Annual Review of Pharmacology and Toxicology - Volume 61, 2021
Volume 61, 2021
-
-
Introduction to the Theme “Old and New Toxicology: Interfaces with Pharmacology”
Vol. 61 (2021), pp. 1–7More LessThe theme of Volume 61 is “Old and New Toxicology: Interfaces with Pharmacology.” Old toxicology is exemplified by the authors of the autobiographical articles: B.M. Olivera's work on toxins and venoms from cone snails and P. Taylor's studies of acetylcholinesterase and the nicotinic cholinergic receptor, which serve as sites of action for numerous pesticides and venoms. Other articles in this volume focus on new understanding and new types of toxicology, including (a) arsenic toxicity, which is an ancient poison that, through evolution, has caused most multicellular organisms to express an active arsenic methyltransferase to methylate arsenite, which accelerates the excretion of arsenic from the body; (b) small molecules that react with lipid dicarbonyls, which are now considered the most toxic oxidative stress end products; (c) immune checkpoint inhibitors (ICIs), which have revolutionized cancer therapy but have numerous immune-related adverse events, including cardiovascular complications; (d) autoimmunity caused by the environment; (e) idiosyncratic drug-induced liver disease, which together with the toxicity of ICIs represents new toxicology interfacing with pharmacology; and (f) sex differences in the development of cardiovascular disease, with men more susceptible than women to vascular inflammation that initiates and perpetuates disease. These articles and others in Volume 61 reflect the interface and close integration of pharmacology and toxicology that began long ago but continues today.
-
-
-
A Serendipitous Path to Pharmacology
Vol. 61 (2021), pp. 9–23More LessMy path to research in neuropharmacology has been a coalescing of my training as a molecular biologist and my intense interest in an esoteric group of animals, the fish-hunting cone snails. Attempting to bridge these two disparate worlds has led me to an idiosyncratic career as a pharmacologist.
-
-
-
Cholinergic Capsules and Academic Admonitions
Vol. 61 (2021), pp. 25–46More LessHerein, I intend to capture highlights shared with my academic and research colleagues over the 60 years I devoted initially to my graduate and postdoctoral training and then to academic endeavors starting as an assistant professor in a new medical school at the University of California, San Diego (UCSD). During this period, the Department of Pharmacology emerged from a division within the Department of Medicine to become the first basic science department, solely within the School of Medicine at UCSD in 1979. As part of the school's plans to reorganize and to retain me at UCSD, I was appointed as founding chair. Some years later in 2002, faculty, led largely within the Department of Pharmacology and by practicing pharmacists within UCSD Healthcare, started the independent Skaggs School of Pharmacy and Pharmaceutical Sciences with a doctor of pharmacy (PharmD) program, where I served as the founding dean. My career pathway, from working at my family-owned pharmacy to chairing a department in a school of medicine and then becoming the dean of a school of pharmacy at a research-intensive, student-centered institution, involved some risky decisions. But the academic, curricular, and accreditation challenges posed were met by a cadre of creative faculty colleagues. I offer my experiences to individuals confronted with a multiplicity of real or imagined opportunities in academic health sciences, the related pharmaceutical industry, and government oversight agencies.
-
-
-
Arsenic: A Global Environmental Challenge
Qiao Yi Chen, and Max CostaVol. 61 (2021), pp. 47–63More LessArsenic is a naturally occurring metalloid and one of the few metals that can be metabolized inside the human body. The pervasive presence of arsenic in nature and anthropogenic sources from agricultural and medical use have perpetuated human exposure to this toxic and carcinogenic element. Highly exposed individuals are susceptible to various illnesses, including skin disorders; cognitive impairment; and cancers of the lung, liver, and kidneys. In fact, across the globe, approximately 200 million people are exposed to potentially toxic levels of arsenic, which has prompted substantial research and mitigation efforts to combat this extensive public health issue. This review provides an up-to-date look at arsenic-related challenges facing the global community, including current sources of arsenic, global disease burden, arsenic resistance, and shortcomings of ongoing mitigation measures, and discusses potential next steps.
