1932

Abstract

Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-022723-113921
2024-01-23
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-022723-113921.html?itemId=/content/journals/10.1146/annurev-pharmtox-022723-113921&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM et al. 1996. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat. Med. 2:561–66
    [Google Scholar]
  2. 2.
    Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E et al. 2001. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344:1031–37
    [Google Scholar]
  3. 3.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V et al. 2001. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344:783–92
    [Google Scholar]
  4. 4.
    Cooper LA, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ. 2018. PanCancer insights from The Cancer Genome Atlas: the pathologist's perspective. J. Pathol. 244:512–24
    [Google Scholar]
  5. 5.
    Wang Z, Jensen MA, Zenklusen JC. 2016. A practical guide to The Cancer Genome Atlas (TCGA). Methods Mol. Biol. 1418:111–41
    [Google Scholar]
  6. 6.
    Mani DR, Krug K, Zhang B, Satpathy S, Clauser KR et al. 2022. Cancer proteogenomics: current impact and future prospects. Nat. Rev. Cancer 22:298–313
    [Google Scholar]
  7. 7.
    Zhang B, Wang J, Wang X, Zhu J, Liu Q et al. 2014. Proteogenomic characterization of human colon and rectal cancer. Nature 513:382–87
    [Google Scholar]
  8. 8.
    Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR et al. 2016. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55–62
    [Google Scholar]
  9. 9.
    Zhang H, Liu T, Zhang Z, Payne SH, Zhang B et al. 2016. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166:755–65
    [Google Scholar]
  10. 10.
    Vasaikar S, Huang C, Wang X, Petyuk VA, Savage SR et al. 2019. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities. Cell 177:1035–49.e19
    [Google Scholar]
  11. 11.
    Krug K, Jaehnig EJ, Satpathy S, Blumenberg L, Karpova A et al. 2020. Proteogenomic landscape of breast cancer tumorigenesis and targeted therapy. Cell 183:1436–56.e31
    [Google Scholar]
  12. 12.
    McDermott JE, Arshad OA, Petyuk VA, Fu Y, Gritsenko MA et al. 2020. Proteogenomic characterization of ovarian HGSC implicates mitotic kinases, replication stress in observed chromosomal instability. Cell Rep. Med. 1:100004
    [Google Scholar]
  13. 13.
    Clark DJ, Dhanasekaran SM, Petralia F, Pan J, Song X et al. 2019. Integrated proteogenomic characterization of clear cell renal cell carcinoma. Cell 179:964–83.e31
    [Google Scholar]
  14. 14.
    Dou Y, Kawaler EA, Cui Zhou D, Gritsenko MA, Huang C et al. 2020. Proteogenomic characterization of endometrial carcinoma. Cell 180:729–48.e26
    [Google Scholar]
  15. 15.
    Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV et al. 2020. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell 182:200–25.e35
    [Google Scholar]
  16. 16.
    Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F et al. 2021. A proteogenomic portrait of lung squamous cell carcinoma. Cell 184:4348–71.e40
    [Google Scholar]
  17. 17.
    Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S et al. 2021. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 39:509–28.e20
    [Google Scholar]
  18. 18.
    Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S et al. 2020. Integrated proteogenomic characterization across major histological types of pediatric brain cancer. Cell 183:1962–85.e31
    [Google Scholar]
  19. 19.
    Huang C, Chen L, Savage SR, Eguez RV, Dou Y et al. 2021. Proteogenomic insights into the biology and treatment of HPV-negative head and neck squamous cell carcinoma. Cancer Cell 39:361–79.e16
    [Google Scholar]
  20. 20.
    Bottomly D, Long N, Schultz AR, Kurtz SE, Tognon CE et al. 2022. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell 40:850–64.e9
    [Google Scholar]
  21. 21.
    Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S et al. 2017. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Engl. J. Med. 376:917–27
    [Google Scholar]
  22. 22.
    Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ et al. 2013. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368:2059–74
    [Google Scholar]
  23. 23.
    Kumar CC. 2011. Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2:95–107
    [Google Scholar]
  24. 24.
    Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P et al. 2016. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374:2209–21
    [Google Scholar]
  25. 25.
    Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE et al. 2018. Functional genomic landscape of acute myeloid leukaemia. Nature 562:526–31
    [Google Scholar]
  26. 26.
    Yang F, Long N, Anekpuritanang T, Bottomly D, Savage JC et al. 2022. Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult patients with AML. Blood 139:1208–21
    [Google Scholar]
  27. 27.
    Joshi SK, Tognon CE, Druker BJ, Rodland KD. 2023. Oncoproteomic profiling of AML: moving beyond genomics. Expert Rev. Proteom. 19:283–87
    [Google Scholar]
  28. 28.
    Jayavelu AK, Wolf S, Buettner F, Alexe G, Haupl B et al. 2022. The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell 40:301–17.e12
    [Google Scholar]
  29. 29.
