1932

Abstract

This review explores how different classes of drugs, including those with therapeutic and abuse potential, alter brain functions and behavior via the epigenome. Epigenetics, in its simplest interpretation, is the study of the regulation of a genes’ transcriptional potential. The epigenome is established during development but is malleable throughout life by a wide variety of drugs, with both clinical utility and abuse potential. An epigenetic effect can be central to the drug's therapeutic or abuse potential, or it can be independent from the main effect but nevertheless produce beneficial or adverse side effects. Here, I discuss the various epigenetic effects of main pharmacological drug classes, including antidepressants, antiepileptics, and drugs of abuse.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030220-022920
2021-01-06
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-030220-022920.html?itemId=/content/journals/10.1146/annurev-pharmtox-030220-022920&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Jaenisch R, Bird A. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33:245–54
    [Google Scholar]
  2. 2. 
    Gibney ER, Nolan CM. 2010. Epigenetics and gene expression. Heredity 105:4–13
    [Google Scholar]
  3. 3. 
    Bird AP. 1984. DNA methylation versus gene expression. J. Embryol. Exp. Morphol. 83:31–40
    [Google Scholar]
  4. 4. 
    Suzuki MM, Bird A. 2008. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9:465–76
    [Google Scholar]
  5. 5. 
    Lev Maor G, Yearim A, Ast G 2015. The alternative role of DNA methylation in splicing regulation. Trends Genet 31:274–80
    [Google Scholar]
  6. 6. 
    Maunakea AK, Chepelev I, Cui K, Zhao K 2013. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23:1256–69
    [Google Scholar]
  7. 7. 
    Schor IE, Fiszbein A, Petrillo E, Kornblihtt AR 2013. Intragenic epigenetic changes modulate NCAM alternative splicing in neuronal differentiation. EMBO J 32:2264–74
    [Google Scholar]
  8. 8. 
    Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B et al. 2011. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479:74–79
    [Google Scholar]
  9. 9. 
    Zhou HL, Luo G, Wise JA, Lou H 2014. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42:701–13
    [Google Scholar]
  10. 10. 
    Schwartz S, Meshorer E, Ast G 2009. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16:990–95
    [Google Scholar]
  11. 11. 
    Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS 2010. Non-coding RNAs: regulators of disease. J. Pathol. 220:126–39
    [Google Scholar]
  12. 12. 
    Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA et al. 2013. Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905
    [Google Scholar]
  13. 13. 
    Sharma A, Klein SS, Barboza L, Lohdi N, Toth M 2016. Principles governing DNA methylation during neuronal lineage and subtype specification. J. Neurosci. 36:1711–22
    [Google Scholar]
  14. 14. 
    Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:317–30
    [Google Scholar]
  15. 15. 
    Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293:1074–80
    [Google Scholar]
  16. 16. 
    Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B et al. 2017. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356:eaaj2239
    [Google Scholar]
  17. 17. 
    Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P 2008. Decoding the epigenetic language of neuronal plasticity. Neuron 60:961–74
    [Google Scholar]
  18. 18. 
    Levenson JM, O'Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD 2004. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279:40545–59
    [Google Scholar]
  19. 19. 
    Roth TL, Sweatt JD. 2009. Regulation of chromatin structure in memory formation. Curr. Opin. Neurobiol. 19:336–42
    [Google Scholar]
  20. 20. 
    Zovkic IB, Sweatt JD. 2013. Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology 38:77–93
    [Google Scholar]
  21. 21. 
    Dulac C. 2010. Brain function and chromatin plasticity. Nature 465:728–35
    [Google Scholar]
  22. 22. 
    Santoro SW, Dulac C. 2015. Histone variants and cellular plasticity. Trends Genet 31:516–27
    [Google Scholar]
  23. 23. 
    Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS 2001. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem. 276:36734–41
    [Google Scholar]
  24. 24. 
    Chiu CT, Wang Z, Hunsberger JG, Chuang DM 2013. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol. Rev. 65:105–42
    [Google Scholar]
  25. 25. 
    Beutler AS, Li S, Nicol R, Walsh MJ 2005. Carbamazepine is an inhibitor of histone deacetylases. Life Sci 76:3107–15
    [Google Scholar]
  26. 26. 
