Google Scholar]
  100. 99. 
    Salazar N, Munoz D, Kallifatidis G, Singh RK, Jorda M, Lokeshwar BL 2014. The chemokine receptor CXCR7 interacts with EGFR to promote breast cancer cell proliferation. Mol. Cancer 13:198
    [Google Scholar]
  101. 100. 
    Hao M, Weng X, Wang Y, Sun X, Yan T et al. 2018. Targeting CXCR7 improves the efficacy of breast cancer patients with tamoxifen therapy. Biochem. Pharmacol. 147:128–40
    [Google Scholar]
  102. 101. 
    Spinosa PC, Humphries BA, Lewin Mejia D, Buschhaus JM, Linderman JJ et al. 2019. Short-term cellular memory tunes the signaling responses of the chemokine receptor CXCR4. Sci. Signal. 12:eaaw4204
    [Google Scholar]
  103. 102. 
    Dillenburg-Pilla P, Patel V, Mikelis CM, Zarate-Blades CR, Doci CL et al. 2015. SDF-1/CXCL12 induces directional cell migration and spontaneous metastasis via a CXCR4/Gαi/mTORC1 axis. FASEB J 29:1056–68
    [Google Scholar]
  104. 103. 
    Yang F, Takagaki Y, Yoshitomi Y, Ikeda T, Li J et al. 2019. Inhibition of dipeptidyl peptidase-4 accelerates epithelial-mesenchymal transition and breast cancer metastasis via the CXCL12/CXCR4/mTOR axis. Cancer Res 79:735–46
    [Google Scholar]
  105. 104. 
    Verma R, Marchese A. 2015. The endosomal sorting complex required for transport pathway mediates chemokine receptor CXCR4-promoted lysosomal degradation of the mammalian target of rapamycin antagonist DEPTOR. J. Biol. Chem. 290:6810–24
    [Google Scholar]
  106. 105. 
    Saha A, Ahn S, Blando J, Su F, Kolonin MG, DiGiovanni J 2017. Proinflammatory CXCL12-CXCR4/CXCR7 signaling axis drives Myc-induced prostate cancer in obese mice. Cancer Res 77:5158–68
    [Google Scholar]
  107. 106. 
    Qiao Y, Zhang C, Li A, Wang D, Luo Z et al. 2018. IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 37:873–83
    [Google Scholar]
  108. 107. 
    Wu YC, Tang SJ, Sun GH, Sun KH 2016. CXCR7 mediates TGFβ1-promoted EMT and tumor-initiating features in lung cancer. Oncogene 35:2123–32
    [Google Scholar]
  109. 108. 
    Yang P, Hu Y, Zhou Q 2020. The CXCL12-CXCR4 signaling axis plays a key role in cancer metastasis and is a potential target for developing novel therapeutics against metastatic cancer. Curr. Med. Chem. 27:5543–61
    [Google Scholar]
  110. 109. 
    Yu X, Wang D, Wang X, Sun S, Zhang Y et al. 2019. CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p. J. Exp. Clin. Cancer Res. 38:32
    [Google Scholar]
  111. 110. 
    Klein S, Abraham M, Bulvik B, Dery E, Weiss ID et al. 2018. CXCR4 promotes neuroblastoma growth and therapeutic resistance through miR-15a/16-1-mediated ERK and BCL2/cyclin D1 pathways. Cancer Res 78:1471–83
    [Google Scholar]
  112. 111. 
    Roy I, McAllister DM, Gorse E, Dixon K, Piper CT et al. 2015. Pancreatic cancer cell migration and metastasis is regulated by chemokine-biased agonism and bioenergetic signaling. Cancer Res 75:3529–42
    [Google Scholar]
  113. 112. 
    Herrmann AB, Muller ML, Orth MF, Muller JP, Zernecke A et al. 2020. Knockout of LASP1 in CXCR4 expressing CML cells promotes cell persistence, proliferation and TKI resistance. J. Cell Mol. Med. 24:52942–55
    [Google Scholar]
  114. 113. 
    Sbrissa D, Semaan L, Govindarajan B, Li Y, Caruthers NJ et al. 2019. A novel cross-talk between CXCR4 and PI4KIIIα in prostate cancer cells. Oncogene 38:332–44
    [Google Scholar]
  115. 114. 
    Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O et al. 2019. Illuminating the onco-GPCRome: novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J. Biol. Chem. 294:11062–86
    [Google Scholar]
  116. 115. 
    Bernat-Peguera A, Simon-Extremera P, da Silva-Diz V, Lopez de Munain M, Diaz-Gil L et al. 2019. PDGFR-induced autocrine SDF-1 signaling in cancer cells promotes metastasis in advanced skin carcinoma. Oncogene 38:5021–37
    [Google Scholar]
  117. 116. 
    Huang Z, Li G, Zhang Z, Gu R, Wang W et al. 2019. β2AR-HIF-1α-CXCL12 signaling of osteoblasts activated by isoproterenol promotes migration and invasion of prostate cancer cells. BMC Cancer 19:1142
    [Google Scholar]
  118. 117. 
    Jong YI, Harmon SK, O'Malley KL 2018. GPCR signalling from within the cell. Br. J. Pharmacol. 175:4026–35
    [Google Scholar]
  119. 118. 
    Balkwill F. 2004. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol. 14:171–79
    [Google Scholar]
  120. 119. 
    Puddinu V, Casella S, Radice E, Thelen S, Dirnhofer S et al. 2017. ACKR3 expression on diffuse large B cell lymphoma is required for tumor spreading and tissue infiltration. Oncotarget 8:85068–84
    [Google Scholar]
  121. 120. 
    Lau S, Feitzinger A, Venkiteswaran G, Wang J, Lewellis SW et al. 2020. A negative-feedback loop maintains optimal chemokine concentrations for directional cell migration. Nat. Cell Biol. 22:266–73
    [Google Scholar]
  122. 121. 
    Berahovich RD, Zabel BA, Lewen S, Walters MJ, Ebsworth K et al. 2014. Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology 141:111–22
    [Google Scholar]
  123. 122. 
    Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P et al. 2011. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J. Exp. Med. 208:327–39
    [Google Scholar]
  124. 123. 
    Salazar N, Zabel BA. 2019. Support of tumor endothelial cells by chemokine receptors. Front. Immunol. 10:147
    [Google Scholar]
  125. 124. 
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  126. 125. 
    Susek K, Karvouni M, Alici E, Lundqvist A 2018. The role of CXC chemokine receptors 1–4 on immune cells in the tumor microenvironment. Front. Immunol. 9:2159
    [Google Scholar]
  127. 126. 
    Nagarsheth N, Wicha MS, Zou W 2017. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17:559–72
    [Google Scholar]
  128. 127. 
    Wald O, Izhar U, Amir G, Avniel S, Bar-Shavit Y et al. 2006. CD4+CXCR4highCD69+ T cells accumulate in lung adenocarcinoma. J. Immunol. 177:6983–90
    [Google Scholar]
  129. 128. 
    Zhao E, Wang L, Dai J, Kryczek I, Wei S et al. 2012. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncoimmunology 1:152–61
    [Google Scholar]
  130. 129. 
    Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M et al. 2004. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64:8451–55
    [Google Scholar]
  131. 130. 
    Gil M, Komorowski MP, Seshadri M, Rokita H, McGray AJ et al. 2014. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J. Immunol. 193:5327–37
    [Google Scholar]
  132. 131. 
    Righi E, Kashiwagi S, Yuan J, Santosuosso M, Leblanc P et al. 2011. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res 71:5522–34
    [Google Scholar]
  133. 132. 
    Portella L, Vitale R, De Luca S, D'Alterio C, Ierano C et al. 2013. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases. PLOS ONE 8:e74548
    [Google Scholar]
  134. 133. 
    Santagata S, Napolitano M, D'Alterio C, Desicato S, Maro SD et al. 2017. Targeting CXCR4 reverts the suppressive activity of T-regulatory cells in renal cancer. Oncotarget 8:77110–20
    [Google Scholar]
  135. 134. 
    Beider K, Bitner H, Leiba M, Gutwein O, Koren-Michowitz M et al. 2014. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget 5:11283–96
    [Google Scholar]
  136. 135. 
    Jung K, Heishi T, Incio J, Huang Y, Beech EY et al. 2017. Targeting CXCR4-dependent immunosuppressive Ly6Clow monocytes improves antiangiogenic therapy in colorectal cancer. PNAS 114:10455–60
    [Google Scholar]
  137. 136. 