    Hernandez-Valladares M, Aasebo E, Berven F, Selheim F, Bruserud O. 2020. Biological characteristics of aging in human acute myeloid leukemia cells: the possible importance of aldehyde dehydrogenase, the cytoskeleton and altered transcriptional regulation. Aging 12:24734–77
    [Google Scholar]
  30. 30.
    Kramer MH, Zhang Q, Sprung R, Day RB, Erdmann-Gilmore P et al. 2022. Proteomic and phosphoproteomic landscapes of acute myeloid leukemia. Blood 140:1533–48
    [Google Scholar]
  31. 31.
    Casado P, Rodriguez-Prados JC, Cosulich SC, Guichard S, Vanhaesebroeck B et al. 2013. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci. Signal. 6:rs6
    [Google Scholar]
  32. 32.
    Casado P, Wilkes EH, Miraki-Moud F, Hadi MM, Rio-Machin A et al. 2018. Proteomic and genomic integration identifies kinase and differentiation determinants of kinase inhibitor sensitivity in leukemia cells. Leukemia 32:1818–22
    [Google Scholar]
  33. 33.
    Schaab C, Oppermann FS, Klammer M, Pfeifer H, Tebbe A et al. 2014. Global phosphoproteome analysis of human bone marrow reveals predictive phosphorylation markers for the treatment of acute myeloid leukemia with quizartinib. Leukemia 28:716–19
    [Google Scholar]
  34. 34.
    Hosseini MM, Kurtz SE, Abdelhamed S, Mahmood S, Davare MA et al. 2018. Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia 32:2374–87
    [Google Scholar]
  35. 35.
    Janssen M, Schmidt C, Bruch PM, Blank MF, Rohde C et al. 2022. Venetoclax synergizes with gilteritinib in FLT3 wildtype high-risk acute myeloid leukemia by suppressing MCL-1. Blood 140:2594–610
    [Google Scholar]
  36. 36.
    Murray HC, Enjeti AK, Kahl RGS, Flanagan HM, Sillar J et al. 2021. Quantitative phosphoproteomics uncovers synergy between DNA-PK and FLT3 inhibitors in acute myeloid leukaemia. Leukemia 35:1782–87
    [Google Scholar]
  37. 37.
    Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA et al. 2021. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell 39:999–1014.e8
    [Google Scholar]
  38. 38.
    Koschade SE, Klann K, Shaid S, Vick B, Stratmann JA et al. 2022. Translatome proteomics identifies autophagy as a resistance mechanism to on-target FLT3 inhibitors in acute myeloid leukemia. Leukemia 36:2396–407
    [Google Scholar]
  39. 39.
    Gosline SJC, Tognon C, Nestor M, Joshi S, Modak R et al. 2022. Proteomic and phosphoproteomic measurements enhance ability to predict ex vivo drug response in AML. Clin. Proteom. 19:30
    [Google Scholar]
  40. 40.
    Raffel S, Klimmeck D, Falcone M, Demir A, Pouya A et al. 2020. Quantitative proteomics reveals specific metabolic features of acute myeloid leukemia stem cells. Blood 136:1507–19
    [Google Scholar]
  41. 41.
    Stratmann S, Vesterlund M, Umer HM, Eshtad S, Skaftason A et al. 2022. Proteogenomic analysis of acute myeloid leukemia associates relapsed disease with reprogrammed energy metabolism both in adults and children. Leukemia 37:550–59
    [Google Scholar]
  42. 42.
    Yang M, Vesterlund M, Siavelis I, Moura-Castro LH, Castor A et al. 2019. Proteogenomics and Hi-C reveal transcriptional dysregulation in high hyperdiploid childhood acute lymphoblastic leukemia. Nat. Commun. 10:1519
    [Google Scholar]
  43. 43.
    Ng YLD, Ramberger E, Bohl SR, Dolnik A, Steinebach C et al. 2022. Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma. Nat. Commun. 13:1009
    [Google Scholar]
  44. 44.
    Aasebø E, Berven FS, Bartaula-Brevik S, Stokowy T, Hovland R et al. 2020. Proteome and phosphoproteome changes associated with prognosis in acute myeloid leukemia. Cancers 12:709
    [Google Scholar]
  45. 45.
    Hernandez-Valladares M, Bruserud O, Selheim F. 2020. The implementation of mass spectrometry-based proteomics workflows in clinical routines of acute myeloid leukemia: applicability and perspectives. Int. J. Mol. Sci. 21:6830
    [Google Scholar]
  46. 46.
    Segura V, Valero ML, Cantero L, Munoz J, Zarzuela E et al. 2018. In-depth proteomic characterization of classical and non-classical monocyte subsets. Proteomes 6:8
    [Google Scholar]
  47. 47.
    Kwon YW, Jo HS, Bae S, Seo Y, Song P et al. 2021. Application of proteomics in cancer: recent trends and approaches for biomarkers discovery. Front. Med. 8:747333
    [Google Scholar]
  48. 48.
