1932

Abstract

Arsenic is a naturally occurring metalloid and one of the few metals that can be metabolized inside the human body. The pervasive presence of arsenic in nature and anthropogenic sources from agricultural and medical use have perpetuated human exposure to this toxic and carcinogenic element. Highly exposed individuals are susceptible to various illnesses, including skin disorders; cognitive impairment; and cancers of the lung, liver, and kidneys. In fact, across the globe, approximately 200 million people are exposed to potentially toxic levels of arsenic, which has prompted substantial research and mitigation efforts to combat this extensive public health issue. This review provides an up-to-date look at arsenic-related challenges facing the global community, including current sources of arsenic, global disease burden, arsenic resistance, and shortcomings of ongoing mitigation measures, and discusses potential next steps.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Arsenic: A Global Environmental Challenge
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-030220-013418
2021-01-06
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-030220-013418.html?itemId=/content/journals/10.1146/annurev-pharmtox-030220-013418&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ 2011. Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci. 123:2305–32
    [Google Scholar]
  2. 2. 
    Vahidnia A, Van der Voet GB, De Wolff FA 2007. Arsenic neurotoxicity—a review. Hum. Exp. Toxicol. 26:10823–32
    [Google Scholar]
  3. 3. 
    Fowler T. 1786. Medical reports of the effects of arsenic in the cure of agues, remitting fevers, and periodic head-achs. Lond. Med. J. 7:Part 2192–205
    [Google Scholar]
  4. 4. 
    WHO (World Health Organ.). 2008. Guidelines for drinking-water quality. Third edition: incorporating the first and second addenda, Volume 1, recommendations Guid., WHO Geneva: http://www.who.int/water_sanitation_health/dwq/fulltext.pdf
    [Google Scholar]
  5. 5. 
    EPA (Environ. Prot. Agency). 2001. Drinking water standard for arsenic. EPA Fact Sheet 815-F-00-015, EPA Washington, DC: https://nepis.epa.gov/Exe/ZyPdf.cgi?Dockey=20001XXC.txt
  6. 6. 
    Cheng A, Tyne R, Kwok YT, Rees L, Craig L et al. 2016. Investigating arsenic contents in surface and drinking water by voltammetry and the method of standard additions. J. Chem. Educ. 93:111945–50
    [Google Scholar]
  7. 7. 
    Ravenscroft P, Brammer H, Richards K 2011. Arsenic Pollution: A Global Synthesis Hoboken, NJ: John Wiley & Sons
    [Google Scholar]
  8. 8. 
    Shankar S, Shanker U 2014. Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014:304524
    [Google Scholar]
  9. 9. 
    Chen QY, DesMarais T, Costa M 2019. Metals and mechanisms of carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 59:537–54
    [Google Scholar]
  10. 10. 
    Chakraborti D, Das B, Rahman MM, Chowdhury UK, Biswas B et al. 2009. Status of groundwater arsenic contamination in the state of West Bengal, India: a 20‐year study report. Mol. Nutr. Food Res. 53:5542–51
    [Google Scholar]
  11. 11. 
    IARC (Int. Agency Res. Cancer). 2012. Arsenic, Metals, Fibres, and Dusts, Vol. 100 C: A Review of Human Carcinogens Geneva: WHO Press
    [Google Scholar]
  12. 12. 
    Antonelli R, Shao K, Thomas DJ, Sams R II, Cowden J 2014. AS3MT, GSTO, and PNP polymorphisms: impact on arsenic methylation and implications for disease susceptibility. Environ. Res 132:156–67
    [Google Scholar]
  13. 13. 
    Sinha D, Prasad P. 2020. Health effects inflicted by chronic low‐level arsenic contamination in groundwater: a global public health challenge. J. Appl. Toxicol. 40:187–131
    [Google Scholar]
  14. 14. 
    Lai PY, Cottingham KL, Steinmaus C, Karagas MR, Miller MD 2015. Arsenic and rice: translating research to address health care providers’ needs. J. Pediatr. 167:4797–803
    [Google Scholar]
  15. 15. 
    Nachman KE, Ginsberg GL, Miller MD, Murray CJ, Nigra AE, Pendergrast CB 2017. Mitigating dietary arsenic exposure: current status in the United States and recommendations for an improved path forward. Sci. Total Environ. 581:221–36
    [Google Scholar]
  16. 16. 