    Feng J, Zhou Y, Campbell SL, Le T, Li E et al. 2010. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci. 13:423–30
    [Google Scholar]
  27. 27. 
    Miller CA, Campbell SL, Sweatt JD 2008. DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol. Learn. Mem. 89:599–603
    [Google Scholar]
  28. 28. 
    Miller CA, Gavin CF, White JA, Parrish RR, Honasoge A et al. 2010. Cortical DNA methylation maintains remote memory. Nat. Neurosci. 13:664–66
    [Google Scholar]
  29. 29. 
    Rudenko A, Dawlaty MM, Seo J, Cheng AW, Meng J et al. 2013. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron 79:1109–22
    [Google Scholar]
  30. 30. 
    Li X, Wei W, Zhao QY, Widagdo J, Baker-Andresen D et al. 2014. Neocortical Tet3-mediated accumulation of 5-hydroxymethylcytosine promotes rapid behavioral adaptation. PNAS 111:7120–25
    [Google Scholar]
  31. 31. 
    Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S 2014. Use of epigenetic drugs in disease: an overview. Genet. Epigenet. 6:9–19
    [Google Scholar]
  32. 32. 
    Pittenger C, Duman RS. 2008. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109
    [Google Scholar]
  33. 33. 
    Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202
    [Google Scholar]
  34. 34. 
    Krishnan V, Nestler EJ. 2008. The molecular neurobiology of depression. Nature 455:894–902
    [Google Scholar]
  35. 35. 
    Feng J, Pena CJ, Purushothaman I, Engmann O, Walker D et al. 2017. Tet1 in nucleus accumbens opposes depression- and anxiety-like behaviors. Neuropsychopharmacology 42:1657–69
    [Google Scholar]
  36. 36. 
    Córdova-Palomera A, Fatjó-Vilas M, Gastó C, Navarro V, Krebs MO, Fañanás L 2015. Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Transl. Psychiatry 5:e557
    [Google Scholar]
  37. 37. 
    Peña CJ, Nestler EJ. 2018. Progress in epigenetics of depression. Prog. Mol. Biol. Transl. Sci. 157:41–66
    [Google Scholar]
  38. 38. 
    Elliott E, Ezra-Nevo G, Regev L, Neufeld-Cohen A, Chen A 2010. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci. 13:1351–53
    [Google Scholar]
  39. 39. 
    Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X et al. 2006. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311:77–80
    [Google Scholar]
  40. 40. 
    Melas PA, Rogdaki M, Lennartsson A, Björk K, Qi H et al. 2012. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int. J. Neuropsychopharmacol. 15:669–79
    [Google Scholar]
  41. 41. 
    Warner-Schmidt JL, Flajolet M, Maller A, Chen EY, Qi H et al. 2009. Role of p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J. Neurosci. 29:1937–46
    [Google Scholar]
  42. 42. 
    Anisman H, Du L, Palkovits M, Faludi G, Kovacs GG et al. 2008. Serotonin receptor subtype and p11 mRNA expression in stress-relevant brain regions of suicide and control subjects. J. Psychiatry Neurosci. 33:131–41
    [Google Scholar]
  43. 43. 
    Gassen NC, Fries GR, Zannas AS, Hartmann J, Zschocke J et al. 2015. Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine. Sci. Signal. 8:ra119
    [Google Scholar]
  44. 44. 
    Duman RS, Monteggia LM. 2006. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59:1116–27
    [Google Scholar]
  45. 45. 
    Tadić A, Müller-Engling L, Schlicht KF, Kotsiari A, Dreimüller N et al. 2014. Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol. Psychiatry 19:281–83
    [Google Scholar]
  46. 46. 
    Dwivedi Y, Rizavi HS, Pandey GN 2006. Antidepressants reverse corticosterone-mediated decrease in brain-derived neurotrophic factor expression: differential regulation of specific exons by antidepressants and corticosterone. Neuroscience 139:1017–29
    [Google Scholar]
  47. 47. 
    Dias BG, Banerjee SB, Duman RS, Vaidya VA 2003. Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatments in the adult rat brain. Neuropharmacology 45:553–63
    [Google Scholar]
  48. 48. 
    Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W et al. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–68
    [Google Scholar]
  49. 49. 
    Uchida S, Hara K, Kobayashi A, Otsuki K, Yamagata H et al. 2011. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 69:359–72
    [Google Scholar]
  50. 50. 
    Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ 2006. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9:519–25
    [Google Scholar]
  51. 51. 
    Wilkinson MB, Xiao G, Kumar A, LaPlant Q, Renthal W et al. 2009. Imipramine treatment and resiliency exhibit similar chromatin regulation in the mouse nucleus accumbens in depression models. J. Neurosci. 29:7820–32
    [Google Scholar]
  52. 52. 
    Poleshko A, Shah PP, Gupta M, Babu A, Morley MP et al. 2017. Genome-nuclear lamina interactions regulate cardiac stem cell lineage restriction. Cell 171:573–87.e14
    [Google Scholar]
  53. 53. 
    Wilkinson MB, Dias C, Magida J, Mazei-Robison M, Lobo M et al. 2011. A novel role of the WNT-dishevelled-GSK3β signaling cascade in the mouse nucleus accumbens in a social defeat model of depression. J. Neurosci. 31:9084–92
    [Google Scholar]
  54. 54. 
    Jiang Y, Jakovcevski M, Bharadwaj R, Connor C, Schroeder FA et al. 2010. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J. Neurosci. 30:7152–67
    [Google Scholar]
  55. 55. 
    Covington HE, Maze I, Sun H, Bomze HM, DeMaio KD et al. 2011. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 71:656–70
    [Google Scholar]
  56. 56. 
    Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O 2010. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science 329:1537–41
    [Google Scholar]
  57. 57. 
    Sales AJ, Biojone C, Terceti MS, Guimarães FS, Gomes MV, Joca SR 2011. Antidepressant-like effect induced by systemic and intra-hippocampal administration of DNA methylation inhibitors. Br. J. Pharmacol. 164:1711–21
    [Google Scholar]
  58. 58. 
    Perisic T, Zimmermann N, Kirmeier T, Asmus M, Tuorto F et al. 2010. Valproate and amitriptyline exert common and divergent influences on global and gene promoter-specific chromatin modifications in rat primary astrocytes. Neuropsychopharmacology 35:792–805
    [Google Scholar]
  59. 59. 
    Covington HE, Vialou VF, LaPlant Q, Ohnishi YN, Nestler EJ 2011. Hippocampal-dependent antidepressant-like activity of histone deacetylase inhibition. Neurosci. Lett. 493:122–26
    [Google Scholar]
  60. 60. 
    Covington HE, Maze I, LaPlant QC, Vialou VF, Ohnishi YN et al. 2009. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29:11451–60
    [Google Scholar]
  61. 61. 
    Golden SA, Christoffel DJ, Heshmati M, Hodes GE, Magida J et al. 2013. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat. Med. 19:337–44
    [Google Scholar]
  62. 62. 
    Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S et al. 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7:847–54
    [Google Scholar]
  63. 63. 
    Prince HM, Bishton MJ, Harrison SJ 2009. Clinical studies of histone deacetylase inhibitors. Clin. Cancer Res. 15:3958–69
    [Google Scholar]
  64. 64. 
    Madiraju P, Pande SV, Prentki M, Madiraju SR 2009. Mitochondrial acetylcarnitine provides acetyl groups for nuclear histone acetylation. Epigenetics 4:399–403
    [Google Scholar]
  65. 65. 
    Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S et al. 2013. l-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. PNAS 110:4804–9
    [Google Scholar]
  66. 66. 
    Nasca C, Bigio B, Lee FS, Young SP, Kautz MM et al. 2018. Acetyl-l-carnitine deficiency in patients with major depressive disorder. PNAS 115:8627–32
    [Google Scholar]
  67. 67. 
    Russo SJ, Charney DS. 2013. Next generation antidepressants. PNAS 110:4441–42
    [Google Scholar]
  68. 68. 
    Barhwal K, Hota SK, Jain V, Prasad D, Singh SB, Ilavazhagan G 2009. Acetyl-l-carnitine (ALCAR) prevents hypobaric hypoxia–induced spatial memory impairment through extracellular related kinase–mediated nuclear factor erythroid 2-related factor 2 phosphorylation. Neuroscience 161:501–14
    [Google Scholar]
  69. 69. 