    Samuel G, Crow J, Klein JB, Merchant ML, Nissen E et al. 2020. Ewing sarcoma family of tumors-derived small extracellular vesicle proteomics identify potential clinical biomarkers. Oncotarget 11:2995–3012
    [Google Scholar]
  49. 49.
    Rontogianni S, Synadaki E, Li B, Liefaard MC, Lips EH et al. 2019. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun. Biol. 2:325
    [Google Scholar]
  50. 50.
    Ponzini E, Santambrogio C, De Palma A, Mauri P, Tavazzi S, Grandori R. 2022. Mass spectrometry-based tear proteomics for noninvasive biomarker discovery. Mass Spectrom. Rev. 41:842–60
    [Google Scholar]
  51. 51.
    Schmid D, Warnken U, Latzer P, Hoffmann DC, Roth J et al. 2021. Diagnostic biomarkers from proteomic characterization of cerebrospinal fluid in patients with brain malignancies. J. Neurochem. 158:522–38
    [Google Scholar]
  52. 52.
    Schoof EM, Furtwangler B, Uresin N, Rapin N, Savickas S et al. 2021. Quantitative single-cell proteomics as a tool to characterize cellular hierarchies. Nat. Commun. 12:3341
    [Google Scholar]
  53. 53.
    Emdal KB, Palacio-Escat N, Wigerup C, Eguchi A, Nilsson H et al. 2022. Phosphoproteomics of primary AML patient samples reveals rationale for AKT combination therapy and p53 context to overcome selinexor resistance. Cell Rep 40:111177
    [Google Scholar]
  54. 54.
    de Boer B, Prick J, Pruis MG, Keane P, Imperato MR et al. 2018. Prospective isolation and characterization of genetically and functionally distinct AML subclones. Cancer Cell 34:674–89.e8
    [Google Scholar]
  55. 55.
    Alanazi B, Munje CR, Rastogi N, Williamson AJK, Taylor S et al. 2020. Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia 34:427–40
    [Google Scholar]
  56. 56.
    Kang KW, Kim H, Hur W, Jung JH, Jeong SJ et al. 2021. A proteomic approach to understand the clinical significance of acute myeloid leukemia-derived extracellular vesicles reflecting essential characteristics of leukemia. Mol. Cell. Proteom. 20:100017
    [Google Scholar]
  57. 57.
    Mistry AM, Greenplate AR, Ihrie RA, Irish JM. 2019. Beyond the message: advantages of snapshot proteomics with single-cell mass cytometry in solid tumors. FEBS J 286:1523–39
    [Google Scholar]
  58. 58.
    Watson J, Ferguson HR, Brady RM, Ferguson J, Fullwood P et al. 2022. Spatially resolved phosphoproteomics reveals fibroblast growth factor receptor recycling-driven regulation of autophagy and survival. Nat. Commun. 13:6589
    [Google Scholar]
  59. 59.
    Hu Y, Pan J, Shah P, Ao M, Thomas SN et al. 2020. Integrated proteomic and glycoproteomic characterization of human high-grade serous ovarian carcinoma. Cell Rep 33:108276
    [Google Scholar]
  60. 60.
    Cao L, Huang C, Zhou DC, Hu Y, Lih TM et al. 2021. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cell 184:5031–52.e26
    [Google Scholar]
  61. 61.
    Li Y, Lih TM, Dhanasekaran SM, Mannan R, Chen L et al. 2023. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell 41:139–63.e17
    [Google Scholar]
  62. 62.
    Chen TW, Lee CC, Liu H, Wu CS, Pickering CR et al. 2017. APOBEC3A is an oral cancer prognostic biomarker in Taiwanese carriers of an APOBEC deletion polymorphism. Nat. Commun. 8:465
    [Google Scholar]
  63. 63.
    Mun DG, Bhin J, Kim S, Kim H, Jung JH et al. 2019. Proteogenomic characterization of human early-onset gastric cancer. Cancer Cell 35:111–24.e10
    [Google Scholar]
  64. 64.
    Gao Q, Zhu H, Dong L, Shi W, Chen R et al. 2019. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell 179:561–77.e22
    [Google Scholar]
  65. 65.
    Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL et al. 2020. Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell 182:226–44.e17
    [Google Scholar]
  66. 66.
    Betancourt LH, Gil J, Sanchez A, Doma V, Kuras M et al. 2021. The Human Melanoma Proteome Atlas—complementing the melanoma transcriptome. Clin. Transl. Med. 11:e451
    [Google Scholar]
  67. 67.
    Dong L, Lu D, Chen R, Lin Y, Zhu H et al. 2022. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell 40:70–87.e15
    [Google Scholar]
  68. 68.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K et al. 2004. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 3:1154–69
    [Google Scholar]
  69. 69.
    McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP et al. 2012. Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal. Chem. 84:7469–78
    [Google Scholar]
  70. 70.