    Steinmaus C, Ferreccio C, Acevedo J, Yuan Y, Liaw J et al. 2014. Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure. Cancer Epidemiol. Prev. Biomarkers 23:81529–38
    [Google Scholar]
  17. 17. 
    Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B et al. 2010. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376:9737252–58
    [Google Scholar]
  18. 18. 
    Lokuge KM, Smith W, Caldwell B, Dear K, Milton AH 2004. The effect of arsenic mitigation interventions on disease burden in Bangladesh. Environ. Health Perspect. 112:111172–77
    [Google Scholar]
  19. 19. 
    Flanagan SV, Johnston RB, Zheng Y 2012. Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bull. World Health Organ. 90:839–46
    [Google Scholar]
  20. 20. 
    Bissen M, Frimmel FH. 2003. Arsenic—a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim. Hydrobiol. 31:19–18
    [Google Scholar]
  21. 21. 
    Francesconi KA, Kuehnelt D. 2001. Arsenic compounds in the environment. Environmental Chemistry of Arsenic WT Frankenberger 71–114 Boca Raton, FL: CRC Press
    [Google Scholar]
  22. 22. 
    Smedley PL, Kinniburgh DG. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17:5517–68
    [Google Scholar]
  23. 23. 
    Al-Abed SR, Jegadeesan G, Purandare J, Allen D 2007. Arsenic release from iron rich mineral processing waste: influence of pH and redox potential. Chemosphere 66:4775–82
    [Google Scholar]
  24. 24. 
    Matschullat J. 2000. Arsenic in the geosphere—a review. Sci. Total Environ. 249:1–3297–312
    [Google Scholar]
  25. 25. 
    Polizzotto ML, Harvey CF, Li G, Badruzzman B, Ali A et al. 2006. Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chem. Geol. 228:1–397–111
    [Google Scholar]
  26. 26. 
    Mukherjee A, Bhattacharya P, Shi F, Fryar AE, Mukherjee AB et al. 2009. Chemical evolution in the high arsenic groundwater of the Huhhot basin (Inner Mongolia, PR China) and its difference from the western Bengal basin (India). Appl. Geochem. 24:101835–51
    [Google Scholar]
  27. 27. 
    Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G 2007. Arsenic in the environment: biology and chemistry. Sci. Total Environ. 379:2–3109–20
    [Google Scholar]
  28. 28. 
    Nicolli HB, Bundschuh J, Blanco MDC, Tujchneider OC, Panarello HO et al. 2012. Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci. Total Environ. 429:36–56
    [Google Scholar]
  29. 29. 
    Bhattacharya P, Frisbie SH, Smith E, Naidu R, Jacks G, Sarkar B 2002. Arsenic in the environment: a global perspective. Handbook of Heavy Metals in the Environment B Sarkar 147–215 New York: Marcell Dekker Inc.,
    [Google Scholar]
  30. 30. 
    Herath I, Vithanage M, Bundschuh J, Maity JP, Bhattacharya P 2016. Natural arsenic in global groundwaters: distribution and geochemical triggers for mobilization. Curr. Pollut. Rep. 2:168–89
    [Google Scholar]
  31. 31. 
    Carlin DJ, Naujokas MF, Bradham KD, Cowden J, Heacock M et al. 2016. Arsenic and environmental health: state of the science and future research opportunities. Environ. Health Perspect. 124:7890–99
    [Google Scholar]
  32. 32. 
    Feldmann J, Krupp EM. 2011. Critical review or scientific opinion paper: arsenosugars—a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs. ? Anal. Bioanal. Chem. 399:51735–41
    [Google Scholar]
  33. 33. 
    Schmeisser E, Goessler W, Francesconi KA 2006. Human metabolism of arsenolipids present in cod liver. Anal. Bioanal. Chem. 385:2367–76
    [Google Scholar]
  34. 34. 
    Molin M, Ulven SM, Meltzer HM, Alexander J 2015. Arsenic in the human food chain, biotransformation and toxicology—review focusing on seafood arsenic. J. Trace Elem. Med. Biol. 31:249–59
    [Google Scholar]
  35. 35. 
    Leffers L, Ebert F, Taleshi MS, Francesconi KA, Schwerdtle T 2013. In vitro toxicological characterization of two arsenosugars and their metabolites. Mol. Nutr. Food Res. 57:71270–82
    [Google Scholar]
  36. 36. 
