1932

Abstract

The genetic basis for most inherited neurodegenerative diseases has been identified, yet there are limited disease-modifying therapies for these patients. A new class of drugs—antisense oligonucleotides (ASOs)—show promise as a therapeutic platform for treating neurological diseases. ASOs are designed to bind to the RNAs either by promoting degradation of the targeted RNA or by elevating expression by RNA splicing. Intrathecal injection into the cerebral spinal fluid results in broad distribution of antisense drugs and long-term effects. Approval of nusinersen in 2016 demonstrated that effective treatments for neurodegenerative diseases can be identified and that treatments not only slow disease progression but also improve some symptoms. Antisense drugs are currently in development for amyotrophic lateral sclerosis, Huntington's disease, Alzheimer's disease, Parkinson's disease, and Angelman syndrome, and several drugs are in late-stage research for additional neurological diseases. This review highlights the advances in antisense technology as potential treatments for neurological diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010919-023738
2021-01-06
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-010919-023738.html?itemId=/content/journals/10.1146/annurev-pharmtox-010919-023738&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C et al. 1993. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72:971–83
    [Google Scholar]
  2. 2. 
    Orr HT, Zoghbi HY. 2007. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30:575–621
    [Google Scholar]
  3. 3. 
    DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M et al. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–56
    [Google Scholar]
  4. 4. 
    Renton AE, Majounie E, Waite A, Simón-Sánchez J, Rollinson S et al. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–68
    [Google Scholar]
  5. 5. 
    Crooke ST, Witztum JL, Bennett CF, Baker BF 2018. RNA-targeted therapeutics. Cell Metab 27:714–39
    [Google Scholar]
  6. 6. 
    Osen-Sand A, Catsicast M, Staple JK, Jones KA, Ayala G et al. 1993. Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364:445–48
    [Google Scholar]
  7. 7. 
    Hooper ML, Chiasson BJ, Robertson HA 1994. Infusion into the brain of an antisense oligonucleotide to the immediate-early gene c-fos suppresses production of Fos and produces a behavioral effect. Neuroscience 63:917–24
    [Google Scholar]
  8. 8. 
    Dragunow M, Lawlor P, Chiasson B, Robertson H 1993. c-fos antisense generates apomorphine and amphetamine-induced rotation. Neuroreport 5:305–6
    [Google Scholar]
  9. 9. 
    Weiss B, Zhou L-W, Zhang S-P, Qin Z-H 1993. Antisense oligodeoxynucleotide inhibits D2 dopamine receptor-mediated behavior and D2 messenger RNA. Neuroscience 55:607–12
    [Google Scholar]
  10. 10. 
    Wahlestedt C, Golanov E, Yamamoto S, Yee F, Ericson H et al. 1993. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363:260–63
    [Google Scholar]
  11. 11. 
    Bennett CF, Swayze EE. 2010. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50:259–93
    [Google Scholar]
  12. 12. 
    Cerritelli SM, Crouch RJ. 2009. Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–505
    [Google Scholar]
  13. 13. 
    Wu H, Lima WF, Crooke ST 1999. Properties of cloned and expressed human RNase H1. J. Biol. Chem. 274:28270–78
    [Google Scholar]
  14. 14. 
    Bennett CF. 2019. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70:307–21
    [Google Scholar]
  15. 15. 
    Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ et al. 2018. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med. 379:22–31
    [Google Scholar]
  16. 16. 
    Scott LJ. 2020. Givosiran: first approval. Drugs 80:335–39
    [Google Scholar]
  17. 17. 
    Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang C-C, Ueda M et al. 2018. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379:11–21
    [Google Scholar]
  18. 18. 
    Alterman JF, Godinho BMDC, Hassler MR, Ferguson CM, Echeverria D et al. 2019. A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system. Nat. Biotechnol. 37:884–94
    [Google Scholar]
  19. 19. 
    Cazenave C, Stein CA, Loreau N, Thuong NT, Neckers LM et al. 1989. Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides. Nucleic Acids Res 17:4255–73
    [Google Scholar]
  20. 20. 
    Dominski Z, Kole R. 1993. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. PNAS 90:8673–77
    [Google Scholar]
  21. 21. 
    van Deutekom JCT, Bremmer-Bout M, Janson AA, Ginjaar IB, Baas F et al. 2001. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum. Mol. Genet. 10:1547–54
    [Google Scholar]
  22. 22. 
    Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL et al. 2017. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377:1723–32
    [Google Scholar]
  23. 23. 
    Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR 2008. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82:834–48
    [Google Scholar]
  24. 24. 
    Ward AJ, Norrbom M, Chun S, Bennett CF, Rigo F 2014. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res 42:5871–79
    [Google Scholar]
  25. 25. 
    Nomakuchi TT, Rigo F, Aznarez I, Krainer AR 2016. Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat. Biotechnol. 34:164–66
    [Google Scholar]
  26. 26. 
    Vickers TA, Wyatt JR, Burckin T, Bennett CF, Freier SM 2001. Fully modified 2′-MOE oligonucleotides redirect polyadenylation. Nucleic Acids Res 29:1293–99
    [Google Scholar]
  27. 27. 
    Esau C, Kang X, Peralta E, Hanson E, Marcusson EG et al. 2004. Micro-RNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279:52361–65
    [Google Scholar]
  28. 28. 
    Liang XH, Sun H, Shen W, Wang S, Yao J et al. 2017. Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Res 45:9528–46
    [Google Scholar]
  29. 29. 
    Liang X-H, Shen W, Sun H, Migawa MT, Vickers TA, Crooke ST 2016. Specific increase in translation of proteins by antisense oligonucleotides targeting uORFs. Nat. Biotechnol. 34:875–80
    [Google Scholar]
  30. 30. 
    Choi WY, Giraldez AJ, Schier AF 2007. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318:271–74
    [Google Scholar]
  31. 31. 
    Bennett CF, Baker BF, Pham N, Swayze E, Geary RS 2017. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol. 57:81–105
    [Google Scholar]
  32. 32. 
    Eckstein F. 2000. Phosphorothioate oligodeoxynucleotides: What is their origin and what is unique about them. ? Antisense Nucleic Acid Drug Dev 10:117–21
    [Google Scholar]
  33. 33. 
    Iversen PL. 2008. Morpholinos. Antisense Drug Technology: Principles, Strategies, and Applications ST Crooke 565–82 Boca Raton, FL: Taylor and Francis
    [Google Scholar]
  34. 34. 
    Koshkin AA, Nielsen P, Meldgaard M, Rajwanshi VK, Singh SK, Wengel J 1998. LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA:LNA duplexes. J. Am. Chem. Soc. 120:13252–53
    [Google Scholar]
  35. 35. 
    Obika S, Nanbu D, Hari Y, Andoh J-i, Morio K-i et al. 1998. Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett 39:5401–4
    [Google Scholar]
  36. 36. 
    Seth PP, Vasquez G, Allerson CA, Berdeja A, Gaus H et al. 2010. Synthesis and biophysical evaluation of 2′,4′-constrained 2′O-methoxyethyl and 2′,4′-constrained 2′O-ethyl nucleic acid analogues. J. Org. Chem. 75:1569–81
    [Google Scholar]
  37. 37. 
    Freier SM, Altmann K-H. 1997. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res 25:4429–43
    [Google Scholar]
  38. 38. 
    Shen W, Liang X-H, Sun H, Crooke ST 2015. 2′-Fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res 43:4569–78
    [Google Scholar]
  39. 39. 
    Rigo F, Hua Y, Chun SJ, Prakash TP, Krainer AR, Bennett CF 2012. Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing. Nat. Chem. Biol. 8:555–61
    [Google Scholar]
  40. 40. 
    Liang XH, Sun H, Shen W, Crooke ST 2015. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res 43:2927–45
    [Google Scholar]
  41. 41. 
    DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS et al. 2017. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 9:eaag0481
    [Google Scholar]
  42. 42. 
    Rigo F, Chun SJ, Norris DA, Hung G, Lee S et al. 2014. Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J. Pharmacol. Exp. Ther. 350:46–55
    [Google Scholar]
  43. 43. 
    Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM et al. 2012. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 74:1031–44
    [Google Scholar]
  44. 44. 
    Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP et al. 2006. Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Investig. 116:2290–96
    [Google Scholar]
  45. 45. 
    Southwell AL, Kordasiewicz HB, Langbehn D, Skotte NH, Parsons MP et al. 2018. Huntingtin suppression restores cognitive function in a mouse model of Huntington's disease. Sci. Transl. Med. 10:eaar3959
    [Google Scholar]
  46. 46. 
    McCampbell A, Cole T, Wegener AJ, Tomassy GS, Setnicka A et al. 2018. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models. J. Clin. Investig. 128:3558–67
    [Google Scholar]
  47. 47. 