    Thompson A, Wolmer N, Koncarevic S, Selzer S, Bohm G et al. 2019. TMTpro: design, synthesis, and initial evaluation of a proline-based isobaric 16-plex tandem mass tag reagent set. Anal. Chem. 91:15941–50
    [Google Scholar]
  71. 71.
    Li J, Cai Z, Bomgarden RD, Pike I, Kuhn K et al. 2021. TMTpro-18plex: the expanded and complete set of TMTpro reagents for sample multiplexing. J. Proteome Res. 20:2964–72
    [Google Scholar]
  72. 72.
    Sun H, Poudel S, Vanderwall D, Lee DG, Li Y, Peng J. 2022. 29-Plex tandem mass tag mass spectrometry enabling accurate quantification by interference correction. Proteomics 22:e2100243
    [Google Scholar]
  73. 73.
    Gillet LC, Navarro P, Tate S, Rost H, Selevsek N et al. 2012. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. 11:O111.016717
    [Google Scholar]
  74. 74.
    Mertins P, Tang LC, Krug K, Clark DJ, Gritsenko MA et al. 2018. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat. Protoc. 13:1632–61
    [Google Scholar]
  75. 75.
    Udeshi ND, Mani DC, Satpathy S, Fereshetian S, Gasser JA et al. 2020. Rapid and deep-scale ubiquitylation profiling for biology and translational research. Nat. Commun. 11:359
    [Google Scholar]
  76. 76.
    Gajadhar AS, Johnson H, Slebos RJ, Shaddox K, Wiles K et al. 2015. Phosphotyrosine signaling analysis in human tumors is confounded by systemic ischemia-driven artifacts and intra-specimen heterogeneity. Cancer Res 75:1495–503
    [Google Scholar]
  77. 77.
    Abelin JG, Bergstrom EJ, Taylor HB, Rivera KD, Klaeger S et al. 2022. MONTE enables serial immunopeptidome, ubiquitylome, proteome, phosphoproteome, acetylome analyses of sample-limited tissues. bioRxiv 2021.06.22.449417. https://doi.org/10.1101/2021.06.22.449417
    [Crossref]
  78. 78.
    van Bentum M, Selbach M. 2021. An introduction to advanced targeted acquisition methods. Mol. Cell. Proteom. 20:100165
    [Google Scholar]
  79. 79.
    Lange V, Picotti P, Domon B, Aebersold R. 2008. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4:222
    [Google Scholar]
  80. 80.
    Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ. 2012. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteom. 11:1475–88
    [Google Scholar]
  81. 81.
    Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. 2012. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol. Cell. Proteom. 11:1709–23
    [Google Scholar]
  82. 82.
    Gallien S, Kim SY, Domon B. 2015. Large-scale targeted proteomics using internal standard triggered-parallel reaction monitoring (IS-PRM). Mol. Cell. Proteom. 14:1630–44
    [Google Scholar]
  83. 83.
    Mao Y, Wang X, Huang P, Tian R. 2021. Spatial proteomics for understanding the tissue microenvironment. Analyst 146:3777–98
    [Google Scholar]
  84. 84.
    Mund A, Brunner AD, Mann M. 2022. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82:2335–49
    [Google Scholar]
  85. 85.
    Piehowski PD, Zhu Y, Bramer LM, Stratton KG, Zhao R et al. 2020. Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat. Commun. 11:8
    [Google Scholar]
  86. 86.
    Swensen AC, Velickovic D, Williams SM, Moore RJ, Day LZ et al. 2022. Proteomic profiling of intra-islet features reveals substructure-specific protein signatures. Mol. Cell. Proteom. 21:100426
    [Google Scholar]
  87. 87.
    Gosline SJ, Velickovic M, Pino J, Day LZ, Attah IK et al. 2022. Proteome mapping of the human pancreatic islet microenvironment reveals endocrine-exocrine signaling sphere of influence. bioRxiv 2022.11.21.517388. https://doi.org/10.1101/2022.11.21.517388
    [Crossref]
  88. 88.
    Sharma K, Schmitt S, Bergner CG, Tyanova S, Kannaiyan N et al. 2015. Cell type- and brain region-resolved mouse brain proteome. Nat. Neurosci. 18:1819–31
    [Google Scholar]
  89. 89.
    Wisniewski JR, Ostasiewicz P, Mann M. 2011. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 10:3040–49
    [Google Scholar]
  90. 90.
    Carlyle BC, Kitchen RR, Kanyo JE, Voss EZ, Pletikos M et al. 2017. A multiregional proteomic survey of the postnatal human brain. Nat. Neurosci. 20:1787–95
    [Google Scholar]
  91. 91.
    Doll S, Dressen M, Geyer PE, Itzhak DN, Braun C et al. 2017. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8:1469
    [Google Scholar]
  92. 92.
    Huang P, Kong Q, Gao W, Chu B, Li H et al. 2020. Spatial proteome profiling by immunohistochemistry-based laser capture microdissection and data-independent acquisition proteomics. Anal. Chim. Acta 1127:140–48
    [Google Scholar]
  93. 93.