    Taylor M, Lau BP, Feng SY, Bourque C, Buick JK et al. 2013. Effects of oral exposure to arsenobetaine during pregnancy and lactation in Sprague-Dawley rats. J. Toxicol. Environ. Health A 76:241333–45
    [Google Scholar]
  37. 37. 
    Castlehouse H, Smith C, Raab A, Deacon C, Meharg AA, Feldmann J 2003. Biotransformation and accumulation of arsenic in soil amended with seaweed. Environ. Sci. Technol. 37:5951–57
    [Google Scholar]
  38. 38. 
    Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML 2017. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci. Total Environ. 581:209–20
    [Google Scholar]
  39. 39. 
    Antaya NT, Soder KJ, Kraft J, Whitehouse NL, Guindon NE et al. 2015. Incremental amounts of Ascophyllum nodosum meal do not improve animal performance but do increase milk iodine output in early lactation dairy cows fed high-forage diets. J. Dairy Sci. 98:31991–2004
    [Google Scholar]
  40. 40. 
    Nriagu JO, Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH 2007. Arsenic in soil and groundwater: an overview. Trace Metals Other Contam. Environ. 9:3–60
    [Google Scholar]
  41. 41. 
    Hoonjan M, Jadhav V, Bhatt P 2018. Arsenic trioxide: insights into its evolution to an anticancer agent. J. Biol. Inorg. Chem. 23:3313–29
    [Google Scholar]
  42. 42. 
    Miller WH, Schipper HM, Lee JS, Singer J, Waxman S 2002. Mechanisms of action of arsenic trioxide. Cancer Res 62:143893–903
    [Google Scholar]
  43. 43. 
    Hu J, Fang J, Dong Y, Chen SJ, Chen Z 2005. Arsenic in cancer therapy. Anticancer Drugs 16:2119–27
    [Google Scholar]
  44. 44. 
    Waxman S, Anderson KC. 2001. History of the development of arsenic derivatives in cancer therapy. Oncologist 6:900023–10
    [Google Scholar]
  45. 45. 
    Panda AK, Hazra J. 2012. Arsenical compounds in Ayurveda medicine: a prospective analysis. Int. J. Res. Ayurveda Pharm. 3:51–5
    [Google Scholar]
  46. 46. 
    Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM et al. 1997. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:93354–60
    [Google Scholar]
  47. 47. 
    Kumana C, Au W, Lee N, Kou M, Mak R et al. 2002. Systemic availability of arsenic from oral arsenic-trioxide used to treat patients with hematological malignancies. Eur. J. Clin. Pharmacol. 58:8521–26
    [Google Scholar]
  48. 48. 
    Chow SK, Chan JY, Fung KP 2004. Inhibition of cell proliferation and the action mechanisms of arsenic trioxide (As2O3) on human breast cancer cells. J. Cell. Biochem. 93:1173–87
    [Google Scholar]
  49. 49. 
    Uslu R, Sanli UA, Sezgin C, Karabulut B, Terzioglu E et al. 2000. Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines. Clin. Cancer Res. 6:124957–64
    [Google Scholar]
  50. 50. 
    Xiao YF, Liu SX, Wu DD, Chen X, Ren LF 2006. Inhibitory effect of arsenic trioxide on angiogenesis and expression of vascular endothelial growth factor in gastric cancer. World J. Gastroenterol. 12:365780–86
    [Google Scholar]
  51. 51. 
    Yu J, Qian H, Li Y, Wang Y, Zhang X et al. 2007. Arsenic trioxide (As2O3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecol. Oncol. 106:2400–6
    [Google Scholar]
  52. 52. 
    Cao Y, Yu SL, Wang Y, Guo GY, Ding Q, An RH 2011. MicroRNA-dependent regulation of PTEN after arsenic trioxide treatment in bladder cancer cell line T24. Tumor Biol 32:1179–88
    [Google Scholar]
  53. 53. 
    Wang W, Adachi M, Zhang R, Zhou J, Zhu D 2009. A novel combination therapy with arsenic trioxide and parthenolide against pancreatic cancer cells. Pancreas 38:4e114–23
    [Google Scholar]
  54. 54. 
