1932

Abstract

Two-pore domain potassium (K2P) channels stabilize the resting membrane potential of both excitable and nonexcitable cells and, as such, are important regulators of cell activity. There are many conditions where pharmacological regulation of K2P channel activity would be of therapeutic benefit, including, but not limited to, atrial fibrillation, respiratory depression, pulmonary hypertension, neuropathic pain, migraine, depression, and some forms of cancer. Up until now, few if any selective pharmacological regulators of K2P channels have been available. However, recent publications of solved structures with small-molecule activators and inhibitors bound to TREK-1, TREK-2, and TASK-1 K2P channels have given insight into the pharmacophore requirements for compound binding to these sites. Together with the increasing availability of a number of novel, active, small-molecule compounds from K2P channel screening programs, these advances have opened up the possibility of rational activator and inhibitor design to selectively target K2P channels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030920-111536
2021-01-06
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-030920-111536.html?itemId=/content/journals/10.1146/annurev-pharmtox-030920-111536&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M et al. 1996. TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. EMBO J 15:1004–11
    [Google Scholar]
  2. 2. 
    Enyedi P, Czirják G. 2010. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev. 90:559–605
    [Google Scholar]
  3. 3. 
    Alexander SPH, Mathie A, Peters JA, Veale EL, Striessnig J et al. 2019. The concise guide to pharmacology 2019/20: ion channels. Br. J. Pharmacol. 176:Suppl. 1S142–228Overview of the key properties of ion channels as pharmacological targets.
    [Google Scholar]
  4. 4. 
    Brohawn SG, del Mármol J, MacKinnon R 2012. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 335:436–41
    [Google Scholar]
  5. 5. 
    Miller AN, Long SB. 2012. Crystal structure of the human two-pore domain potassium channel K2P1. Science 335:432–36
    [Google Scholar]
  6. 6. 
    Dong YY, Pike AC, Mackenzie A, McClenaghan C, Aryal P et al. 2015. K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Science 347:1256–59Solved structures for norfluoxetine and fluoxetine binding to TREK-2 channels.
    [Google Scholar]
  7. 7. 
    Lolicato M, Arrigoni C, Mori T, Sekioka Y, Bryant C et al. 2017. K2P2.1 (TREK-1)–activator complexes reveal a cryptic selectivity filter binding site. Nature 547:364–68Identification of cryptic binding site for activators of TREK-1 channels.
    [Google Scholar]
  8. 8. 
    Rödström KEJ, Kiper AK, Zhang W, Rinné S, Pike ACW et al. 2020. A lower X-gate in TASK channels traps inhibitors within the vestibule. Nature 582:44347Structure of TASK-1 channel revealing X gate and binding site for inhibitor compounds.
    [Google Scholar]
  9. 9. 
    Berg AP, Talley EM, Manger JP, Bayliss DA 2004. Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J. Neurosci. 24:6693–702
    [Google Scholar]
  10. 10. 
    Rinné S, Kiper AK, Schlichthörl G, Dittmann S, Netter MF et al. 2015. TASK-1 and TASK-3 may form heterodimers in human atrial cardiomyocytes. J. Mol. Cell. Cardiol. 81:71–80
    [Google Scholar]
  11. 11. 
    Blin S, Ben Soussia I, Kim EJ, Brau F, Kang D et al. 2016. Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties. PNAS 113:4200–5
    [Google Scholar]
  12. 12. 
    Lengyel M, Czirják G, Enyedi P 2016. Formation of functional heterodimers by TREK-1 and TREK-2 two-pore domain potassium channel subunits. J. Biol. Chem. 291:13649–61
    [Google Scholar]
  13. 13. 
    Levitz J, Royal P, Comoglio Y, Wdziekonski B, Schaub S et al. 2016. Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels. PNAS 113:4194–99
    [Google Scholar]
  14. 14. 
    Blin S, Chatelain FC, Feliciangeli S, Kang D, Lesage F, Bichet D 2014. Tandem pore domain halothane-inhibited K+ channel subunits THIK1 and THIK2 assemble and form active channels. J. Biol. Chem. 289:28202–12
    [Google Scholar]
  15. 15. 
    Renigunta V, Zou X, Kling S, Schlichthörl G, Daut J 2014. Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2. Pflugers Arch 466:1735–45
    [Google Scholar]
  16. 16. 
    Hwang EM, Kim E, Yarishkin O, Woo DH, Han KS et al. 2014. A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat. Commun. 5:3227
    [Google Scholar]
  17. 17. 
    Plant LD, Zuniga L, Araki D, Marks JD, Goldstein SA 2012. SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Sci. Signal. 5:ra84
    [Google Scholar]
  18. 18. 