    Thrane AS, Rangroo Thrane V, Nedergaard M 2014. Drowning stars: reassessing the role of astrocytes in brain edema. Trends Neurosci 37:620–28
    [Google Scholar]
  48. 48. 
    Brinker T, Stopa E, Morrison J, Klinge P 2014. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10
    [Google Scholar]
  49. 49. 
    Oreskovic D, Klarica M. 2014. A new look at cerebrospinal fluid movement. Fluids Barriers CNS 11:16
    [Google Scholar]
  50. 50. 
    Casaca-Carreira J, Temel Y, Hescham S-A, Jahanshahi A 2018. Transependymal cerebrospinal fluid flow: opportunity for drug delivery. ? Mol. Neurobiol. 55:42780–88
    [Google Scholar]
  51. 51. 
    Jessen NA, Munk AS, Lundgaard I, Nedergaard M 2015. The glymphatic system: a beginner's guide. Neurochem. Res. 40:2583–99
    [Google Scholar]
  52. 52. 
    Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4:147ra11
    [Google Scholar]
  53. 53. 
    Mazur C, Powers B, Zasadny K, Sullivan JM, Dimant H et al. 2019. Brain pharmacology of intrathecal antisense oligonucleotides revealed through multimodal imaging. JCI Insight 4:e129240
    [Google Scholar]
  54. 54. 
    Hagemann TL, Powers B, Mazur C, Kim A, Wheeler S et al. 2018. Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease. Ann. Neurol. 83:27–39
    [Google Scholar]
  55. 55. 
    Fitzsimmons BL, Zattoni M, Svensson CI, Steinauer J, Hua XY, Yaksh TL 2010. Role of spinal p38α and β MAPK in inflammatory hyperalgesia and spinal COX-2 expression. Neuroreport 21:313–17
    [Google Scholar]
  56. 56. 
    Friedrich J, Kordasiewicz HB, O'Callaghan B, Handler HP, Wagener C et al. 2018. Antisense oligonucleotide-mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight 3:e123193
    [Google Scholar]
  57. 57. 
    Mohan A, Fitzsimmons B, Zhao HT, Jiang Y, Mazur C et al. 2018. Antisense oligonucleotides selectively suppress target RNA in nociceptive neurons of the pain system and can ameliorate mechanical pain. Pain 159:139–49
    [Google Scholar]
  58. 58. 
    Ramos DM, d'Ydewalle C, Gabbeta V, Dakka A, Klein SK et al. 2019. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J. Clin. Investig. 129:4817–31
    [Google Scholar]
  59. 59. 
    Sullivan JM, Mazur C, Wolf DA, Horky L, Currier N et al. 2020. Convective forces increase rostral delivery of intrathecal radiotracers and antisense oligonucleotides in the cynomolgus monkey nervous system. J. Transl. Med. 18:309
    [Google Scholar]
  60. 60. 
    Geary RS, Wancewicz EV, Matson JE, Pearce M, Siwkowski A et al. 2009. Effect of dose and plasma concentration on liver uptake and pharmacological activity of a 2′-methoxethyl modified chimeric antisense oligonucleotide targeting PTEN. Biochem. Pharmacol. 78:284–91
    [Google Scholar]
  61. 61. 
    Koller E, Vincent TM, Chappell A, De S, Manoharan M, Bennett CF 2011. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res 39:4795–807
    [Google Scholar]
  62. 62. 
    Gertz MA, Mauermann ML, Grogan M, Coelho T 2019. Advances in the treatment of hereditary transthyretin amyloidosis: a review. Brain Behav 9:e01371
    [Google Scholar]
  63. 63. 
    Korinthenberg R. 2019. A new era in the management of Duchenne muscular dystrophy. Dev. Med. Child Neurol. 61:292–97
    [Google Scholar]
  64. 64. 
    McLoughlin HS, Moore LR, Chopra R, Komlo R, McKenzie M et al. 2018. Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann. Neurol. 84:64–77
    [Google Scholar]
  65. 65. 
    Raymond GJ, Zhao HT, Race B, Raymond LD, Williams K et al. 2019. Antisense oligonucleotides extend survival of prion-infected mice. JCI Insight 5:e131175
    [Google Scholar]
  66. 66. 