    Li DR, Lin YC, Xie LX, Du CW, Wu MY 2003. Arsenic trioxide enhances radiosensitivity in vitro of nasopharyngeal carcinoma. Exp. Oncol. 25:4248–51
    [Google Scholar]
  55. 55. 
    Kong B, Huang S, Wang W, Ma D, Qu X et al. 2005. Arsenic trioxide induces apoptosis in cisplatin-sensitive and -resistant ovarian cancer cell lines. Int. J. Gynecol. Cancer 15:5872–77
    [Google Scholar]
  56. 56. 
    Chapman HD, Johnson ZB. 2002. Use of antibiotics and roxarsone in broiler chickens in the USA: analysis for the years 1995 to 2000. Poultry Sci 81:3356–64
    [Google Scholar]
  57. 57. 
    Nigra AE, Nachman KE, Love DC, Grau-Perez M, Navas-Acien A 2017. Poultry consumption and arsenic exposure in the US population. Environ. Health Perspect. 125:3370–77
    [Google Scholar]
  58. 58. 
    Nachman KE, Baron PA, Raber G, Francesconi KA, Navas-Acien A, Love DC 2013. Roxarsone, inorganic arsenic, and other arsenic species in chicken: a US-based market basket sample. Environ. Health Perspect. 121:7818–24
    [Google Scholar]
  59. 59. 
    Fayiga AO, Saha UK. 2016. Arsenic hyperaccumulating fern: implications for remediation of arsenic contaminated soils. Geoderma 284:132–43
    [Google Scholar]
  60. 60. 
    Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL 2012. Arsenic, organic foods, and brown rice syrup. Environ. Health Perspect. 120:5623–26
    [Google Scholar]
  61. 61. 
    Karagas MR, Punshon T, Davis M, Bulka CM, Slaughter F et al. 2019. Rice intake and emerging concerns on arsenic in rice: a review of the human evidence and methodologic challenges. Curr. Environ. Health Rep. 6:4361–72
    [Google Scholar]
  62. 62. 
    FDA (US Food Drug Admin.). 2016. Arsenic in rice and rice products risk assessment report Rep., Cent. Food Saf. Appl. Nutr., FDA Silver Spring, MD: https://www.fda.gov/files/food/published/Arsenic-in-Rice-and-Rice-Products-Risk-Assessment-Report-PDF.pdf
    [Google Scholar]
  63. 63. 
    Eur. Comm. 2015. Commission regulation (EU) 2015/1006 of 25 June 2015 amending Regulation (EC) No 1881/2006 as regards maximum levels of inorganic arsenic in foodstuffs. Off. J. Eur. Union 2015:14–16
    [Google Scholar]
  64. 64. 
    Clemente JC, Ursell LK, Parfrey LW, Knight R 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148:61258–70
    [Google Scholar]
  65. 65. 
    Naranmandura H, Rehman K, Le XC, Thomas DJ 2013. Formation of methylated oxyarsenicals and thioarsenicals in wild-type and arsenic (+3 oxidation state) methyltransferase knockout mice exposed to arsenate. Anal. Bioanal. Chem. 405:61885–91
    [Google Scholar]
  66. 66. 
    McDermott TR, Stolz JF, Oremland RS 2020. Arsenic and the gastrointestinal tract microbiome. Environ. Microbiol. Rep. 12:2136–59
    [Google Scholar]
  67. 67. 
    Oremland RS, Stolz JF. 2005. Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:245–49
    [Google Scholar]
  68. 68. 
    Stolz JF, Oremland RS. 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23:5615–27
    [Google Scholar]
  69. 69. 
    Dunivin TK, Yeh SY, Shade A 2019. A global survey of arsenic-related genes in soil microbiomes. BMC Biol 17:145
    [Google Scholar]
  70. 70. 
    Huang JH. 2014. Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 225:21848
    [Google Scholar]
  71. 71. 
    Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D 2009. Microbial responses to environmental arsenic. Biometals 22:1117–30
    [Google Scholar]
  72. 72. 
    Watanabe T, Hirano S. 2013. Metabolism of arsenic and its toxicological relevance. Arch. Toxicol. 87:6969–79
    [Google Scholar]
  73. 73. 
    Coryell M, McAlpine M, Pinkham NV, McDermott TR, Walk ST 2018. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat. Commun. 9:15424
    [Google Scholar]
  74. 74. 