-
-
-
Challenges and Opportunities in Implementing Pharmacogenetic Testing in Clinical Settings
Vol. 61 (2021), pp. 65–84More LessThe clinical implementation of pharmacogenetic biomarkers continues to grow as new genetic variants associated with drug outcomes are discovered and validated. The number of drug labels that contain pharmacogenetic information also continues to expand. Published, peer-reviewed clinical practice guidelines have also been developed to support the implementation of pharmacogenetic tests. Incorporating pharmacogenetic information into health care benefits patients as well as clinicians by improving drug safety and reducing empiricism in drug selection. Barriers to the implementation of pharmacogenetic testing remain. This review explores current pharmacogenetic implementation initiatives with a focus on the challenges of pharmacogenetic implementation and potential opportunities to overcome these challenges.
-
-
-
Clinical Pharmacology and Interplay of Immune Checkpoint Agents: A Yin-Yang Balance
Vol. 61 (2021), pp. 85–112More LessT cells have a central role in immune system balance. When activated, they may lead to autoimmune diseases. When too anergic, they contribute to infection spread and cancer proliferation. Immune checkpoint proteins regulate T cell function, including cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) and its ligand (PD-L1). These nodes of self-tolerance may be exploited pharmacologically to downregulate (CTLA-4 agonists) and activate [CTLA-4 and PD-1/PD-L1 antagonists, also called immune checkpoint inhibitors (ICIs)] the immune system.CTLA-4 agonists are used to treat rheumatologic immune disorders and graft rejection. CTLA-4, PD-1, and PD-L1 antagonists are approved for multiple cancer types and are being investigated for chronic viral infections. Notably, ICIs may be associated with immune-related adverse events (irAEs), which can be highly morbid or fatal. CTLA-4 agonism has been a promising method to reverse such life-threatening irAEs. Herein, we review the clinical pharmacology of these immune checkpoint agents with a focus on their interplay in human diseases.
-
-
-
Immune Checkpoint Inhibitor Cardiotoxicity: Understanding Basic Mechanisms and Clinical Characteristics and Finding a Cure
Vol. 61 (2021), pp. 113–134More LessImmune checkpoint inhibitors (ICIs) attenuate mechanisms of self-tolerance in the immune system, enabling T cell responses to cancerous tissues and revolutionizing care for cancer patients. However, by loweringbarriers against self-reactivity, ICIs often result in varying degrees of autoimmunity. Cardiovascular complications, particularly myocarditis but also arrhythmias, pericarditis, and vasculitis, have emerged as significant complications associated with ICIs. In this review, we examine the clinical aspects and basic science principles that underlie ICI-associated myocarditis and other cardiovascular toxicities. In addition, we discuss current therapeutic approaches. We believe a better mechanistic understanding of ICI-associated toxicities can lead to improved patient outcomes by reducing treatment-related morbidity.
-
-
-
Mechanisms of Environment-Induced Autoimmunity
Vol. 61 (2021), pp. 135–157More LessAlthough numerous environmental exposures have been suggested as triggers for preclinical autoimmunity, only a few have been confidently linked to autoimmune diseases. For disease-associated exposures, the lung is a common site where chronic exposure results in cellular toxicity, tissue damage, inflammation, and fibrosis. These features are exacerbated by exposures to particulate material, which hampers clearance and degradation, thus facilitating persistent inflammation. Coincident with exposure and resulting pathological processes is the posttranslational modification of self-antigens, which, in concert with the formation of tertiary lymphoid structures containing abundant B cells, is thought to promote the generation of autoantibodies that in some instances demonstrate major histocompatibility complex restriction. Under appropriate gene-environment interactions, these responses can have diagnostic specificity. Greater insight into the molecular and cellular requirements governing this process, especially those that distinguish preclinical autoimmunity from clinical autoimmunedisease, may facilitate determination of the significance of environmental exposures in human autoimmune disease.
-
-
-
Engineering the Microbiome to Prevent Adverse Events: Challenges and Opportunities
Vol. 61 (2021), pp. 159–179More LessIn the past decade of microbiome research, we have learned about numerous adverse interactions between the microbiome and medical interventions such as drugs, radiation, and surgery. What if we could alter our microbiomes to prevent these events? In this review, we discuss potential routes to mitigate microbiome adverse events, including applications from the emerging field of microbiome engineering. We highlight cases where the microbiome acts directly on a treatment, such as via differential drug metabolism, and cases where a treatment directly harms the microbiome, such as in radiation therapy. Understanding and preventing microbiome adverse events is a difficult challenge that will require a data-driven approach involving causal statistics, multiomics techniques, and a personalized means of mitigating adverse events. We propose research considerations to encourage productive work in preventing microbiome adverse events, and we highlight the many challenges and opportunities that await.