    Griesser E, Wyatt H, Ten Have S, Stierstorfer B, Lenter M, Lamond AI 2020. Quantitative profiling of the human substantia nigra proteome from laser-capture microdissected FFPE tissue. Mol. Cell. Proteom. 19:839–51
    [Google Scholar]
  94. 94.
    Clair G, Piehowski PD, Nicola T, Kitzmiller JA, Huang EL et al. 2016. Spatially-resolved proteomics: rapid quantitative analysis of laser capture microdissected alveolar tissue samples. Sci. Rep. 6:39223
    [Google Scholar]
  95. 95.
    Mund A, Coscia F, Kriston A, Hollandi R, Kovacs F et al. 2022. Deep visual proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40:1231–40
    [Google Scholar]
  96. 96.
    Zhu Y, Clair G, Chrisler WB, Shen Y, Zhao R et al. 2018. Proteomic analysis of single mammalian cells enabled by microfluidic nanodroplet sample preparation and ultrasensitive NanoLC-MS. Angew. Chem. Int. Ed. Engl. 57:12370–74
    [Google Scholar]
  97. 97.
    Dou M, Clair G, Tsai CF, Xu K, Chrisler WB et al. 2019. High-throughput single cell proteomics enabled by multiplex isobaric labeling in a nanodroplet sample preparation platform. Anal. Chem. 91:13119–27
    [Google Scholar]
  98. 98.
    Cong Y, Motamedchaboki K, Misal SA, Liang Y, Guise AJ et al. 2020. Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell. Chem. Sci. 12:1001–6
    [Google Scholar]
  99. 99.
    Brunner AD, Thielert M, Vasilopoulou C, Ammar C, Coscia F et al. 2022. Ultra-high sensitivity mass spectrometry quantifies single-cell proteome changes upon perturbation. Mol. Syst. Biol. 18:e10798
    [Google Scholar]
  100. 100.
    Specht H, Emmott E, Petelski AA, Huffman RG, Perlman DH et al. 2021. Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2. Genome Biol 22:50
    [Google Scholar]
  101. 101.
    Pensold D, Zimmer-Bensch G. 2020. Methods for single-cell isolation and preparation. Adv. Exp. Med. Biol. 1255:7–27
    [Google Scholar]
  102. 102.
    LaBelle CA, Massaro A, Cortes-Llanos B, Sims CE, Allbritton NL. 2021. Image-based live cell sorting. Trends Biotechnol 39:613–23
    [Google Scholar]
  103. 103.
    Ibrahim SF, van den Engh G. 2007. Flow cytometry and cell sorting. Adv. Biochem. Eng. Biotechnol. 106:19–39
    [Google Scholar]
  104. 104.
    Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z et al. 1996. Laser capture microdissection. Science 274:998–1001
    [Google Scholar]
  105. 105.
    Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W et al. 2006. Laser-capture microdissection. Nat. Protoc. 1:586–603
    [Google Scholar]
  106. 106.
    Zhu Y, Dou M, Piehowski PD, Liang Y, Wang F et al. 2018. Spatially resolved proteome mapping of laser capture microdissected tissue with automated sample transfer to nanodroplets. Mol. Cell. Proteom. 17:1864–74
    [Google Scholar]
  107. 107.
    Ctortecka C, Hartlmayr D, Seth A, Mendjan S, Tourniaire G, Mechtler K. 2022. An automated workflow for multiplexed single-cell proteomics sample preparation at unprecedented sensitivity. bioRxiv 2021.04.14.439828. https://doi.org/10.1101/2021.04.14.439828
  108. 108.
    Leduc A, Huffman RG, Cantlon J, Khan S, Slavov N. 2022. Exploring functional protein covariation across single cells using nPOP. Genome Biol 23:261
    [Google Scholar]
  109. 109.
    Zhu Y, Piehowski PD, Zhao R, Chen J, Shen Y et al. 2018. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat. Commun. 9:882
    [Google Scholar]
  110. 110.
    Li ZY, Huang M, Wang XK, Zhu Y, Li JS et al. 2018. Nanoliter-scale oil-air-droplet chip-based single cell proteomic analysis. Anal. Chem. 90:5430–38
    [Google Scholar]
  111. 111.
    Gebreyesus ST, Siyal AA, Kitata RB, Chen ES, Enkhbayar B et al. 2022. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry. Nat. Commun. 13:37
    [Google Scholar]
  112. 112.
    Lei Y, Tang R, Xu J, Wang W, Zhang B et al. 2021. Applications of single-cell sequencing in cancer research: progress and perspectives. J. Hematol. Oncol. 14:91
    [Google Scholar]
  113. 113.
    Budnik B, Levy E, Harmange G, Slavov N. 2018. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol 19:161
    [Google Scholar]
  114. 114.
    Cheung TK, Lee CY, Bayer FP, McCoy A, Kuster B, Rose CM. 2021. Defining the carrier proteome limit for single-cell proteomics. Nat. Methods 18:76–83
    [Google Scholar]
  115. 115.