    Schewe M, Nematian-Ardestani E, Sun H, Musinszki M, Cordeiro S et al. 2016. A non-canonical voltage-sensing mechanism controls gating in K2P K+ channels. Cell 164:937–49Unique ion-flux gating mechanism at selectivity filter of TREK-2 channels.
    [Google Scholar]
  19. 19. 
    Honoré E. 2007. The neuronal background K2P channels: focus on TREK1. Nat. Rev. Neurosci. 8:251–61
    [Google Scholar]
  20. 20. 
    Feliciangeli S, Chatelain FC, Bichet D, Lesage F 2015. The family of K2P channels: salient structural and functional properties. J. Physiol. 593:2587–603
    [Google Scholar]
  21. 21. 
    Renigunta V, Schlichthörl G, Daut J 2015. Much more than a leak: structure and function of K2P-channels. Pflugers Arch 467:867–94
    [Google Scholar]
  22. 22. 
    Bagriantsev SN, Peyronnet R, Clark KA, Honoré E, Minor DL Jr 2011. Multiple modalities converge on a common gate to control K2P channel function. EMBO J 30:3594–606
    [Google Scholar]
  23. 23. 
    Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Ehrlich G et al. 2011. The pore structure and gating mechanism of K2P channels. EMBO J 30:3607–19
    [Google Scholar]
  24. 24. 
    Lolicato M, Riegelhaupt PM, Arrigoni C, Clark KA, Minor DL Jr 2014. Transmembrane helix straightening and buckling underlies activation of mechanosensitive and thermosensitive K2P channels. Neuron 84:1198–212
    [Google Scholar]
  25. 25. 
    Brohawn SG, Campbell EB, MacKinnon R 2014. Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516:126–30
    [Google Scholar]
  26. 26. 
    McClenaghan C, Schewe M, Aryal P, Carpenter EP, Baukrowitz T, Tucker SJ 2016. Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states. J. Gen. Physiol. 147:497–505
    [Google Scholar]
  27. 27. 
    Brohawn SG, Wang W, Handler A, Campbell EB, Schwarz JR, MacKinnon R 2019. The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier. eLife 8:e50403
    [Google Scholar]
  28. 28. 
    Kanda H, Ling J, Tonomura S, Noguchi K, Matalon S, Gu JG 2019. TREK-1 and TRAAK are principal K+ channels at the nodes of Ranvier for rapid action potential conduction on mammalian myelinated afferent nerves. Neuron 104:960–71
    [Google Scholar]
  29. 29. 
    Alloui A, Zimmermann K, Mamet J, Duprat F, Noël J et al. 2006. TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25:2368–76
    [Google Scholar]
  30. 30. 
    Devilliers M, Busserolles J, Lolignier S, Deval E, Pereira V et al. 2013. Activation of TREK-1 by morphine results in analgesia without adverse side effects. Nat. Commun. 4:2941
    [Google Scholar]
  31. 31. 
    Vivier D, Soussia IB, Rodrigues N, Lolignier S, Devilliers M et al. 2017. Development of the first two-pore domain potassium channel TWIK-related K+ channel 1-selective agonist possessing in vivo antinociceptive activity. J. Med. Chem. 60:1076–88
    [Google Scholar]
  32. 32. 
    Madry C, Kyrargyri V, Arancibia-Cárcamo IL, Jolivet R, Kohsaka S et al. 2018. Microglial ramification, surveillance, and interleukin-1β release are regulated by the two-pore domain K+ channel THIK-1. Neuron 97:299–312
    [Google Scholar]
  33. 33. 
    Decher N, Ortiz-Bonnin B, Friedrich C, Schewe M, Kiper AK et al. 2017. Sodium permeable and “hypersensitive” TREK-1 channels cause ventricular tachycardia. EMBO Mol. Med. 9:403–14
    [Google Scholar]
  34. 34. 
    Bittner S, Meuth SG, Göbel K, Melzer N, Herrmann AM et al. 2009. TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system. Brain 132:2501–16
    [Google Scholar]
  35. 35. 
    Pei L, Wiser O, Slavin A, Mu D, Powers S et al. 2003. Oncogenic potential of TASK3 (Kcnk9) depends on K+ channel function. PNAS 100:7803–7
    [Google Scholar]
  36. 36. 
    Mu D, Chen L, Zhang X, See LH, Koch CM et al. 2003. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 3:297–302
    [Google Scholar]
  37. 37. 
    Sun H, Luo L, Lal B, Ma X, Chen L et al. 2016. A monoclonal antibody against KCNK9 K+ channel extracellular domain inhibits tumour growth and metastasis. Nat. Commun. 7:10339
    [Google Scholar]
  38. 38. 
    Concha G, Bustos D, Zúñiga R, Catalán MA, Zúñiga L 2018. The insensitivity of TASK-3 K2P channels to external tetraethylammonium (TEA) partially depends on the cap structure. Int. J. Mol. Sci. 19:E2437
    [Google Scholar]
  39. 39. 
    Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N 2001. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat. Rev. Neurosci. 2:175–84
    [Google Scholar]
  40. 40. 
    Sepúlveda FV, Cid LP, Teulon J, Niemeyer MI 2015. Molecular aspects of structure, gating, and physiology of pH-sensitive background K2P and Kir K+-transport channels. Physiol. Rev. 95:179–217
    [Google Scholar]
  41. 41. 
    Niemeyer MI, Cid LP, González W, Sepúlveda FV 2016. Gating, regulation, and structure in K2P K+ channels: In varietate concordia. ? Mol. Pharmacol. 90:309–17
    [Google Scholar]
  42. 42. 
    Gada K, Plant LD. 2019. Two-pore domain potassium channels: emerging targets for novel analgesic drugs: IUPHAR review 26. Br. J. Pharmacol. 176:256–66
    [Google Scholar]
  43. 43. 
    Bayliss DA. 2019. Tandem pore domain potassium channels. The Oxford Handbook of Neuronal Ion Channels A Bhattacharjee Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  44. 44. 
    Şterbuleac D. 2019. Molecular determinants of chemical modulation of two-pore domain potassium channels. Chem. Biol. Drug Des. 94:1596–614
    [Google Scholar]
  45. 45. 
    Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S 2005. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol. Rev. 57:527–40
    [Google Scholar]
  46. 46. 
    Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M 1999. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat. Neurosci. 2:422–26
    [Google Scholar]
  47. 47. 
    Patel AJ, Honoré E. 2001. Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24:339–46
    [Google Scholar]
  48. 48. 
    Liu C, Au JD, Zou HL, Cotten JF, Yost CS 2004. Potent activation of the human tandem pore domain K channel TRESK with clinical concentrations of volatile anesthetics. Anesth. Analg. 99:1715–22
    [Google Scholar]
  49. 49. 
    Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP 2004. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol. Pharmacol. 65:443–52
    [Google Scholar]
  50. 50. 
    Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thümmler S et al. 2006. Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat. Neurosci. 9:1134–41
    [Google Scholar]
  51. 51. 
    Linden AM, Aller MI, Leppä E, Vekovischeva O, Aitta-Aho T et al. 2006. The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the α2 adrenergic sedative dexmedetomidine, and cannabinoid agonists. J. Pharmacol. Exp. Ther. 317:615–26
    [Google Scholar]
  52. 52. 
    Lazarenko RM, Willcox SC, Shu S, Berg AP, Jevtovic-Todorovic V et al. 2010. Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics. J. Neurosci. 30:7691–704
    [Google Scholar]
  53. 53. 
    Franks NP, Lieb WR. 1988. Volatile general anaesthetics activate a novel neuronal K+ current. Nature 333:662–64
    [Google Scholar]
  54. 54. 
    Nicoll RA, Madison DV. 1982. General anesthetics hyperpolarize neurons in the vertebrate central nervous system. Science 217:1055–57
    [Google Scholar]
  55. 55. 
    Rajan S, Wischmeyer E, Karschin C, Preisig-Müller R, Grzeschik KH et al. 2001. THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J. Biol. Chem. 276:7302–11
    [Google Scholar]
  56. 56. 
    Talley EM, Bayliss DA. 2002. Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J. Biol. Chem. 277:17733–42
    [Google Scholar]
  57. 57. 
    Sirois JE, Lynch C 3rd, Bayliss DA 2002. Convergent and reciprocal modulation of a leak K+ current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones. J. Physiol. 541:717–29
    [Google Scholar]
  58. 58. 
    Meuth SG, Budde T, Kanyshkova T, Broicher T, Munsch T, Pape HC 2003. Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J. Neurosci. 23:6460–69
    [Google Scholar]
  59. 59. 
    Conway KE, Cotten JF. 2012. Covalent modification of a volatile anesthetic regulatory site activates TASK-3 (KCNK9) tandem-pore potassium channels. Mol. Pharmacol. 81:393–400
    [Google Scholar]
  60. 60. 
    Bertaccini EJ, Dickinson R, Trudell JR, Franks NP 2014. Molecular modeling of a tandem two pore domain potassium channel reveals a putative binding site for general anesthetics. ACS Chem. Neurosci. 5:1246–52
    [Google Scholar]
  61. 61. 
    Luethy A, Boghosian JD, Srikantha R, Cotten JF 2017. Halogenated ether, alcohol, and alkane anesthetics activate TASK-3 tandem pore potassium channels likely through a common mechanism. Mol. Pharmacol. 91:620–29
    [Google Scholar]
  62. 62. 