    Dębski KJ, Pitkanen A, Puhakka N, Bot AM, Khurana I et al. 2016. Etiology matters – genomic DNA methylation patterns in three rat models of acquired epilepsy. Sci. Rep. 6:25668
    [Google Scholar]
  70. 70. 
    Huang Y, Doherty JJ, Dingledine R 2002. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J. Neurosci. 22:8422–28
    [Google Scholar]
  71. 71. 
    Tsankova NM, Kumar A, Nestler EJ 2004. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J. Neurosci. 24:5603–10
    [Google Scholar]
  72. 72. 
    Kobow K, Jeske I, Hildebrandt M, Hauke J, Hahnen E et al. 2009. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J. Neuropathol. Exp. Neurol. 68:356–64
    [Google Scholar]
  73. 73. 
    Belhedi N, Perroud N, Karege F, Vessaz M, Malafosse A, Salzmann A 2014. Increased CPA6 promoter methylation in focal epilepsy and in febrile seizures. Epilepsy Res 108:144–48
    [Google Scholar]
  74. 74. 
    Zhu Q, Wang L, Zhang Y, Zhao FH, Luo J et al. 2012. Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J. Mol. Neurosci. 46:420–26
    [Google Scholar]
  75. 75. 
    Blümcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F et al. 2013. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54:1315–29
    [Google Scholar]
  76. 76. 
    Jagirdar R, Drexel M, Kirchmair E, Tasan RO, Sperk G 2015. Rapid changes in expression of class I and IV histone deacetylases during epileptogenesis in mouse models of temporal lobe epilepsy. Exp. Neurol. 273:92–104
    [Google Scholar]
  77. 77. 
    Navarrete-Modesto V, Orozco-Suárez S, Feria-Romero IA, Rocha L 2019. The molecular hallmarks of epigenetic effects mediated by antiepileptic drugs. Epilepsy Res 149:53–65
    [Google Scholar]
  78. 78. 
    Kelly KM, Gross RA, Macdonald RL 1990. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci. Lett. 116:233–38
    [Google Scholar]
  79. 79. 
    Macdonald RL, Bergey GK. 1978. Valproic acid: effect on GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons. Trans. Am. Neurol. Assoc. 103:254–56
    [Google Scholar]
  80. 80. 
    Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A et al. 2001. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–78
    [Google Scholar]
  81. 81. 
    Ookubo M, Kanai H, Aoki H, Yamada N 2013. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: brain region specific changes. J. Psychiatr. Res. 47:1204–14
    [Google Scholar]
  82. 82. 
    Nau H, Hauck RS, Ehlers K 1991. Valproic acid-induced neural tube defects in mouse and human: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol. Toxicol. 69:310–21
    [Google Scholar]
  83. 83. 
    Citraro R, Leo A, De Caro C, Nesci V, Gallo Cantafio ME et al. 2020. Effects of histone deacetylase inhibitors on the development of epilepsy and psychiatric comorbidity in WAG/Rij rats. Mol. Neurobiol. 57:408–21
    [Google Scholar]
  84. 84. 
    Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D et al. 2009. Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci. Res. 65:35–43
    [Google Scholar]
  85. 85. 
    Jessberger S, Nakashima K, Clemenson GD, Mejia E, Mathews E et al. 2007. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J. Neurosci. 27:5967–75
    [Google Scholar]
  86. 86. 
    Cho KO, Lybrand ZR, Ito N, Brulet R, Tafacory F et al. 2015. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat. Commun. 6:6606
    [Google Scholar]
  87. 87. 
    Lee RS, Pirooznia M, Guintivano J, Ly M, Ewald ER et al. 2015. Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene. Transl. Psychiatry 5:e600
    [Google Scholar]
  88. 88. 
    Detich N, Bovenzi V, Szyf M 2003. Valproate induces replication-independent active DNA demethylation. J. Biol. Chem. 278:27586–92
    [Google Scholar]
  89. 89. 