    Shen X, Kilikevicius A, O'Reilly D, Prakash TP, Damha MJ et al. 2018. Activating frataxin expression by single-stranded siRNAs targeting the GAA repeat expansion. Bioorg. Med. Chem. Lett. 28:2850–55
    [Google Scholar]
  67. 67. 
    Meng L, Ward AJ, Chun S, Bennett CF, Beaudet AL, Rigo F 2015. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518:409–12
    [Google Scholar]
  68. 68. 
    Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W et al. 2017. Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 544:362–66
    [Google Scholar]
  69. 69. 
    Lieberman AP, Yu Z, Murray S, Peralta R, Low A et al. 2014. Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy. Cell Rep 7:774–84
    [Google Scholar]
  70. 70. 
    Niu C, Prakash TP, Kim A, Quach JL, Huryn LA et al. 2018. Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Sci. Transl. Med. 10:eaap8677
    [Google Scholar]
  71. 71. 
    Sahashi K, Katsuno M, Hung G, Adachi H, Kondo N et al. 2015. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy. Hum. Mol. Genet. 24:5985–94
    [Google Scholar]
  72. 72. 
    Kim J, Hu C, Moufawad El Achkar C, Black LE, Douville J et al. 2019. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381:1644–52
    [Google Scholar]
  73. 73. 
    Arnold C. 2019. Tailored treatment for ALS poised to move ahead. Nature Med May 30. https://www.nature.com/articles/d41591-019-00013-w
    [Google Scholar]
  74. 74. 
    Verhaart IEC, Aartsma-Rus A. 2019. Therapeutic developments for Duchenne muscular dystrophy. Nat. Rev. Neurol. 15:373–86
    [Google Scholar]
  75. 75. 
    Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK et al. 2014. Observational study of spinal muscular atrophy type 1 and implications for clinical trials. Neurology 83:974–80
    [Google Scholar]
  76. 76. 
    Rudnik-Schöneborn S, Berg C, Zerres K, Betzler C, Grimm T et al. 2009. Genotype-phenotype studies in infantile spinal muscular atrophy (SMA) type I in Germany: implications for clinical trials and genetic counselling. Clin. Genet. 76:168–78
    [Google Scholar]
  77. 77. 
    Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P et al. 1995. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–65
    [Google Scholar]
  78. 78. 
    Vitte J, Fassier C, Tiziano FD, Dalard C, Soave S et al. 2007. Refined characterization of the expression and stability of the SMN gene products. Am. J. Pathol. 171:1269–80
    [Google Scholar]
  79. 79. 
    Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O et al. 1997. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat. Genet. 16:265–69
    [Google Scholar]
  80. 80. 
    Kostova FV, Williams VC, Heemskerk J, Iannaccone S, Didonato C et al. 2007. Spinal muscular atrophy: classification, diagnosis, management, pathogenesis, and future research directions. J. Child Neurol. 22:926–45
    [Google Scholar]
  81. 81. 
    Hua Y, Sahashi K, Hung G, Rigo F, Passini MA et al. 2010. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24:1634–44
    [Google Scholar]
  82. 82. 
    Hua Y, Sahashi K, Rigo F, Hung G, Horev G et al. 2011. Peripheral SMN restoration is essential for long-term rescue of a severe SMA mouse model. Nature 478:123–26
    [Google Scholar]
  83. 83. 
    Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP et al. 2011. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl. Med. 3:72ra18
    [Google Scholar]
  84. 84. 
    Sahashi K, Hua Y, Ling KK, Hung G, Rigo F et al. 2012. TSUNAMI: an antisense method to phenocopy splicing-associated diseases in animals. Genes Dev 26:1874–84
    [Google Scholar]
  85. 85. 
    Bogdanik LP, Osborne MA, Davis C, Martin WP, Austin A et al. 2015. Systemic, postsymptomatic antisense oligonucleotide rescues motor unit maturation delay in a new mouse model for type II/III spinal muscular atrophy. PNAS 112:E5863–72
    [Google Scholar]
  86. 86. 
    Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J et al. 2016. Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology 86:890–97
    [Google Scholar]
  87. 87. 
    Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J et al. 2016. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388:3017–26
    [Google Scholar]
  88. 88. 
    Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C et al. 2018. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378:625–35
    [Google Scholar]
  89. 89. 
    Montes J, Dunaway Young S, Mazzone ES, Pasternak A, Glanzman AM et al. 2019. Nusinersen improves walking distance and reduces fatigue in later-onset spinal muscular atrophy. Muscle Nerve 60:409–14
    [Google Scholar]
  90. 90. 