    Wang HT, Chi QQ, Zhu D, Li G, Ding J et al. 2019. Arsenic and sulfamethoxazole increase the incidence of antibiotic resistance genes in the gut of earthworm. Environ. Sci. Technol. 53:1710445–53
    [Google Scholar]
  75. 75. 
    Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J et al. 2016. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535:761094–103
    [Google Scholar]
  76. 76. 
    Tikka C, Manthari RK, Ommati MM, Niu R, Sun Z et al. 2020. Immune disruption occurs through altered gut microbiome and NOD2 in arsenic induced mice: correlation with colon cancer markers. Chemosphere 246:125791
    [Google Scholar]
  77. 77. 
    Hoen AG, Madan JC, Li Z, Coker M, Lundgren SN et al. 2018. Sex-specific associations of infants’ gut microbiome with arsenic exposure in a US population. Sci. Rep. 8:112627
    [Google Scholar]
  78. 78. 
    Kameyama K, Itoh K. 2014. Intestinal colonization by a Lachnospiraceae bacterium contributes to the development of diabetes in obese mice. Microbes Environ 29:4427–30
    [Google Scholar]
  79. 79. 
    Di Gioia D, Aloisio I, Mazzola G, Biavati B 2014. Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl. Microbiol. Biotechnol. 98:2563–77
    [Google Scholar]
  80. 80. 
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:1107–18
    [Google Scholar]
  81. 81. 
    Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9:5313–23
    [Google Scholar]
  82. 82. 
    Dahan D, Jude BA, Lamendella R, Keesing F, Perron GG 2018. Exposure to arsenic alters the microbiome of larval zebrafish. Front. Microbiol. 9:1323
    [Google Scholar]
  83. 83. 
    Kerr CA, Grice DM, Tran CD, Bauer DC, Li D et al. 2015. Early life events influence whole-of-life metabolic health via gut microflora and gut permeability. Crit. Rev. Microbiol. 41:3326–40
    [Google Scholar]
  84. 84. 
    Lee YK, Mazmanian SK. 2010. Has the microbiota played a critical role in the evolution of the adaptive immune system. ? Science 330:60121768–73
    [Google Scholar]
  85. 85. 
    Muñoz A, Chervona Y, Hall M, Kluz T, Gamble MV, Costa M 2015. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water. Toxicol. Appl. Pharmacol. 284:3330–38
    [Google Scholar]
  86. 86. 
    Dong X, Shulzhenko N, Lemaitre J, Greer RL, Peremyslova K et al. 2017. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh. PLOS ONE 12:12e0188487
    [Google Scholar]
  87. 87. 
    Gaulke CA, Rolshoven J, Wong CP, Hudson LG, Ho E, Sharpton TJ 2018. Marginal zinc deficiency and environmentally relevant concentrations of arsenic elicit combined effects on the gut microbiome. mSphere 3:6e00521–18
    [Google Scholar]
  88. 88. 
    Guo X, Liu S, Wang Z, Zhang XX, Li M, Wu B 2014. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112:1–8
    [Google Scholar]
  89. 89. 
    Liu S, Guo X, Zhang X, Cui Y, Zhang Y, Wu B 2013. Impact of iron precipitant on toxicity of arsenic in water: a combined in vivo and in vitro study. Environ. Sci. Technol. 47:73432–38
    [Google Scholar]
  90. 90. 
    Coryell M, Roggenbeck BA, Walk ST 2019. The human gut microbiome's influence on arsenic toxicity. Curr. Pharmacol. Rep. 5:6491–504
    [Google Scholar]
  91. 91. 
    Schlebusch CM, Gattepaille LM, Engström K, Vahter M, Jakobsson M, Broberg K 2015. Human adaptation to arsenic-rich environments. Mol. Biol. Evol. 32:61544–55
    [Google Scholar]
  92. 92. 
    Fujihara J, Fujii Y, Agusa T, Kunito T, Yasuda T et al. 2009. Ethnic differences in five intronic polymorphisms associated with arsenic metabolism within human arsenic (+3 oxidation state) methyltransferase (AS3MT) gene. Toxicol. Appl. Pharmacol. 234:141–46
    [Google Scholar]
  93. 93. 