    Felisbino MB, Gatti MS, Mello ML 2014. Changes in chromatin structure in NIH 3T3 cells induced by valproic acid and trichostatin A. J. Cell Biochem. 115:1937–47
    [Google Scholar]
  90. 90. 
    Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM 2007. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J. Pharmacol. Exp. Ther. 321:892–901
    [Google Scholar]
  91. 91. 
    Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM 2004. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J. Neurochem. 89:1358–67
    [Google Scholar]
  92. 92. 
    Sinn DI, Kim SJ, Chu K, Jung KH, Lee ST et al. 2007. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol. Dis. 26:464–72
    [Google Scholar]
  93. 93. 
    Wu X, Chen PS, Dallas S, Wilson B, Block ML et al. 2008. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol. 11:1123–34
    [Google Scholar]
  94. 94. 
    Coulter DA, Eid T. 2012. Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–26
    [Google Scholar]
  95. 95. 
    Guella I, McKenzie MB, Evans DM, Buerki SE, Toyota EB et al. 2017. De novo mutations in YWHAG cause early-onset epilepsy. Am. J. Hum. Genet. 101:300–10
    [Google Scholar]
  96. 96. 
    Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M et al. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–702
    [Google Scholar]
  97. 97. 
    Macdonald RL, Barker JL. 1977. Phenobarbital enhances GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Trans. Am. Neurol. Assoc. 102:139–40
    [Google Scholar]
  98. 98. 
    Czapiński P, Blaszczyk B, Czuczwar SJ 2005. Mechanisms of action of antiepileptic drugs. Curr. Top. Med. Chem. 5:3–14
    [Google Scholar]
  99. 99. 
    Sakakibara Y, Katoh M, Kondo Y, Nadai M 2016. Effects of phenobarbital on expression of UDP-glucuronosyltransferase 1a6 and 1a7 in rat brain. Drug Metab. Dispos. 44:370–77
    [Google Scholar]
  100. 100. 
    Lempiäinen H, Müller A, Brasa S, Teo SS, Roloff TC et al. 2011. Phenobarbital mediates an epigenetic switch at the constitutive androstane receptor (CAR) target gene Cyp2b10 in the liver of B6C3F1 mice. PLOS ONE 6:e18216
    [Google Scholar]
  101. 101. 
    Bachman AN, Phillips JM, Goodman JI 2006. Phenobarbital induces progressive patterns of GC-rich and gene-specific altered DNA methylation in the liver of tumor-prone B6C3F1 mice. Toxicol. Sci. 91:393–405
    [Google Scholar]
  102. 102. 
    Phillips JM, Goodman JI. 2008. Identification of genes that may play critical roles in phenobarbital (PB)-induced liver tumorigenesis due to altered DNA methylation. Toxicol. Sci. 104:86–99
    [Google Scholar]
  103. 103. 
    Shizu R, Shindo S, Yoshida T, Numazawa S 2012. MicroRNA-122 down-regulation is involved in phenobarbital-mediated activation of the constitutive androstane receptor. PLOS ONE 7:e41291
    [Google Scholar]
  104. 104. 
    Coppedè F. 2014. The potential of epigenetic therapies in neurodegenerative diseases. Front. Genet. 5:220
    [Google Scholar]
  105. 105. 
    Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH 2007. Recovery of learning and memory is associated with chromatin remodelling. Nature 447:178–82
    [Google Scholar]
  106. 106. 
    Ricobaraza A, Cuadrado-Tejedor M, Marco S, Pérez-Otaño I, García-Osta A 2012. Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus 22:1040–50
    [Google Scholar]
  107. 107. 
    Zheng Y, Liu A, Wang ZJ, Cao Q, Wang W et al. 2019. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain 142:787–807
    [Google Scholar]
  108. 108. 
    Robison AJ, Nestler EJ. 2011. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. 12:623–37
    [Google Scholar]
  109. 109. 
    Vassoler FM, White SL, Schmidt HD, Sadri-Vakili G, Pierce RC 2013. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci. 16:42–47
    [Google Scholar]
  110. 110. 
    Kelley AE. 2004. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron 44:161–79
    [Google Scholar]
  111. 111. 