    Veale EL, Buswell R, Clarke CE, Mathie A 2007. Identification of a region in the TASK3 two pore domain potassium channel that is critical for its blockade by methanandamide. Br. J. Pharmacol. 152:778–86
    [Google Scholar]
  63. 63. 
    Schmidt C, Wiedmann F, Voigt N, Zhou XB, Heijman J et al. 2015. Upregulation of K2P3.1 K+ current causes action potential shortening in patients with chronic atrial fibrillation. Circulation 132:82–92
    [Google Scholar]
  64. 64. 
    Liang B, Soka M, Christensen AH, Olesen MS, Larsen AP et al. 2014. Genetic variation in the two-pore domain potassium channel, TASK-1, may contribute to an atrial substrate for arrhythmogenesis. J. Mol. Cell. Cardiol. 67:69–76
    [Google Scholar]
  65. 65. 
    Schmidt C, Wiedmann F, Beyersdorf C, Zhao Z, El-Battrawy I et al. 2019. Genetic ablation of TASK-1 (tandem of P domains in a weak inward rectifying K+ channel-related acid-sensitive K+ channel-1) (K2P3.1) K+ channels suppresses atrial fibrillation and prevents electrical remodeling. Circ. Arrhythm. Electrophysiol. 12:e007465
    [Google Scholar]
  66. 66. 
    Ortega-Sáenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, López-Barneo J 2010. Carotid body chemosensory responses in mice deficient of TASK channels. J. Gen. Physiol. 135:379–92
    [Google Scholar]
  67. 67. 
    Buckler KJ. 2015. TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch 467:1013–25
    [Google Scholar]
  68. 68. 
    Cotten JF, Keshavaprasad B, Laster MJ, Eger EI 2nd, Yost CS 2006. The ventilator stimulant doxapram inhibits TASK tandem pore (K2P) potassium channel function but does not affect minimum alveolar anesthetic concentration. Anesth. Analg. 102:779–85
    [Google Scholar]
  69. 69. 
    O'Donohoe PB, Huskens N, Turner PJ, Pandit JJ, Buckler KJ 2018. A1899, PK-THPP, ML365, and Doxapram inhibit endogenous TASK channels and excite calcium signalling in carotid body type-1 cells. Physiol. Rep. 6:e13876
    [Google Scholar]
  70. 70. 
    Streit AK, Netter MF, Kempf F, Walecki M, Rinné S et al. 2011. A specific two-pore domain potassium channel blocker defines the structure of the TASK-1 open pore. J. Biol. Chem. 286:13977–84
    [Google Scholar]
  71. 71. 
    Kiper AK, Rinné S, Rolfes C, Ramírez D, Seebohm G et al. 2015. Kv1.5 blockers preferentially inhibit TASK-1 channels: TASK-1 as a target against atrial fibrillation and obstructive sleep apnea. ? Pflugers Arch 467:1081–90
    [Google Scholar]
  72. 72. 
    Chokshi RH, Larsen AT, Bhayana B, Cotten JF 2015. Breathing stimulant compounds inhibit TASK-3 potassium channel function likely by binding at a common site in the channel pore. Mol. Pharmacol. 88:926–34
    [Google Scholar]
  73. 73. 
    Rinné S, Kiper AK, Vowinkel KS, Ramírez D, Schewe M et al. 2019. The molecular basis for an allosteric inhibition of K+-flux gating in K2P channels. eLife 8:e39476Novel allosteric binding site for the local anesthetic bupivacaine, an inhibitor of TASK-1 channels.
    [Google Scholar]
  74. 74. 
    Cunningham KP, MacIntyre DE, Mathie A, Veale EL 2020. Effects of the ventilator stimulant, doxapram on human TASK-3 (KCNK9, K2P9.1) channels and TASK-1 (KCNK3, K2P3.1) channels. Acta. Physiol. 228:2e13361
    [Google Scholar]
  75. 75. 
    Flaherty DP, Simpson DS, Miller M, Maki BE, Zou B et al. 2014. Potent and selective inhibitors of the TASK-1 potassium channel through chemical optimization of a bis-amide scaffold. Bioorg. Med. Chem. Lett. 24:3968–73
    [Google Scholar]
  76. 76. 
    Ramírez D, Concha G, Arévalo B, Prent-Peñaloza L, Zúñiga L et al. 2019. Discovery of novel TASK-3 channel blockers using a pharmacophore-based virtual screening. Int. J. Mol. Sci. 20:E4014
    [Google Scholar]
  77. 77. 
    Wiedmann F, Kiper AK, Bedoya M, Ratte A, Rinné S et al. 2019. Identification of the A293 (AVE1231) binding site in the cardiac two-pore-domain potassium channel TASK-1: a common low affinity antiarrhythmic drug binding site. Cell. Physiol. Biochem. 52:1223–35
    [Google Scholar]
  78. 78. 