    Huffman RG, Chen A, Specht H, Slavov N. 2019. DO-MS: data-driven optimization of mass spectrometry methods. J. Proteome Res. 18:2493–500
    [Google Scholar]
  116. 116.
    Tsai CF, Zhao R, Williams SM, Moore RJ, Schultz K et al. 2020. An improved boosting to amplify signal with isobaric labeling (iBASIL) strategy for precise quantitative single-cell proteomics. Mol. Cell. Proteom. 19:828–38
    [Google Scholar]
  117. 117.
    Williams SM, Liyu AV, Tsai CF, Moore RJ, Orton DJ et al. 2020. Automated coupling of nanodroplet sample preparation with liquid chromatography-mass spectrometry for high-throughput single-cell proteomics. Anal. Chem. 92:10588–96
    [Google Scholar]
  118. 118.
    Webber KGI, Truong T, Johnston SM, Zapata SE, Liang Y et al. 2022. Label-free profiling of up to 200 single-cell proteomes per day using a dual-column nanoflow liquid chromatography platform. Anal. Chem. 94:6017–25
    [Google Scholar]
  119. 119.
    Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. 2020. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17:41–44
    [Google Scholar]
  120. 120.
    Tsou CC, Avtonomov D, Larsen B, Tucholska M, Choi H et al. 2015. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat. Methods 12:258–64
    [Google Scholar]
  121. 121.
    Demichev V, Szyrwiel L, Yu F, Teo GC, Rosenberger G et al. 2022. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat. Commun. 13:3944
    [Google Scholar]
  122. 122.
    Saha-Shah A, Esmaeili M, Sidoli S, Hwang H, Yang J et al. 2019. Single cell proteomics by data-independent acquisition to study embryonic asymmetry in Xenopus laevis. Anal. Chem. 91:8891–99
    [Google Scholar]
  123. 123.
    Stejskal K, Op de Beeck J, Durnberger G, Jacobs P, Mechtler K. 2021. Ultrasensitive nanoLC-MS of subnanogram protein samples using second generation micropillar array LC technology with Orbitrap Exploris 480 and FAIMS PRO. Anal. Chem. 93:8704–10
    [Google Scholar]
  124. 124.
    Meier F, Brunner AD, Frank M, Ha A, Bludau I et al. 2020. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat. Methods 17:1229–36
    [Google Scholar]
  125. 125.
    Woo J, Clair GC, Williams SM, Feng S, Tsai CF et al. 2022. Three-dimensional feature matching improves coverage for single-cell proteomics based on ion mobility filtering. Cell Syst 13:426–34.e4
    [Google Scholar]
  126. 126.
    Tsai CF, Wang YT, Hsu CC, Kitata RB, Chu RK et al. 2023. A streamlined tandem tip-based workflow for sensitive nanoscale phosphoproteomics. Commun. Biol. 6:70
    [Google Scholar]
  127. 127.
    Yi L, Tsai CF, Dirice E, Swensen AC, Chen J et al. 2019. Boosting to amplify signal with isobaric labeling (BASIL) strategy for comprehensive quantitative phosphoproteomic characterization of small populations of cells. Anal. Chem. 91:5794–801
    [Google Scholar]
  128. 128.
    Fulcher JM, Markillie LM, Mitchell HD, Williams SM, Engbrecht KM et al. 2022. Parallel measurement of transcriptomes and proteomes from same single cells using nanodroplet splitting. bioRxiv 2022.05.17.492137. https://doi.org/10.1101/2022.05.17.492137
    [Crossref]
  129. 129.
    Srinivasan S, Kalinava N, Aldana R, Li Z, van Hagen S et al. 2021. Misannotated multi-nucleotide variants in public cancer genomics datasets lead to inaccurate mutation calls with significant implications. Cancer Res 81:282–88
    [Google Scholar]
  130. 130.
    Koboldt DC. 2020. Best practices for variant calling in clinical sequencing. Genome Med 12:91
    [Google Scholar]
  131. 131.
    Zhao Y, Li MC, Konate MM, Chen L, Das B et al. 2021. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository. J. Transl. Med. 19:269
    [Google Scholar]
  132. 132.
    Calderon-Celis F, Encinar JR, Sanz-Medel A. 2018. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Mass Spectrom. Rev. 37:715–37
    [Google Scholar]
  133. 133.
    Gay CM, Stewart CA, Park EM, Diao L, Groves SM et al. 2021. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell 39:346–60.e7
    [Google Scholar]
  134. 134.
    Zeng Z, Vo AH, Mao C, Clare SE, Khan SA, Luo Y. 2019. Cancer classification and pathway discovery using non-negative matrix factorization. J. Biomed. Inform. 96:103247
    [Google Scholar]
  135. 135.
    Hamamoto R, Takasawa K, Machino H, Kobayashi K, Takahashi S et al. 2022. Application of non-negative matrix factorization in oncology: one approach for establishing precision medicine. Brief. Bioinform. 23:bbac246
    [Google Scholar]
  136. 136.