    Arwert EN, Harney AS, Entenberg D, Wang Y, Sahai E et al. 2018. A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep 23:1239–48
    [Google Scholar]
  138. 137. 
    Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P 2011. PGE2-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71:7463–70
    [Google Scholar]
  139. 138. 
    Deng Y, Cheng J, Fu B, Liu W, Chen G et al. 2017. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene 36:1090–101
    [Google Scholar]
  140. 139. 
    Benedicto A, Romayor I, Arteta B 2018. CXCR4 receptor blockage reduces the contribution of tumor and stromal cells to the metastatic growth in the liver. Oncol. Rep. 39:2022–30
    [Google Scholar]
  141. 140. 
    Wu A, Maxwell R, Xia Y, Cardarelli P, Oyasu M et al. 2019. Combination anti-CXCR4 and anti-PD-1 immunotherapy provides survival benefit in glioblastoma through immune cell modulation of tumor microenvironment. J. Neurooncol. 143:241–49
    [Google Scholar]
  142. 141. 
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL et al. 2012. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366:2455–65
    [Google Scholar]
  143. 142. 
    Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A et al. 2013. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. PNAS 110:20212–17
    [Google Scholar]
  144. 143. 
    Rigo A, Gottardi M, Zamo A, Mauri P, Bonifacio M et al. 2010. Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Mol. Cancer 9:273
    [Google Scholar]
  145. 144. 
    Bellora F, Dondero A, Corrias MV, Casu B, Regis S et al. 2017. Imatinib and nilotinib off-target effects on human NK cells, monocytes, and M2 macrophages. J. Immunol. 199:1516–25
    [Google Scholar]
  146. 145. 
    Reynders N, Abboud D, Baragli A, Noman MZ, Rogister B et al. 2019. The distinct roles of CXCR3 variants and their ligands in the tumor microenvironment. Cells 8:613
    [Google Scholar]
  147. 146. 
    Adlere I, Caspar B, Arimont M, Dekkers S, Visser K et al. 2019. Modulators of CXCR4 and CXCR7/ACKR3 function. Mol. Pharmacol. 96:737–52
    [Google Scholar]
  148. 147. 
    Bobkov V, Arimont M, Zarca A, De Groof TWM, van der Woning B et al. 2019. Antibodies targeting chemokine receptors CXCR4 and ACKR3. Mol. Pharmacol. 96:753–64
    [Google Scholar]
  149. 148. 
    De Clercq E. 2009. The AMD3100 story: the path to the discovery of a stem cell mobilizer (Mozobil). Biochem. Pharmacol. 77:1655–64
    [Google Scholar]
  150. 149. 
    Bridger GJ, Skerlj RT, Hernandez-Abad PE, Bogucki DE, Wang Z et al. 2010. Synthesis and structure-activity relationships of azamacrocyclic C-X-C chemokine receptor 4 antagonists: analogues containing a single azamacrocyclic ring are potent inhibitors of T-cell tropic (X4) HIV-1 replication. J. Med. Chem. 53:1250–60
    [Google Scholar]
  151. 150. 
    Pernas S, Martin M, Kaufman PA, Gil-Martin M, Gomez Pardo P et al. 2018. Balixafortide plus eribulin in HER2-negative metastatic breast cancer: a phase 1, single-arm, dose-escalation trial. Lancet Oncol 19:812–24
    [Google Scholar]
  152. 151. 
    Shelke NB, Kadam R, Tyagi P, Rao VR, Kompella UB 2011. Intravitreal poly(l-lactide) microparticles sustain retinal and choroidal delivery of TG-0054, a hydrophilic drug intended for neovascular diseases. Drug Deliv. Transl. Res. 1:76–90
    [Google Scholar]
  153. 152. 
    Skerlj RT, Bridger GJ, Kaller A, McEachern EJ, Crawford JB et al. 2010. Discovery of novel small molecule orally bioavailable C-X-C chemokine receptor 4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication. J. Med. Chem. 53:3376–88
    [Google Scholar]
  154. 153. 
    Carr R 3rd, Benovic JL 2016. From biased signalling to polypharmacology: unlocking unique intracellular signalling using pepducins. Biochem. Soc. Trans. 44:555–61
    [Google Scholar]
  155. 154. 
    Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R et al. 2006. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med. 203:2201–13
    [Google Scholar]
  156. 155. 
    Goguet-Surmenian E, Richard-Fiardo P, Guillemot E, Benchetrit M, Gomez-Brouchet A et al. 2013. CXCR7-mediated progression of osteosarcoma in the lungs. Br. J. Cancer 109:1579–85
    [Google Scholar]
  157. 156. 
    Luo Y, Azad AK, Karanika S, Basourakos SP, Zuo X et al. 2018. Enzalutamide and CXCR7 inhibitor combination treatment suppresses cell growth and angiogenic signaling in castration-resistant prostate cancer models. Int. J. Cancer 142:2163–74
    [Google Scholar]
  158. 157. 
    Rafiei S, Gui B, Wu J, Liu XS, Kibel AS, Jia L 2019. Targeting the MIF/CXCR7/AKT signaling pathway in castration-resistant prostate cancer. Mol. Cancer Res. 17:263–76
    [Google Scholar]
  159. 158. 
    Walters MJ, Ebsworth K, Berahovich RD, Penfold ME, Liu SC et al. 2014. Inhibition of CXCR7 extends survival following irradiation of brain tumours in mice and rats. Br. J. Cancer 110:1179–88
    [Google Scholar]
  160. 159. 
    Kashyap MK, Kumar D, Jones H, Amaya-Chanaga CI, Choi MY et al. 2016. Ulocuplumab (BMS-936564/MDX1338): a fully human anti-CXCR4 antibody induces cell death in chronic lymphocytic leukemia mediated through a reactive oxygen species-dependent pathway. Oncotarget 7:2809–22
    [Google Scholar]
  161. 160. 
    Azad BB, Chatterjee S, Lesniak WG, Lisok A, Pullambhatla M et al. 2016. A fully human CXCR4 antibody demonstrates diagnostic utility and therapeutic efficacy in solid tumor xenografts. Oncotarget 7:12344–58
    [Google Scholar]
  162. 161. 
    De Groof TWM, Bobkov V, Heukers R, Smit MJ 2019. Nanobodies: new avenues for imaging, stabilizing and modulating GPCRs. Mol. Cell Endocrinol. 484:15–24
    [Google Scholar]
  163. 162. 
    Bobkov V, Zarca AM, Van Hout A, Arimont M, Doijen J et al. 2018. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochem. Pharmacol. 158:413–24
    [Google Scholar]
  164. 163. 
    Maussang D, Mujic-Delic A, Descamps FJ, Stortelers C, Vanlandschoot P et al. 2013. Llama-derived single variable domains (nanobodies) directed against chemokine receptor CXCR7 reduce head and neck cancer cell growth in vivo. J. Biol. Chem. 288:29562–72
    [Google Scholar]
  165. 164. 
    Salazar N, Carlson JC, Huang K, Zheng Y, Oderup C et al. 2018. A chimeric antibody against ACKR3/CXCR7 in combination with TMZ activates immune responses and extends survival in mouse GBM models. Mol. Ther. 26:1354–65
    [Google Scholar]
  166. 165. 
    Regenass P, Abboud D, Daubeuf F, Lehalle C, Gizzi P et al. 2018. Discovery of a locally and orally active CXCL12 neutraligand (LIT-927) with anti-inflammatory effect in a murine model of allergic airway hypereosinophilia. J. Med. Chem. 61:7671–86
    [Google Scholar]
  167. 166. 
    Blanchetot C, Verzijl D, Mujic-Delic A, Bosch L, Rem L et al. 2013. Neutralizing nanobodies targeting diverse chemokines effectively inhibit chemokine function. J. Biol. Chem. 288:25173–82
    [Google Scholar]
  168. 167. 
    Hanes MS, Salanga CL, Chowdry AB, Comerford I, McColl SR et al. 2015. Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines. J. Biol. Chem. 290:22385–97
    [Google Scholar]
  169. 168. 
    Fievez V, Szpakowska M, Mosbah A, Arumugam K, Mathu J et al. 2018. Development of Mimokines, chemokine N terminus-based CXCR4 inhibitors optimized by phage display and rational design. J. Leukoc. Biol. 104:343–57
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023340
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error