    Bedoya M, Rinné S, Kiper AK, Decher N, González W, Ramírez D 2019. TASK channels pharmacology: new challenges in drug design. J. Med. Chem. 62:10044–58
    [Google Scholar]
  79. 79. 
    Olschewski A, Veale EL, Nagy BM, Nagaraj C, Kwapiszewska G et al. 2017. TASK-1 (KCNK3) channels in the lung: from cell biology to clinical implications. Eur. Respir. J. 50:1700754
    [Google Scholar]
  80. 80. 
    Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS et al. 2013. A novel channelopathy in pulmonary arterial hypertension. N. Engl. J. Med. 369:351–61
    [Google Scholar]
  81. 81. 
    Girerd B, Perros F, Antigny F, Humbert M, Montani D 2014. KCNK3: new gene target for pulmonary hypertension. ? Expert Rev. Respir. Med. 8:385–87
    [Google Scholar]
  82. 82. 
    Navas P, Tenorio J, Quezada CA, Barrios E, Gordo G et al. 2016. Molecular analysis of BMPR2, TBX4, and KCNK3 and genotype-phenotype correlations in Spanish patients and families with idiopathic and hereditary pulmonary arterial hypertension. Rev. Esp. Cardiol. 69:1011–19
    [Google Scholar]
  83. 83. 
    Cunningham KP, Holden RG, Escribano-Subias PM, Cogolludo A, Veale EL, Mathie A 2019. Characterization and regulation of wild-type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension. J. Physiol. 597:1087–101
    [Google Scholar]
  84. 84. 
    Antigny F, Hautefort A, Meloche J, Belacel-Ouari M, Manoury B et al. 2016. Potassium channel subfamily K member 3 (KCNK3) contributes to the development of pulmonary arterial hypertension. Circulation 133:1371–85
    [Google Scholar]
  85. 85. 
    Lambert M, Boet A, Rucker-Martin C, Mendes-Ferreira P, Capuano V et al. 2018. Loss of KCNK3 is a hallmark of RV hypertrophy/dysfunction associated with pulmonary hypertension. Cardiovasc. Res. 114:880–93
    [Google Scholar]
  86. 86. 
    Linden AM, Sandu C, Aller MI, Vekovischeva OY, Rosenberg PH et al. 2007. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J. Pharmacol. Exp. Ther. 323:924–34
    [Google Scholar]
  87. 87. 
    Barel O, Shalev SA, Ofir R, Cohen A, Zlotogora J et al. 2008. Maternally inherited Birk Barel mental retardation dysmorphism syndrome caused by a mutation in the genomically imprinted potassium channel KCNK9. Am. J. Hum. Genet 83:193–99
    [Google Scholar]
  88. 88. 
    Graham JM Jr, Zadeh N, Kelley M, Tan ES, Liew W et al. 2016. KCNK9 imprinting syndrome—further delineation of a possible treatable disorder. Am. J. Med. Genet. A 170:2632–37
    [Google Scholar]
  89. 89. 
    Veale EL, Hassan M, Walsh Y, Al-Moubarak E, Mathie A 2014. Recovery of current through mutated TASK3 potassium channels underlying Birk Barel syndrome. Mol. Pharmacol. 85:397–407
    [Google Scholar]
  90. 90. 
    Wright PD, Veale EL, McCoull D, Tickle DC, Large JM et al. 2017. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochem. Biophys. Res. Commun. 493:444–50
    [Google Scholar]
  91. 91. 
    Cooper A, Butto T, Hammer N, Jagannath S, Fend-Guella DL et al. 2020. Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome. Nat. Commun. 11:480
    [Google Scholar]
  92. 92. 
    Tian F, Qiu Y, Lan X, Li M, Yang H, Gao Z 2019. A small-molecule compound selectively activates K2P channel TASK-3 by acting at two distant clusters of residues. Mol. Pharmacol. 96:26–35
    [Google Scholar]
  93. 93. 
    Liao P, Qiu Y, Mo Y, Fu J, Song Z et al. 2019. Selective activation of TWIK-related acid-sensitive K+ 3 subunit-containing channels is analgesic in rodent models. Sci. Transl. Med. 11:519eaaw8434Novel activator of TASK-3 channels has analgesic action in animal models of pain.
    [Google Scholar]
  94. 94. 
    Morenilla-Palao C, Luis E, Fernández-Peña C, Quintero E, Weaver JL et al. 2014. Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep 8:1571–82
    [Google Scholar]
  95. 95. 
    García G, Noriega-Navarro R, Martínez-Rojas VA, Gutiérrez-Lara EJ, Oviedo N, Murbartián J 2019. Spinal TASK-1 and TASK-3 modulate inflammatory and neuropathic pain. Eur. J. Pharmacol. 862:172631
    [Google Scholar]
  96. 96. 
    Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E 2000. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275:10128–33
    [Google Scholar]
  97. 97. 
    Meadows HJ, Chapman CG, Duckworth DM, Kelsell RE, Murdock PR et al. 2001. The neuroprotective agent sipatrigine (BW619C89) potently inhibits the human tandem pore-domain K+ channels TREK-1 and TRAAK. Brain Res 892:94–101
    [Google Scholar]
  98. 98. 
    Kennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL, Mathie A 2005. Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. Br. J. Pharmacol. 144:821–29
    [Google Scholar]
  99. 99. 
    Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thümmler S et al. 2006. Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat. Neurosci. 9:1134–41
    [Google Scholar]
  100. 100. 
    Mazella J, Pétrault O, Lucas G, Deval E, Béraud-Dufour S et al. 2010. Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLOS Biol 8:e1000355
    [Google Scholar]
  101. 101. 
    Luo Q, Chen L, Cheng X, Ma Y, Li X et al. 2017. An allosteric ligand-binding site in the extracellular cap of K2P channels. Nat. Commun. 8:378
    [Google Scholar]
  102. 102. 
    Djillani A, Mazella J, Heurteaux C, Borsotto M 2019. Role of TREK-1 in health and disease, focus on the central nervous system. Front. Pharmacol. 10:379
    [Google Scholar]
  103. 103. 
    Djillani A, Pietri M, Mazella J, Heurteaux C, Borsotto M 2019. Fighting against depression with TREK-1 blockers: past and future. A focus on spadin. Pharmacol. Ther. 194:185–98
    [Google Scholar]
  104. 104. 
    Mathie A, Veale EL. 2015. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain. Pflugers Arch 467:931–43
    [Google Scholar]
  105. 105. 
    Noël J, Zimmermann K, Busserolles J, Deval E, Alloui A et al. 2009. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 28:1308–18
    [Google Scholar]
  106. 106. 
    Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA 2001. CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J. Neurosci. 21:7491–505
    [Google Scholar]
  107. 107. 
    Marsh B, Acosta C, Djouhri L, Lawson SN 2012. Leak K+ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol. Cell. Neurosci. 49:375–86
    [Google Scholar]
  108. 108. 
    Acosta C, Djouhri L, Watkins R, Berry C, Bromage K, Lawson SN 2014. TREK2 expressed selectively in IB4-binding C-fiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J. Neurosci. 34:1494–509
    [Google Scholar]
  109. 109. 
    Pereira V, Busserolles J, Christin M, Devilliers M, Poupon L et al. 2014. Role of the TREK2 potassium channel in cold and warm thermosensation and in pain perception. Pain 155:2534–44
    [Google Scholar]
  110. 110. 
    Viatchenko-Karpinski V, Ling J, Gu JG 2018. Characterization of temperature-sensitive leak K+ currents and expression of TRAAK, TREK-1, and TREK2 channels in dorsal root ganglion neurons of rats. Mol. Brain 11:40
    [Google Scholar]
  111. 111. 
    Loucif AJC, Saintot PP, Liu J, Antonio BM, Zellmer SG et al. 2018. GI-530159, a novel, selective, mechanosensitive two-pore-domain potassium (K2P) channel opener, reduces rat dorsal root ganglion neuron excitability. Br. J. Pharmacol. 175:2272–83
    [Google Scholar]
  112. 112. 
    Han HJ, Lee SW, Kim GT, Kim EJ, Kwon B et al. 2016. Enhanced expression of TREK-1 is related with chronic constriction injury of neuropathic pain mouse model in dorsal root ganglion. Biomol. Ther. 24:252–59
    [Google Scholar]
  113. 113. 
    Lafrenière RG, Cader MZ, Poulin JF, Andres-Enguix I, Simoneau M et al. 2010. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat. Med. 16:1157–60
    [Google Scholar]
  114. 114. 
    Royal P, Andres-Bilbe A, Ávalos Prado P, Verkest C, Wdziekonski B et al. 2019. Migraine-associated TRESK mutations increase neuronal excitability through alternative translation initiation and inhibition of TREK. Neuron 101:232–45Alternative initiation product of mutant TRESK channel in migraine, which inhibits TREK channels.
    [Google Scholar]
  115. 115. 
    Takahira M, Sakurai M, Sakurada N, Sugiyama K 2005. Fenamates and diltiazem modulate lipid-sensitive mechano-gated 2P domain K+ channels. Pflugers Arch 451:474–78
    [Google Scholar]
  116. 116. 
    Veale EL, Al-Moubarak E, Bajaria N, Omoto K, Cao L et al. 2014. Influence of the N terminus on the biophysical properties and pharmacology of TREK1 potassium channels. Mol. Pharmacol. 85:671–81
    [Google Scholar]
  117. 117. 