    Darras BT, Chiriboga CA, Iannaccone ST, Swoboda KJ, Montes J et al. 2019. Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies. Neurology 92:e2492–506
    [Google Scholar]
  91. 91. 
    De Vivo DC, Bertini E, Swoboda KJ, Hwu W-L, Crawford TO et al. 2019. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: interim efficacy and safety results from the phase 2 NURTURE study. Neuromuscul. Disord. 29:842–56
    [Google Scholar]
  92. 92. 
    Brown RH, Al-Chalabi A. 2017. Amyotrophic lateral sclerosis. N. Engl. J. Med. 377:162–72
    [Google Scholar]
  93. 93. 
    Taylor JP, Brown RH Jr., Cleveland DW 2016. Decoding ALS: from genes to mechanism. Nature 539:197–206
    [Google Scholar]
  94. 94. 
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P et al. 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62
    [Google Scholar]
  95. 95. 
    Bruijn LI, Miller TM, Cleveland DW 2004. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27:723–49
    [Google Scholar]
  96. 96. 
    Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD et al. 1998. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281:1851–54
    [Google Scholar]
  97. 97. 
    Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY et al. 1994. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264:1772–75
    [Google Scholar]
  98. 98. 
    Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA et al. 2006. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–92
    [Google Scholar]
  99. 99. 
    Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA et al. 1997. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–38
    [Google Scholar]
  100. 100. 
    Cudkowicz ME, McKenna-Yasek D, Sapp PE, Chin W, Geller B et al. 1997. Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann. Neurol. 41:210–21
    [Google Scholar]
  101. 101. 
    Bali T, Self W, Liu J, Siddique T, Wang LH et al. 2017. Defining SOD1 ALS natural history to guide therapeutic clinical trial design. J. Neurol. Neurosurg. Psychiatry 88:99–105
    [Google Scholar]
  102. 102. 
    Miller TM, Pestronk A, David W, Rothstein J, Simpson E et al. 2013. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12:435–42
    [Google Scholar]
  103. 103. 
    Miller T, Cudkowicz M, Shaw PJ, Andersen PM, Atassi N et al. 2020. Phase 1-2 trial of antisense oligonucleotide tofersen for SOD1 ALS. N. Engl. J. Med. 383:109–19
    [Google Scholar]
  104. 104. 
    Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM et al. 2016. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 35:1656–76
    [Google Scholar]
  105. 105. 
    Mori K, Weng S-M, Arzberger T, May S, Rentzsch K et al. 2013. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–38
    [Google Scholar]
  106. 106. 
    Donnelly CJ, Zhang P-W, Pham JT, Heusler AR, Mistry NA et al. 2013. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80:415–28
    [Google Scholar]
  107. 107. 
    Zhang Y-J, Gendron TF, Grima JC, Sasaguri H, Jansen-West K et al. 2016. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat. Neurosci. 19:5668–77
    [Google Scholar]
  108. 108. 
    Zhu Q, Jiang J, Gendron TF, McAlonis-Downes M, Jiang L et al. 2020. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nat. . Neurosci 23:615–24
    [Google Scholar]
  109. 109. 
    Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P et al. 2013. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. PNAS 110:E4530–39
    [Google Scholar]
  110. 110. 
    Sareen D, O'Rourke JG, Meera P, Muhammad AKMG, Grant S et al. 2013. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5:208ra149
    [Google Scholar]
  111. 111. 
    Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang Y-J et al. 2017. Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci. Transl. Med. 9:eaai7866
    [Google Scholar]
  112. 112. 
    Jiang J, Zhu Q, Gendron TF, Saberi S, McAlonis-Downes M et al. 2016. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90:535–50
    [Google Scholar]
  113. 113. 
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Miscenyi MC et al. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–33
    [Google Scholar]
  114. 114. 
    Chou CC, Zhang Y, Umoh ME, Vaughan SW, Lorenzini I et al. 2018. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21:228–39
    [Google Scholar]
  115. 115. 
    Ling JP, Pletnikova O, Troncoso JC, Wong PC 2015. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349:650–55
    [Google Scholar]
  116. 116. 
    Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J et al. 2011. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14:459–68
    [Google Scholar]
  117. 117. 
    Melamed Z, López-Erauskin J, Baughn MW, Zhang O, Drenner K et al. 2019. Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat. Neurosci. 22:180–90
    [Google Scholar]
  118. 118. 
    Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN et al. 2019. ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat. Neurosci. 22:167–79
    [Google Scholar]
  119. 119. 
    Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS et al. 2010. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–75
    [Google Scholar]
  120. 120. 
    Scoles DR, Pulst SM. 2018. Spinocerebellar ataxia type 2. Adv. Exp. Med. Biol. 1049:175–95
    [Google Scholar]
  121. 121. 
    Becker LA, Huang B, Bieri G, Ma R, Knowles DA et al. 2017. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544:367–71
    [Google Scholar]
  122. 122. 
    Long JM, Holtzman DM. 2019. Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–39
    [Google Scholar]
  123. 123. 
    Erickson MA, Niehoff ML, Farr SA, Morley JE, Dillman LA et al. 2012. Peripheral administration of antisense oligonucleotides targeting the amyloid-β protein precursor reverses AβPP and LRP-1 overexpression in the aged SAMP8 mouse brain. J. Alzheimers Dis. 28:951–60
    [Google Scholar]
  124. 124. 
    Kumar VB, Farr SA, Flood JF, Kamlesh V, Franko M et al. 2000. Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides 21:1769–75
    [Google Scholar]
  125. 125. 
    Coulson EJ, Barrett GL, Storey E, Bartlett PF, Beyreuther K, Masters CL 1997. Down-regulation of the amyloid protein precursor of Alzheimer's disease by antisense oligonucleotides reduces neuronal adhesion to specific substrata. Brain Res 770:72–80
    [Google Scholar]
  126. 126. 
    Denman RB. 1997. Ribozyme and antisense RNAs inhibit coupled transcription translation by binding to rabbit polyribosomes. Biochem. Biophys. Res. Commun. 230:226–31
    [Google Scholar]
  127. 127. 
    Holmes BB, Diamond MI. 2014. Prion-like properties of Tau protein: the importance of extracellular Tau as a therapeutic target. J. Biol. Chem. 289:19855–61
    [Google Scholar]
  128. 128. 
    DeVos SL, Goncharoff DK, Chen G, Kebodeaux CS, Yamada K et al. 2013. Antisense reduction of tau in adult mice protects against seizures. J. Neurosci. 33:12887–97
    [Google Scholar]
  129. 129. 
    Schoch KM, DeVos SL, Miller RL, Chun SJ, Norrbom M et al. 2016. Increased 4R-Tau induces pathological changes in a human-tau mouse model. Neuron 90:941–47
    [Google Scholar]
  130. 130. 
    Sud R, Geller ET, Schellenberg GD 2014. Antisense-mediated exon skipping decreases tau protein expression: a potential therapy for tauopathies. Mol. Ther. Nucleic Acids 3:e180 Erratum. 2014. Mol. Ther. Nucleic Acids 3:e204
    [Google Scholar]
  131. 131. 
    Ong AAL, Tan J, Bhadra M, Dezanet C, Patil KM et al. 2019. RNA secondary structure-based design of antisense peptide nucleic acids for modulating disease-associated aberrant tau pre-mRNA alternative splicing. Molecules 24:3020
    [Google Scholar]
  132. 132. 
    Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH et al. 2007. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer's disease mouse model. Science 316:750–54
    [Google Scholar]
  133. 133. 
    Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P et al. 2017. Parkinson disease. Nat. Rev. Dis. Primers 3:17013
    [Google Scholar]
  134. 134. 
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E 2003. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24:197–211
    [Google Scholar]
  135. 135. 
    Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P et al. 2012. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–53
    [Google Scholar]
  136. 136. 
    Uehara T, Choong C-J, Nakamori M, Hayakawa H, Nishiyama K et al. 2019. Amido-bridged nucleic acid (AmNA)-modified antisense oligonucleotides targeting α-synuclein as a novel therapy for Parkinson's disease. Sci. Rep. 9:7567
    [Google Scholar]
  137. 137. 
    Cole TA, Zhao H, Collier TJ, Sandoval I, Sortwell CE et al. 2019. Alpha-synuclein antisense oligonucleotides as a disease-modifying therapy for Parkinson's disease. bioRxiv 830554. https://doi.org/10.1101/830554
    [Crossref]
  138. 138. 
    Martin I, Kim JW, Dawson VL, Dawson TM 2014. LRRK2 pathobiology in Parkinson's disease. J. Neurochem. 131:554–65
    [Google Scholar]
  139. 139. 