    Otis JM, Dashew KB, Mueller D 2013. Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory. J. Neurosci. 33:1271–81
    [Google Scholar]
  112. 112. 
    Moorman DE, James MH, McGlinchey EM, Aston-Jones G 2015. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 1628:130–46
    [Google Scholar]
  113. 113. 
    Nestler EJ. 2013. Cellular basis of memory for addiction. Dialogues Clin. Neurosci. 15:431–43
    [Google Scholar]
  114. 114. 
    Nestler EJ. 2014. Epigenetic mechanisms of drug addiction. Neuropharmacology 76:Part B259–68
    [Google Scholar]
  115. 115. 
    LaPlant Q, Vialou V, Covington HE, Dumitriu D, Feng J et al. 2010. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 13:1137–43
    [Google Scholar]
  116. 116. 
    Anier K, Malinovskaja K, Aonurm-Helm A, Zharkovsky A, Kalda A 2010. DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 35:2450–61
    [Google Scholar]
  117. 117. 
    Wright KN, Hollis F, Duclot F, Dossat AM, Strong CE et al. 2015. Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner. J. Neurosci. 35:8948–58
    [Google Scholar]
  118. 118. 
    Fonteneau M, Filliol D, Anglard P, Befort K, Romieu P, Zwiller J 2017. Inhibition of DNA methyltransferases regulates cocaine self-administration by rats: a genome-wide DNA methylation study. Genes Brain Behav 16:313–27
    [Google Scholar]
  119. 119. 
    Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE et al. 2009. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 62:335–48
    [Google Scholar]
  120. 120. 
    Renthal W, Maze I, Krishnan V, Covington HE, Xiao G et al. 2007. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 56:517–29
    [Google Scholar]
  121. 121. 
    Wang L, Lv Z, Hu Z, Sheng J, Hui B et al. 2010. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIα in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 35:913–28
    [Google Scholar]
  122. 122. 
    Maze I, Feng J, Wilkinson MB, Sun H, Shen L, Nestler EJ 2011. Cocaine dynamically regulates heterochromatin and repetitive element unsilencing in nucleus accumbens. PNAS 108:3035–40
    [Google Scholar]
  123. 123. 
    Maze I, Covington HE, Dietz DM, LaPlant Q, Renthal W et al. 2010. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science 327:213–16
    [Google Scholar]
  124. 124. 
    Baker-Andresen D, Zhao Q, Li X, Jupp B, Chesworth R et al. 2015. Persistent variations in neuronal DNA methylation following cocaine self-administration and protracted abstinence in mice. Neuroepigenetics 4:1–11
    [Google Scholar]
  125. 125. 
    Kelz MB, Chen J, Carlezon WA, Whisler K, Gilden L et al. 1999. Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 401:272–76
    [Google Scholar]
  126. 126. 
    Colby CR, Whisler K, Steffen C, Nestler EJ, Self DW 2003. Striatal cell type-specific overexpression of ΔFosB enhances incentive for cocaine. J. Neurosci. 23:2488–93
    [Google Scholar]
  127. 127. 
    Gajewski PA, Eagle AL, Williams ES, Manning CE, Lynch H et al. 2019. Epigenetic regulation of hippocampal Fosb expression controls behavioral responses to cocaine. J. Neurosci. 39:8305–14
    [Google Scholar]
  128. 128. 
    Heller EA, Cates HM, Peña CJ, Sun H, Shao N et al. 2014. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat. Neurosci. 17:1720–27
    [Google Scholar]
  129. 129. 
    Shippenberg TS, Elmer GI. 1998. The neurobiology of opiate reinforcement. Crit. Rev. Neurobiol. 12:267–303
    [Google Scholar]
  130. 130. 
    Barrow TM, Byun HM, Li X, Smart C, Wang YX et al. 2017. The effect of morphine upon DNA methylation in ten regions of the rat brain. Epigenetics 12:1038–47
    [Google Scholar]
  131. 131. 
    Egervari G, Landry J, Callens J, Fullard JF, Roussos P et al. 2017. Striatal H3K27 acetylation linked to glutamatergic gene dysregulation in human heroin abusers holds promise as therapeutic target. Biol. Psychiatry 81:585–94
    [Google Scholar]
  132. 132. 