    Tertyshnikova S, Knox RJ, Plym MJ, Thalody G, Griffin C et al. 2005. BL-1249 [(5,6,7,8-tetrahydro-naphthalen-1-yl)-[2-(1H-tetrazol-5-yl)-phenyl]-amine]: a putative potassium channel opener with bladder-relaxant properties. J. Pharmacol. Exp. Ther. 313:250–59
    [Google Scholar]
  118. 118. 
    Pope L, Arrigoni C, Lou H, Bryant C, Gallardo-Godoy A et al. 2018. Protein and chemical determinants of BL-1249 action and selectivity for K2P channels. ACS Chem. Neurosci. 9:3153–65
    [Google Scholar]
  119. 119. 
    Iwaki Y, Yashiro K, Kokubo M, Mori T, Wieting JM et al. 2019. Towards a TREK-1/2 (TWIK-related K+ channel 1 and 2) dual activator tool compound: multi-dimensional optimization of BL-1249. Bioorg. Med. Chem. Lett. 29:1601–4
    [Google Scholar]
  120. 120. 
    Schewe M, Sun H, Mert Ü, Mackenzie A, Pike ACW et al. 2019. A pharmacological master key mechanism that unlocks the selectivity filter gate in K+ channels. Science 363:875–80Identification of negatively charged activator site on TREK-2 channels.
    [Google Scholar]
  121. 121. 
    Bagriantsev SN, Clark KA, Minor DL Jr 2012. Metabolic and thermal stimuli control K2P2.1 (TREK-1) through modular sensory and gating domains. EMBO J 31:3297–308
    [Google Scholar]
  122. 122. 
    Veale EL, Mathie A. 2016. Aristolochic acid, a plant extract used in the treatment of pain and linked to Balkan endemic nephropathy, is a regulator of K2P channels. Br. J. Pharmacol. 173:1639–52
    [Google Scholar]
  123. 123. 
    Bagriantsev SN, Ang KH, Gallardo-Godoy A, Clark KA, Arkin MR et al. 2013. A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem. Biol. 8:1841–51
    [Google Scholar]
  124. 124. 
    Qiu Y, Huang L, Fu J, Han C, Fang J et al. 2020. A TREK channel family activator with well-defined structure–activation relationship for pain and neurogenic inflammation. J. Med. Chem. 63:73665–77
    [Google Scholar]
  125. 125. 
    Zhuo RG, Liu XY, Zhang SZ, Wei XL, Zheng JQ et al. 2015. Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel. Neuroscience 300:85–93
    [Google Scholar]
  126. 126. 
    Zhuo RG, Peng P, Liu XY, Yan HT, Xu JP et al. 2016. Allosteric coupling between proximal C-terminus and selectivity filter is facilitated by the movement of transmembrane segment 4 in TREK-2 channel. Sci. Rep. 6:21248
    [Google Scholar]
  127. 127. 
    Wright PD, McCoull D, Walsh Y, Large JM, Hadrys BW et al. 2019. Pranlukast is a novel small molecule activator of the two-pore domain potassium channel TREK2. Biochem. Biophys. Res. Commun. 520:35–40
    [Google Scholar]
  128. 128. 
    Dadi PK, Vierra NC, Days E, Dickerson MT, Vinson PN et al. 2017. Selective small molecule activators of TREK-2 channels stimulate dorsal root ganglion c-fiber nociceptor two-pore-domain potassium channel currents and limit calcium influx. ACS Chem. Neurosci. 8:558–68
    [Google Scholar]
  129. 129. 
    Niemeyer MI, Cid LP, Valenzuela X, Paeile V, Sepúlveda FV 2003. Extracellular conserved cysteine forms an intersubunit disulphide bridge in the KCNK5 (TASK-2) K+ channel without having an essential effect upon activity. Mol. Membr. Biol. 20:185–91
    [Google Scholar]
  130. 130. 
    Czirják G, Enyedi P. 2003. Ruthenium red inhibits TASK-3 potassium channel by interconnecting glutamate 70 of the two subunits. Mol. Pharmacol. 63:646–52
    [Google Scholar]
  131. 131. 
    Clarke CE, Veale EL, Wyse K, Vandenberg JI, Mathie A 2008. The M1P1 loop of TASK3 K2P channels apposes the selectivity filter and influences channel function. J. Biol. Chem. 283:16985–92
    [Google Scholar]
  132. 132. 
    González W, Zúñiga L, Cid LP, Arévalo B, Niemeyer MI, Sepúlveda FV 2013. An extracellular ion pathway plays a central role in the cooperative gating of a K2P K+ channel by extracellular pH. J. Biol. Chem. 288:5984–91
    [Google Scholar]
  133. 133. 