    Zhao HT, John N, Delic V, Ikeda-Lee K, Kim A et al. 2017. LRRK2 antisense oligonucleotides ameliorate α-synuclein inclusion formation in a Parkinson's disease mouse model. Mol. Ther. Nucleic Acids 8:508–19
    [Google Scholar]
  140. 140. 
    Saudou F, Humbert S. 2016. The biology of huntingtin. Neuron 89:910–26
    [Google Scholar]
  141. 141. 
    Hu J, Matsui M, Gagnon KT, Schwartz JC, Gabillet S et al. 2009. Allele-specific silencing of mutant huntingtin and ataxin-3 genes by targeting expanded CAG repeats in mRNAs. Nat. Biotechnol. 27:478–84
    [Google Scholar]
  142. 142. 
    Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW et al. 2012. Single-stranded RNAs act through RNAi, allele-selectively target expanded CAG repeats, and potently inhibit huntingtin expression. Cell 150:895–908
    [Google Scholar]
  143. 143. 
    Southwell AL, Skotte NH, Kordasiewicz HB, Ostergaard ME, Watt AT et al. 2014. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol. Ther. 22:2093–106
    [Google Scholar]
  144. 144. 
    Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S et al. 2011. Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol. Ther. 19:2178–85
    [Google Scholar]
  145. 145. 
    Pfister EL, Kennington L, Straubhaar J, Wagh S, Liu W et al. 2009. Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington's disease patients. Curr. Biol. 19:774–78
    [Google Scholar]
  146. 146. 
    Evers MM, Pepers BA, van Deutekom JCT, Mulders SA, den Dunnen JT et al. 2011. Targeting several CAG expansion diseases by a single antisense oligonucleotide. PLOS ONE 6:e24308
    [Google Scholar]
  147. 147. 
    Kay C, Collins JA, Skotte NH, Southwell AL, Warby SC et al. 2015. Huntingtin haplotypes provide prioritized target panels for allele-specific silencing in Huntington disease patients of European ancestry. Mol. Ther. 23:1759–71
    [Google Scholar]
  148. 148. 
    Stanek LM, Yang W, Angus S, Sardi PS, Hayden MR et al. 2013. Antisense oligonucleotide-mediated correction of transcriptional dysregulation is correlated with behavioral benefits in the YAC128 mouse model of Huntington's disease. J. Huntingtons Dis. 2:217–28
    [Google Scholar]
  149. 149. 
    Tabrizi SJ, Leavitt BR, Landwehrmeyer GB, Wild EJ, Saft C et al. 2019. Targeting huntingtin expression in patients with Huntington's disease. N. Engl. J. Med. 380:2307–16
    [Google Scholar]
  150. 150. 
    Sullivan R, Yau WY, O'Connor E, Houlden H 2019. Spinocerebellar ataxia: an update. J. Neurol. 266:533–44
    [Google Scholar]
  151. 151. 
    Sun Y-M, Lu C, Wu Z-Y 2016. Spinocerebellar ataxia: relationship between phenotype and genotype—a review. Clin. Genet. 90:305–14
    [Google Scholar]
  152. 152. 
    Moore LR, Rajpal G, Dillingham IT, Qutob M, Blumenstein KG et al. 2017. Evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol. Ther. Nucleic Acids 7:200–10
    [Google Scholar]
  153. 153. 
    Moore LR, Keller L, Bushart DD, Delatorre RG, Li D et al. 2019. Antisense oligonucleotide therapy rescues aggresome formation in a novel spinocerebellar ataxia type 3 human embryonic stem cell line. Stem Cell Res 39:101504
    [Google Scholar]
  154. 154. 
    Lu XH, Yang XW. 2012. “Huntingtin holiday”: progress toward an antisense therapy for Huntington's disease. Neuron 74:964–66
    [Google Scholar]
  155. 155. 
    Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L et al. 2013. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 74:637–47
    [Google Scholar]
  156. 156. 
    Charleston JS, Schnell FJ, Dworzak J, Donoghue C, Lewis S et al. 2018. Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production. Neurology 90:e2146–54
    [Google Scholar]
  157. 157. 
    Frank DE, Schnell FJ, Akana C, El-Husayni SH, Desjardins CA et al. 2020. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology 94:e2270–82
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010919-023738
Loading
/content/journals/10.1146/annurev-pharmtox-010919-023738
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error