    Masica DL, Karchin R. 2011. Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Res 71:4550–61
    [Google Scholar]
  137. 137.
    Yang M, Petralia F, Li Z, Li H, Ma W et al. 2020. Community assessment of the predictability of cancer protein and phosphoprotein levels from genomics and transcriptomics. Cell Syst 11:186–95.e9
    [Google Scholar]
  138. 138.
    Payne SH. 2015. The utility of protein and mRNA correlation. Trends Biochem. Sci. 40:1–3
    [Google Scholar]
  139. 139.
    Arshad OA, Danna V, Petyuk VA, Piehowski PD, Liu T et al. 2019. An integrative analysis of tumor proteomic and phosphoproteomic profiles to examine the relationships between kinase activity and phosphorylation. Mol. Cell. Proteom. 18:S26–36
    [Google Scholar]
  140. 140.
    Delgado FM, Gomez-Vela F. 2019. Computational methods for gene regulatory networks reconstruction and analysis: a review. Artif. Intell. Med. 95:133–45
    [Google Scholar]
  141. 141.
    Hernaez M, Blatti C, Gevaert O. 2020. Comparison of single and module-based methods for modeling gene regulatory networks. Bioinformatics 36:558–67
    [Google Scholar]
  142. 142.
    Munk S, Refsgaard JC, Olsen JV, Jensen LJ. 2016. From phosphosites to kinases. Methods Mol. Biol. 1355:307–21
    [Google Scholar]
  143. 143.
    Munk S, Refsgaard JC, Olsen JV. 2016. Systems analysis for interpretation of phosphoproteomics data. Methods Mol. Biol. 1355:341–60
    [Google Scholar]
  144. 144.
    Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. 2015. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1:417–25
    [Google Scholar]
  145. 145.
    Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T et al. 2017. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7:462–77
    [Google Scholar]
  146. 146.
    Beltran H, Eng K, Mosquera JM, Sigaras A, Romanel A et al. 2015. Whole-exome sequencing of metastatic cancer and biomarkers of treatment response. JAMA Oncol. 1:466–74
    [Google Scholar]
  147. 147.
    Lehmann S, Brede C, Lescuyer P, Cocho JA, Vialaret J et al. 2017. Clinical mass spectrometry proteomics (cMSP) for medical laboratory: What does the future hold?. Clin. Chim. Acta 467:51–58
    [Google Scholar]
  148. 148.
    Rudnick PA, Markey SP, Roth J, Mirokhin Y, Yan X et al. 2016. A description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) common data analysis pipeline. J. Proteome Res. 15:1023–32
    [Google Scholar]
  149. 149.
    Paik YK, Jeong SK, Omenn GS, Uhlen M, Hanash S et al. 2012. The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome. Nat. Biotechnol. 30:221–23
    [Google Scholar]
  150. 150.
    Brenes A, Hukelmann J, Bensaddek D, Lamond AI. 2019. Multibatch TMT reveals false positives, batch effects and missing values. Mol. Cell. Proteom. 18:1967–80
    [Google Scholar]
  151. 151.
    Plubell DL, Kall L, Webb-Robertson BJ, Bramer LM, Ives A et al. 2022. Putting humpty dumpty back together again: What does protein quantification mean in bottom-up proteomics?. J. Proteome Res. 21:891–98
    [Google Scholar]
  152. 152.
    Webb-Robertson BJ, Wiberg HK, Matzke MM, Brown JN, Wang J et al. 2015. Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics. J. Proteome Res. 14:1993–2001
    [Google Scholar]
  153. 153.
    Monroe ME, Shaw JL, Daly DS, Adkins JN, Smith RD. 2008. MASIC: a software program for fast quantitation and flexible visualization of chromatographic profiles from detected LC-MS(/MS) features. Comput. Biol. Chem. 32:215–17
    [Google Scholar]
  154. 154.
    Kim S, Pevzner PA. 2014. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 5:5277
    [Google Scholar]
  155. 155.
    Wright JC, Collins MO, Yu L, Kall L, Brosch M, Choudhary JS. 2012. Enhanced peptide identification by electron transfer dissociation using an improved Mascot Percolator. Mol. Cell. Proteom. 11:478–91
    [Google Scholar]
  156. 156.
    Wang M, Beckmann ND, Roussos P, Wang E, Zhou X et al. 2018. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer's disease. Sci. Data 5:180185
    [Google Scholar]
  157. 157.
    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY et al. 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13:731–40
    [Google Scholar]
  158. 158.
    Clough T, Thaminy S, Ragg S, Aebersold R, Vitek O. 2012. Statistical protein quantification and significance analysis in label-free LC-MS experiments with complex designs. BMC Bioinform. 13:Suppl. 16S6
    [Google Scholar]
  159. 159.
    Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. 2007. pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–67
    [Google Scholar]
  160. 160.