-
-
-
Epigenetic Neuropharmacology: Drugs Affecting the Epigenome in the Brain
Vol. 61 (2021), pp. 181–201More LessThis review explores how different classes of drugs, including those with therapeutic and abuse potential, alter brain functions and behavior via the epigenome. Epigenetics, in its simplest interpretation, is the study of the regulation of a genes’ transcriptional potential. The epigenome is established during development but is malleable throughout life by a wide variety of drugs, with both clinical utility and abuse potential. An epigenetic effect can be central to the drug's therapeutic or abuse potential, or it can be independent from the main effect but nevertheless produce beneficial or adverse side effects. Here, I discuss the various epigenetic effects of main pharmacological drug classes, including antidepressants, antiepileptics, and drugs of abuse.
-
-
-
Mechanism of Action of TiO2: Recommendations to Reduce Uncertainties Related to Carcinogenic Potential
Vol. 61 (2021), pp. 203–223More LessThe Risk Assessment Committee of the European Chemicals Agency issued an opinion on classifying titanium dioxide (TiO2) as a suspected human carcinogen upon inhalation. Recent animal studies indicate that TiO2 may be carcinogenic through the oral route. There is considerable uncertainty on the carcinogenicity of TiO2, which may be decreased if its mechanism of action becomes clearer. Here we consider adverse outcome pathways and present the available information on each of the key events (KEs). Inhalation exposure to TiO2 can induce lung tumors in rats via a mechanism that is also applicable to other poorly soluble, low-toxicity particles. To reduce uncertainties regarding human relevance, we recommend gathering information on earlier KEs such as oxidative stress in humans. For oral exposure, insufficient information is available to conclude whether TiO2 can induce intestinal tumors. An oral carcinogenicity study with well-characterized (food-grade) TiO2 is needed, including an assessment of toxicokinetics and early KEs.
-
-
-
Model-Informed Precision Dosing: Background, Requirements, Validation, Implementation, and Forward Trajectory of Individualizing Drug Therapy
Vol. 61 (2021), pp. 225–245More LessModel-informed precision dosing (MIPD) has become synonymous with modern approaches for individualizing drug therapy, in which the characteristics of each patient are considered as opposed to applying a one-size-fits-all alternative. This review provides a brief account of the current knowledge, practices, and opinions on MIPD while defining an achievable vision for MIPD in clinical care based on available evidence. We begin with a historical perspective on variability in dose requirements and then discuss technical aspects of MIPD, including the need for clinical decision support tools, practical validation, and implementation of MIPD in health care. We also discuss novel ways to characterize patient variability beyond the common perceptions of genetic control. Finally, we address current debates on MIPD from the perspectives of the new drug development, health economics, and drug regulations.
-
-
-
Models of Idiosyncratic Drug-Induced Liver Injury
Tsuyoshi Yokoi, and Shingo OdaVol. 61 (2021), pp. 247–268More LessDrug-induced liver injury (DILI) is a leading cause of attrition during the early and late stages of drug development and after a drug is marketed. DILI is generally classified as either intrinsic or idiosyncratic. Intrinsic DILI is dose dependent and predictable (e.g., acetaminophen toxicity). However, predicting the occurrence of idiosyncratic DILI, which has a very low incidence and is associated with severe liver damage, is difficult because of its complex nature and the poor understanding of its mechanism. Considering drug metabolism and pharmacokinetics, we established experimental animal models of DILI for 14 clinical drugs that cause idiosyncratic DILI in humans, which is characterized by the formation of reactive metabolites and the involvement of both innate and adaptive immunity. On the basis of the biomarker data obtained from the animal models, we developed a cell-based assay system that predicts the potential risks of drugs for inducing DILI. These findings increase our understanding of the mechanisms of DILI and may help predict and prevent idiosyncratic DILI due to certain drugs.