    Braun G, Lengyel M, Enyedi P, Czirják G 2015. Differential sensitivity of TREK-1, TREK-2 and TRAAK background potassium channels to the polycationic dye ruthenium red. Br. J. Pharmacol. 172:1728–38
    [Google Scholar]
  134. 134. 
    Pope L, Lolicato M, Minor DL Jr 2020. Polynuclear ruthenium amines inhibit K2P channels via a “finger in the dam” mechanism. Cell. Chem. Biol. 27:51124.e4A binding site in the extracellular cap of K2P channels for ruthenium amine inhibitors.
    [Google Scholar]
  135. 135. 
    Sandoz G, Douguet D, Chatelain F, Lazdunski M, Lesage F 2009. Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. PNAS 106:14628–33
    [Google Scholar]
  136. 136. 
    Veale EL, Rees KA, Mathie A, Trapp S 2010. Dominant negative effects of a non-conducting TREK1 splice variant expressed in brain. J. Biol. Chem. 285:29295–304
    [Google Scholar]
  137. 137. 
    Williams S, Bateman A, O'Kelly I 2013. Altered expression of two-pore domain potassium (K2P) channels in cancer. PLOS ONE 8:e74589
    [Google Scholar]
  138. 138. 
    Liu P, Xiao Z, Ren F, Guo Z, Chen Z et al. 2013. Functional analysis of a migraine-associated TRESK K+ channel mutation. J. Neurosci. 33:12810–24
    [Google Scholar]
  139. 139. 
    Tulleuda A, Cokic B, Callejo G, Saiani B, Serra J, Gasull X 2011. TRESK channel contribution to nociceptive sensory neurons excitability: modulation by nerve injury. Mol. Pain 7:30
    [Google Scholar]
  140. 140. 
    Blanc P, Génin E, Jesson B, Dubray C, Dualé C 2019. Genetics and postsurgical neuropathic pain: an ancillary study of a multicentre survey. Eur. J. Anaesthesiol. 36:342–50
    [Google Scholar]
  141. 141. 
    Lloyd EE, Crossland RF, Phillips SC, Marrelli SP, Reddy AK et al. 2011. Disruption of K2P6.1 produces vascular dysfunction and hypertension in mice. Hypertension 58:672–78
    [Google Scholar]
  142. 142. 
    Gormley P, Kurki MI, Hiekkala ME, Veerapen K, Häppölä P et al. 2018. Common variant burden contributes to the familial aggregation of migraine in 1,589 families. Neuron 98:743–53
    [Google Scholar]
  143. 143. 
    Toncheva D, Mihailova-Hristova M, Vazharova R, Staneva R, Karachanak S et al. 2014. NGS nominated CELA1, HSPG2, and KCNK5 as candidate genes for predisposition to Balkan endemic nephropathy. Biomed. Res. Int. 2014:920723
    [Google Scholar]
  144. 144. 
    Friedrich C, Rinné S, Zumhagen S, Kiper AK, Silbernagel N et al. 2014. Gain-of-function mutation in TASK-4 channels and severe cardiac conduction disorder. EMBO Mol. Med. 6:937–51
    [Google Scholar]
  145. 145. 
    Thomas D, Plant LD, Wilkens CM, McCrossan ZA, Goldstein SA 2008. Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron 58:859–70
    [Google Scholar]
  146. 146. 
    Simkin D, Cavanaugh EJ, Kim D 2008. Control of the single channel conductance of K2P10.1 (TREK-2) by the amino-terminus: role of alternative translation initiation. J. Physiol. 586:5651–63
    [Google Scholar]
  147. 147. 
    Kisselbach J, Seyler C, Schweizer PA, Gerstberger R, Becker R et al. 2014. Modulation of K2P2.1 and K2P10.1 K+ channel sensitivity to carvedilol by alternative mRNA translation initiation. Br. J. Pharmacol. 171:5182–94
    [Google Scholar]
  148. 148. 
    Ben Soussia I, El Mouridi S, Kang D, Leclercq-Blondel A, Khoubza L et al. 2019. Mutation of a single residue promotes gating of vertebrate and invertebrate two-pore domain potassium channels. Nat. Commun. 10:787
    [Google Scholar]
  149. 149. 
    Al-Moubarak E, Veale EL, Mathie A 2019. Pharmacologically reversible, loss of function mutations in the TM2 and TM4 inner pore helices of TREK-1 K2P channels. Sci. Rep. 9:12394
    [Google Scholar]
  150. 150. 
    Lengyel M, Dobolyi A, Czirják G, Enyedi P 2017. Selective and state-dependent activation of TRESK (K2P18.1) background potassium channel by cloxyquin. Br. J. Pharmacol. 174:2102–13
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030920-111536
Loading
/content/journals/10.1146/annurev-pharmtox-030920-111536
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error