    Sheng J, Lv Z, Wang L, Zhou Y, Hui B 2011. Histone H3 phosphoacetylation is critical for heroin-induced place preference. NeuroReport 22:575–80
    [Google Scholar]
  133. 133. 
    Wei L, Zhu YM, Zhang YX, Liang F, Barry DM et al. 2016. Microinjection of histone deacetylase inhibitor into the ventrolateral orbital cortex potentiates morphine induced behavioral sensitization. Brain Res 1646:418–25
    [Google Scholar]
  134. 134. 
    Wang Y, Lai J, Cui H, Zhu Y, Zhao B et al. 2015. Inhibition of histone deacetylase in the basolateral amygdala facilitates morphine context-associated memory formation in rats. J. Mol. Neurosci. 55:269–78
    [Google Scholar]
  135. 135. 
    Sun H, Maze I, Dietz DM, Scobie KN, Kennedy PJ et al. 2012. Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. J. Neurosci. 32:17454–64
    [Google Scholar]
  136. 136. 
    Mashayekhi FJ, Rasti M, Rahvar M, Mokarram P, Namavar MR, Owji AA 2012. Expression levels of the BDNF gene and histone modifications around its promoters in the ventral tegmental area and locus ceruleus of rats during forced abstinence from morphine. Neurochem. Res. 37:1517–23
    [Google Scholar]
  137. 137. 
    Watson CT, Szutorisz H, Garg P, Martin Q, Landry JA et al. 2015. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology 40:2993–3005
    [Google Scholar]
  138. 138. 
    Tomasiewicz HC, Jacobs MM, Wilkinson MB, Wilson SP, Nestler EJ, Hurd YL 2012. Proenkephalin mediates the enduring effects of adolescent cannabis exposure associated with adult opiate vulnerability. Biol. Psychiatry 72:803–10
    [Google Scholar]
  139. 139. 
    DiNieri JA, Wang X, Szutorisz H, Spano SM, Kaur J et al. 2011. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol. Psychiatry 70:763–69
    [Google Scholar]
  140. 140. 
    Bönsch D, Lenz B, Fiszer R, Frieling H, Kornhuber J, Bleich S 2006. Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J. Neural. Transm. 113:1299–304
    [Google Scholar]
  141. 141. 
    Taqi MM, Bazov I, Watanabe H, Sheedy D, Harper C et al. 2011. Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Addict. Biol. 16:499–509
    [Google Scholar]
  142. 142. 
    Pandey SC, Sakharkar AJ, Tang L, Zhang H 2015. Potential role of adolescent alcohol exposure-induced amygdaloid histone modifications in anxiety and alcohol intake during adulthood. Neurobiol. Dis. 82:607–19
    [Google Scholar]
  143. 143. 
    Sakharkar AJ, Vetreno RP, Zhang H, Kokare DM, Crews FT, Pandey SC 2016. A role for histone acetylation mechanisms in adolescent alcohol exposure-induced deficits in hippocampal brain-derived neurotrophic factor expression and neurogenesis markers in adulthood. Brain Struct. Funct. 221:4691–703
    [Google Scholar]
  144. 144. 
    Subbanna S, Nagre NN, Umapathy NS, Pace BS, Basavarajappa BS 2014. Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int. J. Neuropsychopharmacol. 18:pyu028
    [Google Scholar]
  145. 145. 
    Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC 2009. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics 4:500–11
    [Google Scholar]
  146. 146. 
    Zhou FC, Balaraman Y, Teng M, Liu Y, Singh RP, Nephew KP 2011. Alcohol alters DNA methylation patterns and inhibits neural stem cell differentiation. Alcohol Clin. Exp. Res. 35:735–46
    [Google Scholar]
  147. 147. 
    Oh JE, Chambwe N, Klein S, Gal J, Andrews S et al. 2013. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment. Transl. Psychiatry 3:e218
    [Google Scholar]
  148. 148. 
    Ganesan A. 2018. Epigenetic drug discovery: a success story for cofactor interference. Philos. Trans. R. Soc. B 373:20170069
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030220-022920
Loading
/content/journals/10.1146/annurev-pharmtox-030220-022920
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error