    Schlebusch CM, Lewis CM Jr, Vahter M, Engström K, Tito RY et al. 2013. Possible positive selection for an arsenic-protective haplotype in humans. Environ. Health Perspect. 121:153–58
    [Google Scholar]
  94. 94. 
    Gardner R, Hamadani J, Grandér M, Tofail F, Nermell B et al. 2011. Persistent exposure to arsenic via drinking water in rural Bangladesh despite major mitigation efforts. Am. J. Public Health 101:S1S333–38
    [Google Scholar]
  95. 95. 
    Milton AH, Smith W, Dear K, Ng J, Sim M et al. 2007. A randomised intervention trial to assess two arsenic mitigation options in Bangladesh. J. Environ. Sci. Health A 42:121897–908
    [Google Scholar]
  96. 96. 
    Hira-Smith MM, Yuan Y, Savarimuthu X, Liaw J, Hira A et al. 2007. Arsenic concentrations and bacterial contamination in a pilot shallow dugwell program in West Bengal, India. J. Environ. Sci. Health A 42:189–95
    [Google Scholar]
  97. 97. 
    Sathe SS, Mahanta C. 2019. Groundwater flow and arsenic contamination transport modeling for a multi aquifer terrain: assessment and mitigation strategies. J. Environ. Manag. 231:166–81
    [Google Scholar]
  98. 98. 
    EPA (Environ. Prot. Agency). 2001. National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring. Fed. Regist 66:146975–7066
    [Google Scholar]
  99. 99. 
    Ghurye G, Clifford D. 2004. As(III) oxidation using chemical and solid‐phase oxidants. J. Am. Water Works Assoc. 96:184–96
    [Google Scholar]
  100. 100. 
    Leupin OX, Hug SJ. 2005. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res 39:91729–40
    [Google Scholar]
  101. 101. 
    Jekel MR. 1994. Removal of arsenic in drinking water treatment. Adv. Environ. Sci. Technol. 26:119
    [Google Scholar]
  102. 102. 
    Kim MJ, Nriagu J. 2000. Oxidation of arsenite in groundwater using ozone and oxygen. Sci. Total Environ. 247:171–79
    [Google Scholar]
  103. 103. 
    Sharma VK, Dutta PK, Ray AK 2007. Review of kinetics of chemical and photocatalytical oxidation of arsenic (III) as influenced by pH. J. Environ. Sci. Health A 42:7997–1004
    [Google Scholar]
  104. 104. 
    Yoon SH, Lee JH. 2005. Oxidation mechanism of As (III) in the UV/TiO2 system: evidence for a direct hole oxidation mechanism. Environ. Sci. Technol. 39:249695–701
    [Google Scholar]
  105. 105. 
    Zhang T, Sun DD. 2013. Removal of arsenic from water using multifunctional micro-/nano-structured MnO2 spheres and microfiltration. Chem. Eng. J. 225:271–79
    [Google Scholar]
  106. 106. 
    Penke YK, Anantharaman G, Ramkumar J, Kar KK 2019. Redox synergistic Mn-Al-Fe and Cu-Al-Fe ternary metal oxide nano adsorbents for arsenic remediation with environmentally stable As(0) formation. J. Hazard. Mater. 364:519–30
    [Google Scholar]
  107. 107. 
    Gallard H, von Gunten U 2002. Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Res 36:165–74
    [Google Scholar]
  108. 108. 
    Katsoyiannis IA, Zouboulis AI, Jekel M 2004. Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxides during groundwater treatment. Ind. Eng. Chem. Res. 43:2486–93
    [Google Scholar]
  109. 109. 
    Katsoyiannis IA, Zouboulis AI. 2004. Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:117–26
    [Google Scholar]
  110. 110. 
    Huo L, Zeng X, Su S, Bai L, Wang Y 2017. Enhanced removal of As(V) from aqueous solution using modified hydrous ferric oxide nanoparticles. Sci. Rep. 7:40765
    [Google Scholar]
  111. 111. 
    Dixit S, Hering JG. 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37:184182–89
    [Google Scholar]
  112. 112. 
    He F, Zhao D, Liu J, Roberts CB 2007. Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind. Eng. Chem. Res. 46:129–34
    [Google Scholar]
  113. 113. 