    Perez-Riverol Y, Bai J, Bandla C, Garcia-Seisdedos D, Hewapathirana S et al. 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–52
    [Google Scholar]
  161. 161.
    Jarnuczak AF, Vizcaino JA. 2017. Using the PRIDE database and ProteomeXchange for submitting and accessing public proteomics datasets. Curr. Protoc. Bioinform. 59:13.31.1–12
    [Google Scholar]
  162. 162.
    Crusoe MR, Abeln S, Iosup A, Amstutz P, Chilton J et al. 2022. Methods included: standardizing computational reuse and portability with the Common Workflow Language. Commun. ACM 65:54–63
    [Google Scholar]
  163. 163.
    Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. 2017. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35:316–19
    [Google Scholar]
  164. 164.
    Li C, Gao M, Yang W, Zhong C, Yu R. 2021. Diamond: a multi-modal DIA mass spectrometry data processing pipeline. Bioinformatics 37:265–67
    [Google Scholar]
  165. 165.
    Walzer M, Garcia-Seisdedos D, Prakash A, Brack P, Crowther P et al. 2022. Implementing the reuse of public DIA proteomics datasets: from the PRIDE database to Expression Atlas. Sci. Data 9:335
    [Google Scholar]
  166. 166.
    Palmblad M, Lamprecht AL, Ison J, Schwammle V. 2019. Automated workflow composition in mass spectrometry-based proteomics. Bioinformatics 35:656–64
    [Google Scholar]
  167. 167.
    Latonen L, Afyounian E, Jylha A, Nattinen J, Aapola U et al. 2018. Integrative proteomics in prostate cancer uncovers robustness against genomic and transcriptomic aberrations during disease progression. Nat. Commun. 9:1176
    [Google Scholar]
  168. 168.
    Altelaar AF, Heck AJ. 2012. Trends in ultrasensitive proteomics. Curr. Opin. Chem. Biol. 16:206–13
    [Google Scholar]
  169. 169.
    Kelly RT. 2020. Single-cell proteomics: progress and prospects. Mol. Cell. Proteom. 19:1739–48
    [Google Scholar]
  170. 170.
    Slavov N. 2022. Scaling up single-cell proteomics. Mol. Cell. Proteom. 21:100179
    [Google Scholar]
  171. 171.
    Duncan KD, Fyrestam J, Lanekoff I. 2019. Advances in mass spectrometry based single-cell metabolomics. Analyst 144:782–93
    [Google Scholar]
  172. 172.
    Lanekoff I, Sharma VV, Marques C. 2022. Single-cell metabolomics: Where are we and where are we going?. Curr. Opin. Biotechnol. 75:102693
    [Google Scholar]
  173. 173.
    Hu R, Li Y, Yang Y, Liu M. 2023. Mass spectrometry-based strategies for single-cell metabolomics. Mass Spectrom. Rev. 42:67–94
    [Google Scholar]
  174. 174.
    Wu Z, Shen Y, Zhang X. 2022. TAG-TMTpro, a hyperplexing quantitative approach for high-throughput proteomic studies. Anal. Chem. 94:12565–69
    [Google Scholar]
  175. 175.
    Dephoure N, Gygi SP. 2012. Hyperplexing: a method for higher-order multiplexed quantitative proteomics provides a map of the dynamic response to rapamycin in yeast. Sci. Signal. 5:rs2
    [Google Scholar]
  176. 176.
    Welle KA, Zhang T, Hryhorenko JR, Shen S, Qu J, Ghaemmaghami S. 2016. Time-resolved analysis of proteome dynamics by tandem mass tags and stable isotope labeling in cell culture (TMT-SILAC) hyperplexing. Mol. Cell. Proteom. 15:3551–63
    [Google Scholar]
  177. 177.
    Brandi J, Noberini R, Bonaldi T, Cecconi D. 2022. Advances in enrichment methods for mass spectrometry-based proteomics analysis of post-translational modifications. J. Chromatogr. A 1678:463352
    [Google Scholar]
  178. 178.
    Hermann J, Schurgers L, Jankowski V. 2022. Identification and characterization of post-translational modifications: clinical implications. Mol. Aspects Med. 86:101066
    [Google Scholar]
  179. 179.
    Zecha J, Bayer FP, Wiechmann S, Woortman J, Berner N et al. 2023. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 380:93–101
    [Google Scholar]
  180. 180.
    Flores-Morales A, Bergmann TB, Lavallee C, Batth TS, Lin D et al. 2019. Proteogenomic characterization of patient-derived xenografts highlights the role of REST in neuroendocrine differentiation of castration-resistant prostate cancer. Clin. Cancer Res. 25:595–608
    [Google Scholar]
  181. 181.
    Sinha A, Huang V, Livingstone J, Wang J, Fox NS et al. 2019. The proteogenomic landscape of curable prostate cancer. Cancer Cell 35:414–27.e6
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-022723-113921
Loading
/content/journals/10.1146/annurev-pharmtox-022723-113921
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error