-
-
-
Nanoparticle Toxicology
Vol. 61 (2021), pp. 269–289More LessNanoparticles from natural and anthropogenic sources are abundant in the environment, thus human exposure to nanoparticles is inevitable. Due to this constant exposure, it is critically important to understand the potential acute and chronic adverse effects that nanoparticles may cause to humans. In this review, we explore and highlight the current state of nanotoxicology research with a focus on mechanistic understanding of nanoparticle toxicity at organ, tissue, cell, and biomolecular levels. We discuss nanotoxicity mechanisms, including generation of reactive oxygen species, nanoparticle disintegration, modulation of cell signaling pathways, protein corona formation, and poly(ethylene glycol)-mediated immunogenicity. We conclude with a perspective on potential approaches to advance current understanding of nanoparticle toxicity. Such improved understanding may lead to mitigation strategies that could enable safe application of nanoparticles in humans. Advances in nanotoxicity research will ultimately inform efforts to establish standardized regulatory frameworks with the goal of fully exploiting the potential of nanotechnology while minimizing harm to humans.
-
-
-
Scavenging Reactive Lipids to Prevent Oxidative Injury
Vol. 61 (2021), pp. 291–308More LessOxidative injury due to elevated levels of reactive oxygen species is implicated in cardiovascular diseases, Alzheimer's disease, lung and liver diseases, and many cancers. Antioxidant therapies have generally been ineffective at treating these diseases, potentially due to ineffective doses but also due to interference with critical host defense and signaling processes. Therefore, alternative strategies to prevent oxidative injury are needed. Elevated levels of reactive oxygen species induce lipid peroxidation, generating reactive lipid dicarbonyls. These lipid oxidation products may be the most salient mediators of oxidative injury, as they cause cellular and organ dysfunction by adducting to proteins, lipids, and DNA. Small-molecule compounds have been developed in the past decade to selectively and effectively scavenge these reactive lipid dicarbonyls. This review outlines evidence supporting the role of lipid dicarbonyls in disease pathogenesis, as well as preclinical data supporting the efficacy of novel dicarbonyl scavengers in treating or preventing disease.
-
-
-
Preventing and Treating Anthracycline Cardiotoxicity: New Insights
Vol. 61 (2021), pp. 309–332More LessAnthracyclines are the cornerstone of many chemotherapy regimens for a variety of cancers. Unfortunately, their use is limited by a cumulative dose-dependent cardiotoxicity. Despite more than five decades of research, the biological mechanisms underlying anthracycline cardiotoxicity are not completely understood. In this review, we discuss the incidence, risk factors, types, and pathophysiology of anthracycline cardiotoxicity, as well as methods to prevent and treat this condition. We also summarize and discuss advances made in the last decade in the comprehension of the molecular mechanisms underlying the pathology.
-
-
-
Sex Differences in the Inflammatory Response: Pharmacological Opportunities for Therapeutics for Coronary Artery Disease
Vol. 61 (2021), pp. 333–359More LessCoordinated molecular responses are key to effective initiation and resolution of both acute and chronic inflammation. Vascular inflammation plays an important role in initiating and perpetuating atherosclerotic disease, specifically at the site of plaque and subsequent fibrous cap rupture. Both men and women succumb to this disease process, and although management strategies have focused on revascularization and pharmacological therapies in the acute situation to reverse vessel closure and prevent thrombogenesis, data now suggest that regulation of host inflammation may improve both morbidity and mortality, thus supporting the notion that prevention is better than cure. There is a clear sex difference in the incidence of vascular disease, and data confirm biological differences in inflammatory initiation and resolution between men and women. This article reviews contemporary opinions describing the sex difference in the initiation and resolution of inflammatory responses, with a view to explore potential targets for pharmacological intervention.
-
-
-
Drugs That Regulate Local Cell Signaling: AKAP Targeting as a Therapeutic Option
Vol. 61 (2021), pp. 361–379More LessCells respond to environmental cues by mobilizing signal transduction cascades that engage protein kinases and phosphoprotein phosphatases. Correct organization of these enzymes in space and time enables the efficient and precise transmission of chemical signals. The cyclic AMP-dependent protein kinase A is compartmentalized through its association with A-kinase anchoring proteins (AKAPs). AKAPs are a family of multivalent scaffolds that constrain signaling enzymes and effectors at subcellular locations to drive essential physiological events. More recently, it has been recognized that defective signaling in certain endocrine disorders and cancers proceeds through pathological AKAP complexes. Consequently, pharmacologically targeting these macromolecular complexes unlocks new therapeutic opportunities for a growing number of clinical indications. This review highlights recent findings on AKAP signaling in disease, particularly in certain cancers, and offers an overview of peptides and small molecules that locally regulate AKAP-binding partners.