    Deng Y, Zhang Q, Zhang Q, Zhong Y 2019. Arsenate removal from underground water by polystyrene-confined hydrated ferric oxide (HFO) nanoparticles: effect of humic acid. Environ. Sci. Pollut. Res. 27:6861–71
    [Google Scholar]
  114. 114. 
    Cui H, Su Y, Li Q, Gao S, Shang JK 2013. Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling. Water Res 47:166258–68
    [Google Scholar]
  115. 115. 
    Berg M, Luzi S, Trang PTK, Viet PH, Giger W, Stüben D 2006. Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits. Environ. Sci. Technol. 40:175567–73
    [Google Scholar]
  116. 116. 
    Roberts LC, Hug SJ, Ruettimann T, Billah MM, Khan AW, Rahman MT 2004. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations. Environ. Sci. Technol. 38:1307–15
    [Google Scholar]
  117. 117. 
    Cubadda F, Jackson BP, Cottingham KL, Van Horne YO, Kurzius-Spencer M 2017. Human exposure to dietary inorganic arsenic and other arsenic species: state of knowledge, gaps and uncertainties. Sci. Total Environ. 579:1228–39
    [Google Scholar]
  118. 118. 
    Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P 2010. Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003–2004 NHANES data. Environ. Health Perspect. 118:3345–50
    [Google Scholar]
  119. 119. 
    Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ 2009. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Technol. 43:103778–83
    [Google Scholar]
  120. 120. 
    Xu XY, McGrath SP, Meharg AA, Zhao FJ 2008. Growing rice aerobically markedly decreases arsenic accumulation. Environ. Sci. Technol. 42:155574–79
    [Google Scholar]
  121. 121. 
    Zhao FJ, McGrath SP, Meharg AA 2010. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 61:535–59
    [Google Scholar]
  122. 122. 
    Peng S, Bouman B, Visperas RM, Castañeda A, Nie L, Park HK 2006. Comparison between aerobic and flooded rice in the tropics: agronomic performance in an eight-season experiment. Field Crops Res 96:2–3252–59
    [Google Scholar]
  123. 123. 
    Ma JF, Yamaji N, Mitani N, Xu XY, Su YH et al. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. PNAS 105:299931–35
    [Google Scholar]
  124. 124. 
    Xu X, Chen C, Wang P, Kretzschmar R, Zhao FJ 2017. Control of arsenic mobilization in paddy soils by manganese and iron oxides. Environ. Pollut. 231:37–47
    [Google Scholar]
  125. 125. 
    Gustave W, Yuan ZF, Sekar R, Chang HC, Zhang J et al. 2018. Arsenic mitigation in paddy soils by using microbial fuel cells. Environ. Pollut. 238:647–55
    [Google Scholar]
  126. 126. 
    Thongnok S, Siripornadulsil W, Siripornadulsil S 2018. Mitigation of arsenic toxicity and accumulation in hydroponically grown rice seedlings by co-inoculation with arsenite-oxidizing and cadmium-tolerant bacteria. Ecotoxicol. Environ. Saf. 162:591–602
    [Google Scholar]
  127. 127. 
    Upadhyay AK, Singh NK, Singh R, Rai UN 2016. Amelioration of arsenic toxicity in rice: comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol. Environ. Saf. 124:68–73
    [Google Scholar]
  128. 128. 
    Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D et al. 2010. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. PNAS 107:4921187–92
    [Google Scholar]
  129. 129. 
    Milton AH, Hore SK, Hossain MZ, Rahman M 2012. Bangladesh arsenic mitigation programs: lessons from the past. Emerg. Health Threats J. 5:17269
    [Google Scholar]
  130. 130. 
    German MS, Watkins TA, Chowdhury M, Chatterjee P, Rahman M et al. 2019. Evidence of economically sustainable village-scale microenterprises for arsenic remediation in developing countries. Environ. Sci. Technol. 53:31078–86
    [Google Scholar]
  131. 131. 
    Benramdane L, Accominotti M, Fanton L, Malicier D, Vallon JJ 1999. Arsenic speciation in human organs following fatal arsenic trioxide poisoning—a case report. Clin. Chem. 45:2301–6
    [Google Scholar]
  132. 132. 
    Amini M, Abbaspour KC, Berg M, Winkel L, Hug SJ et al. 2008. Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 42:3669–75
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-030220-013418
Loading
/content/journals/10.1146/annurev-pharmtox-030220-013418
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error