1932

Abstract

My path to research in neuropharmacology has been a coalescing of my training as a molecular biologist and my intense interest in an esoteric group of animals, the fish-hunting cone snails. Attempting to bridge these two disparate worlds has led me to an idiosyncratic career as a pharmacologist.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030320-113510
2021-01-06
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-030320-113510.html?itemId=/content/journals/10.1146/annurev-pharmtox-030320-113510&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Olivera BM, Hall ZW, Anraku Y, Chien JR, Lehman IR 1968. On the mechanism of the polynucleotide joining reaction. Cold Spring Harb. Symp. Quant. Biol. 33:27–34
    [Google Scholar]
  2. 2. 
    Olivera BM, Lehman IR. 1967. Diphosphopyridine nucleotide: a cofactor for the polynucleotide-joining enzyme from Escherichia coli. . PNAS 57:1700–4
    [Google Scholar]
  3. 3. 
    Olivera BM, Lehman IR. 1967. Linkage of polynucleotides through phosphodiester bonds by an enzyme from Escherichia coli. . PNAS 57:1426–33
    [Google Scholar]
  4. 4. 
    Olivera BM, Gray WR, Zeikus R, McIntosh JM, Varga J et al. 1985. Peptide neurotoxins from fish-hunting cone snails. Science 230:1338–43
    [Google Scholar]
  5. 5. 
    Olivera BM, Rivier J, Clark C, Ramilo CA, Corpuz GP et al. 1990. Diversity of Conus neuropeptides. Science 249:257–63
    [Google Scholar]
  6. 6. 
    Olivera BM. 2000. ω-Conotoxin MVIIA: from marine snail venom to analgesic drug. Drugs from the Sea N Fusetani 75–85 Basel, Switz: Karger
    [Google Scholar]
  7. 7. 
    Lehman IR, Bessman MJ, Simms ES, Kornberg A 1958. Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. J. Biol. . Chem 233:163–70
    [Google Scholar]
  8. 8. 
    Ferro AM, McElwain MC, Olivera BM 1984. Poly(ADP-ribosylation) of DNA topoisomerase I: a nuclear response to DNA-strand interruptions. Cold Spring Harb. Symp. Quant. Biol. 49:683–90
    [Google Scholar]
  9. 9. 
    Hillyard D, Rechsteiner M, Manlapaz-Ramos P, Imperial JS, Cruz LJ, Olivera BM 1981. The pyridine nucleotide cycle: studies in Escherichia coli and the human cell line D98/AH2. J. Biol. Chem. 256:8491–97
    [Google Scholar]
  10. 10. 
    Lundquist R, Olivera BM. 1971. Pyridine nucleotide metabolism in Escherichia coli. I. Exponential growth. J. Biol. Chem. 246:1107–16
    [Google Scholar]
  11. 11. 
    Lundquist RC, Olivera BM. 1982. Transient generation of displaced single-stranded DNA during nick translation. Cell 31:53–60
    [Google Scholar]
  12. 12. 
    Olivera BM, Bonhoeffer F. 1972. Discontinuous DNA replication in vitro. I. Two distinct size classes of intermediates. Nat. New Biol. 240:233–35
    [Google Scholar]
  13. 13. 
    Olivera RM, Bonhoeffer E. 1974. Replication of Escherichia coli requires DNA polymerase I. Nature 250:513–14
    [Google Scholar]
  14. 14. 
    Rechsteiner M, Hillyard D, Olivera BM 1976. Magnitude and significance of NAD turnover in human cell line D98/AH2. Nature 259:695–96
    [Google Scholar]
  15. 15. 
    Thomas KR, Olivera BM. 1978. Processivity of DNA exonucleases. J. Biol. Chem. 253:424–29
    [Google Scholar]
  16. 16. 
    Terlau H, Shon K, Grilley M, Stocker M, Stühmer W, Olivera BM 1996. Strategy for rapid immobilization of prey by a fish-hunting cone snail. Nature 381:148–51
    [Google Scholar]
  17. 17. 
    Olivera BM, Showers Corneli P, Watkins M, Fedosov A 2014. Biodiversity of cone snails and other venomous marine gastropods: evolutionary success through neuropharmacology. Annu. Rev. Anim. Biosci. 2:487–513
    [Google Scholar]
  18. 18. 
    McIntosh JM, Santos AD, Olivera BM 1999. Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu. Rev. Biochem. 68:59–88
    [Google Scholar]
  19. 19. 
    Gray WR, Luque A, Olivera BM, Barrett J, Cruz LJ 1981. Peptide toxins from Conus geographus venom. J. Biol. Chem. 256:4734–40
    [Google Scholar]
  20. 20. 
    Cruz LJ, Gray WR, Olivera BM, Zeikus RD, Kerr L et al. 1985. Conus geographus toxins that discriminate between neuronal and muscle sodium channels. J. Biol. Chem. 260:9280–88
    [Google Scholar]
  21. 21. 