-
-
-
Hormonal Signaling Actions on Kv7.1 (KCNQ1) Channels
Vol. 61 (2021), pp. 381–400More LessKv7 channels (Kv7.1–7.5) are voltage-gated K+ channels that can be modulated by five β-subunits (KCNE1–5). Kv7.1-KCNE1 channels produce the slow-delayed rectifying K+ current, IKs, which is important during the repolarization phase of the cardiac action potential. Kv7.2–7.5 are predominantly neuronally expressed and constitute the muscarinic M-current and control the resting membrane potential in neurons. Kv7.1 produces drastically different currents as a result of modulation by KCNE subunits. This flexibility allows the Kv7.1 channel to have many roles depending on location and assembly partners. The pharmacological sensitivity of Kv7.1 channels differs from that of Kv7.2–7.5 and is largely dependent upon the number of β-subunits present in the channel complex. As a result, the development of pharmaceuticals targeting Kv7.1 is problematic. This review discusses the roles and the mechanisms by which different signaling pathways affect Kv7.1 and KCNE channels and could potentially provide different ways of targeting the channel.
-
-
-
Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond
Vol. 61 (2021), pp. 401–420More LessTwo-pore domain potassium (K2P) channels stabilize the resting membrane potential of both excitable and nonexcitable cells and, as such, are important regulators of cell activity. There are many conditions where pharmacological regulation of K2P channel activity would be of therapeutic benefit, including, but not limited to, atrial fibrillation, respiratory depression, pulmonary hypertension, neuropathic pain, migraine, depression, and some forms of cancer. Up until now, few if any selective pharmacological regulators of K2P channels have been available. However, recent publications of solved structures with small-molecule activators and inhibitors bound to TREK-1, TREK-2, and TASK-1 K2P channels have given insight into the pharmacophore requirements for compound binding to these sites. Together with the increasing availability of a number of novel, active, small-molecule compounds from K2P channel screening programs, these advances have opened up the possibility of rational activator and inhibitor design to selectively target K2P channels.
-
Previous Volumes
-
Volume 64 (2024)
-
Volume 63 (2023)
-
Volume 62 (2022)
-
Volume 61 (2021)
-
Volume 60 (2020)
-
Volume 59 (2019)
-
Volume 58 (2018)
-
Volume 57 (2017)
-
Volume 56 (2016)
-
Volume 55 (2015)
-
Volume 54 (2014)
-
Volume 53 (2013)
-
Volume 52 (2012)
-
Volume 51 (2011)
-
Volume 50 (2010)
-
Volume 49 (2009)
-
Volume 48 (2008)
-
Volume 47 (2007)
-
Volume 46 (2006)
-
Volume 45 (2005)
-
Volume 44 (2004)
-
Volume 43 (2003)
-
Volume 42 (2002)
-
Volume 41 (2001)
-
Volume 40 (2000)
-
Volume 39 (1999)
-
Volume 38 (1998)
-
Volume 37 (1997)
-
Volume 36 (1996)
-
Volume 35 (1995)
-
Volume 34 (1994)
-
Volume 33 (1993)
-
Volume 32 (1992)
-
Volume 31 (1991)
-
Volume 30 (1990)
-
Volume 29 (1989)
-
Volume 28 (1988)
-
Volume 27 (1987)
-
Volume 26 (1986)
-
Volume 25 (1985)
-
Volume 24 (1984)
-
Volume 23 (1983)
-
Volume 22 (1982)
-
Volume 21 (1981)
-
Volume 20 (1980)
-
Volume 19 (1979)
-
Volume 18 (1978)
-
Volume 17 (1977)
-
Volume 16 (1976)
-
Volume 15 (1975)
-
Volume 14 (1974)
-
Volume 13 (1973)
-
Volume 12 (1972)
-
Volume 11 (1971)
-
Volume 10 (1970)
-
Volume 9 (1969)
-
Volume 8 (1968)
-
Volume 7 (1967)
-
Volume 6 (1966)
-
Volume 5 (1965)
-
Volume 4 (1964)
-
Volume 3 (1963)
-
Volume 2 (1962)
-
Volume 1 (1961)
-
Volume 0 (1932)