    Cruz LJ, Johnson DS, Olivera BM 1987. Characterization of the ω-conotoxin target. Evidence for tissue-specific heterogeneity in calcium channel types. Biochemistry 26:820–24
    [Google Scholar]
  22. 22. 
    Cruz LJ, Olivera BM. 1986. Calcium channel antagonists: ω-conotoxin defines a new high affinity site. J. Biol. Chem. 261:6230–33
    [Google Scholar]
  23. 23. 
    Feldman D, Olivera BM, Yoshikami D 1987. ω-Conusgeographus toxin: a peptide that blocks calcium channels. FEBS Lett 214:295–300
    [Google Scholar]
  24. 24. 
    Olivera BM, McIntosh JM, Cruz LJ, Luque FA, Gray WR 1984. Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 23:5087–90
    [Google Scholar]
  25. 25. 
    McCleskey EW, Fox AP, Feldman D, Cruz LJ, Olivera BM et al. 1987. Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. PNAS 84:4327–31
    [Google Scholar]
  26. 26. 
    Olivera BM, Miljanich G, Ramachandran J, Adams ME 1994. Calcium channel diversity and neurotransmitter release: the ω-conotoxins and ω-agatoxins. Annu. Rev. Biochem. 63:823–67
    [Google Scholar]
  27. 27. 
    Safavi-Hemami H, Gajewiak J, Karanth S, Robinson SD, Ueberheide B et al. 2015. Specialized insulin is used for chemical warfare by fish-hunting cone snails. PNAS 112:1743–48
    [Google Scholar]
  28. 28. 
    Menting JG, Gajewiak J, MacRaild CA, Chou DH, Disotuar MM et al. 2016. A minimized human insulin-receptor-binding motif revealed in a Conusgeographus venom insulin. Nat. Struct. Mol. Biol. 23:916–20
    [Google Scholar]
  29. 29. 
    Xiong X, Menting JG, Disotuar MM, Smith NA, Delaine CA et al. 2020. A structurally minimized yet fully active insulin based on cone-snail venom insulin principles. Nat. Struct. Mol. Biol 27:7615–24 Erratum. 2020 Nat. Struct. Mol. Biol 27:7683
    [Google Scholar]
  30. 30. 
    Ahorukomeye P, Disotuar MM, Gajewiak J, Karanth S, Watkins M et al. 2019. Fish-hunting cone snail venoms are a rich source of minimized ligands of the vertebrate insulin receptor. eLife 8:e41574
    [Google Scholar]
  31. 31. 
    Safavi-Hemami H, Lu A, Li Q, Fedosov AE, Biggs J et al. 2016. Venom insulins of cone snails diversify rapidly and track prey taxa. Mol. Biol. Evol. 33:2924–34
    [Google Scholar]
  32. 32. 
    Sandall D, Satkunanathan N, Keays D, Polidano MA, Liping X et al. 2003. A novel α-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42:6904–11
    [Google Scholar]
  33. 33. 
    Satkunanathan N, Livett BG, Gayler K, Sandall D, Down JG, Khalil Z 2005. Alpha-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res 1059:149–58
    [Google Scholar]
  34. 34. 
    Vincler M, Wittenauer S, Parker R, Ellison M, Olivera BM, McIntosh JM 2006. Molecular mechanism for analgesia involving specific antagonism of α9α10 nicotinic acetylcholine receptors. PNAS 103:17880–84
    [Google Scholar]
  35. 35. 
    Ellison M, Feng ZP, Park AJ, Zhang X, Olivera BM et al. 2008. α-RgIA, a novel conotoxin that blocks the α9α10 nAChR: structure and identification of key receptor-binding residues. J. Mol. Biol. 377:1216–27
    [Google Scholar]
  36. 36. 
    Di Cesare Mannelli L, Cinci L, Micheli L, Zanardelli M, Pacini A et al. 2014. α-Conotoxin RgIA protects against the development of nerve injury-induced chronic pain and prevents both neuronal and glial derangement. Pain 155:1986–95
    [Google Scholar]
  37. 37. 
    Romero HK, Christensen S, Di Cesare Mannelli L, Gajewiak J, Ramachandra R et al. 2017. Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain. PNAS 114:E1825–32
    [Google Scholar]
  38. 38. 
    Giacobassi MJ, Leavitt LS, Raghuraman S, Alluri R, Chase K et al. 2020. An integrative approach to the facile functional classification of dorsal root ganglion neuronal subclasses. PNAS 117:5494–501
    [Google Scholar]
  39. 39. 
    Raghuraman S, Xie J, Giacobassi MJ, Chase K, Lu D et al. 2020. Chronicling changes in the somatosensory neurons after peripheral nerve injury. PNAS 117:422641421
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030320-113510
Loading
/content/journals/10.1146/annurev-pharmtox-030320-113510
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error