1932

Abstract

Cancer is the leading cause of death in American children older than 1 year of age. Major developments in drugs such as thiopurines and optimization in clinical trial protocols for treating cancer in children have led to a remarkable improvement in survival, from approximately 30% in the 1960s to more than 80% today. Short-term and long-term adverse effects of chemotherapy still affect most survivors of childhood cancer. Pharmacogenetics plays a major role in predicting the safety of cancer chemotherapy and, in the future, its effectiveness. Treatment failure in childhood cancer—due to either serious adverse effects that limit therapy or the failure of conventional dosing to induce remission—warrants development of new strategies for treatment. Here, we summarize the current knowledge of the pharmacogenomics of cancer drug treatment in children and of statistically and clinically relevant drug–gene associations and the mechanistic understandings that underscore their therapeutic value in the treatment of childhood cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031320-104151
2021-01-06
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-031320-104151.html?itemId=/content/journals/10.1146/annurev-pharmtox-031320-104151&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Paugh SW, Stocco G, McCorkle JR, Diouf B, Crews KR, Evans WE 2011. Cancer pharmacogenomics. Clin. Pharmacol. Ther. 90:461–66
    [Google Scholar]
  2. 2. 
    Farber S, Diamond LK. 1948. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N. Engl. J. Med. 238:787–93
    [Google Scholar]
  3. 3. 
    Pritchard-Jones K, Dixon-Woods M, Naafs-Wilstra M, Valsecchi MG 2008. Improving recruitment to clinical trials for cancer in childhood. Lancet Oncol 9:392–99
    [Google Scholar]
  4. 4. 
    Mitchell AA, Lacouture PG, Sheehan JE, Kauffman RE, Shapiro S 1988. Adverse drug reactions in children leading to hospital admission. Pediatrics 82:24–29
    [Google Scholar]
  5. 5. 
    Bhakta N, Liu Q, Ness KK, Baassiri M, Eissa H et al. 2017. The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 390:2569–82
    [Google Scholar]
  6. 6. 
    Clemens E, van der Kooi ALF, Broer L, van Dulmen-den Broeder E, Visscher H et al. 2018. The influence of genetic variation on late toxicities in childhood cancer survivors: a review. Crit. Rev. Oncol. Hematol. 126:154–67
    [Google Scholar]
  7. 7. 
    Bertolini P, Lassalle M, Mercier G, Raquin MA, Izzi G et al. 2004. Platinum compound-related ototoxicity in children: Long-term follow-up reveals continuous worsening of hearing loss. J. Pediatr. Hematol. Oncol. 26:649–55
    [Google Scholar]
  8. 8. 
    Dean JB, Hayashi SS, Albert CM, King AA, Karzon R, Hayashi RJ 2008. Hearing loss in pediatric oncology patients receiving carboplatin-containing regimens. J. Pediatr. Hematol. Oncol. 30:130–34
    [Google Scholar]
  9. 9. 
    Clemens E, de Vries AC, Pluijm SF, Am Zehnhoff-Dinnesen A, Tissing WJ et al. 2016. Determinants of ototoxicity in 451 platinum-treated Dutch survivors of childhood cancer: a DCOG late-effects study. Eur. J. Cancer 69:77–85
    [Google Scholar]
  10. 10. 
    Wang L. 2010. Pharmacogenomics: a systems approach. Wiley Interdisc. Rev. Syst. Biol. Med. 2:3–22
    [Google Scholar]
  11. 11. 
    Halpern S. 1988. American Pediatrics: The Social Dynamics of Professionalism, 18801980 Berkeley: Univ. Calif. Press
    [Google Scholar]
  12. 12. 
    Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE 2003. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N. Engl. J. Med. 349:1157–67
    [Google Scholar]
  13. 13. 
    Agunod M, Yamaguchi N, Lopez R, Luhby AL, Glass GB 1969. Correlative study of hydrochloric acid, pepsin, and intrinsic factor secretion in newborns and infants. Am. J. Dig. Dis. 14:400–14
    [Google Scholar]
  14. 14. 
    Samardzic J, Allegaert K, Bajcetic M 2015. Developmental pharmacology: a moving target. Int. J. Pharm. 492:335–37
    [Google Scholar]
  15. 15. 
    Leeder JS, Kearns GL. 1997. Pharmacogenetics in pediatrics: implications for practice. Pediatr. Clin. North Am. 44:55–77
    [Google Scholar]
  16. 16. 
    de Wildt SN, Kearns GL, Sie SD, Hop WC, van den Anker JN 2003. Pharmacodynamics of intravenous and oral midazolam in preterm infants. Clin. Drug Investig. 23:27–38
    [Google Scholar]
  17. 17. 
    Marshall J, Rodarte A, Blumer J, Khoo KC, Akbari B, Kearns G 2000. Pediatric pharmacodynamics of midazolam oral syrup. J. Clin. Pharmacol. 40:578–89
    [Google Scholar]
  18. 18. 
    Marshall JD, Kearns GL. 1999. Developmental pharmacodynamics of cyclosporine. Clin. Pharmacol. Ther. 66:66–75
    [Google Scholar]
  19. 19. 
    Takahashi H, Ishikawa S, Nomoto S, Nishigaki Y, Ando F et al. 2000. Developmental changes in pharmacokinetics and pharmacodynamics of warfarin enantiomers in Japanese children. Clin. Pharmacol. Ther. 68:541–55
    [Google Scholar]
  20. 20. 
    Brouwer KL, Aleksunes LM, Brandys B, Giacoia GP, Knipp G et al. 2015. Human ontogeny of drug transporters: review and recommendations of the Pediatric Transporter Working Group. Clin. Pharmacol. Ther. 98:266–87
    [Google Scholar]
  21. 21. 
    Stevens A, Hanson D, Whatmore A, Destenaves B, Chatelain P, Clayton P 2013. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genom 14:547
    [Google Scholar]
  22. 22. 
    Elzagallaai AA, Greff M, Rieder MJ 2017. Adverse drug reactions in children: the double-edged sword of therapeutics. Clin. Pharmacol. Ther. 101:725–35
    [Google Scholar]
  23. 23. 
    Fakhry H, Goldenberg M, Sayer G, Aye SS, Bagot K et al. 2013. Health-related quality of life in childhood cancer. J. Dev. Behav. Pediatr. 34:419–40
    [Google Scholar]
  24. 24. 
    Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM et al. 2006. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355:1572–82
    [Google Scholar]
  25. 25. 
    Rieder M. 2014. Pharmacogenomics in children. Methods Mol. Biol. 1175:687–707
    [Google Scholar]
  26. 26. 
    Mlakar V, Huezo-Diaz Curtis P, Satyanarayana Uppugunduri CR, Krajinovic M, Ansari M 2016. Pharmacogenomics in pediatric oncology: review of gene-drug associations for clinical use. Int. J. Mol. Sci. 17:1502
    [Google Scholar]
  27. 27. 
    Burchenal JH, Murphy ML, Ellison RR, Sykes MP, Tan TC et al. 1953. Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the treatment of leukemia and allied diseases. Blood 8:965–99
    [Google Scholar]
  28. 28. 
    Coulthard S, Hogarth L. 2005. The thiopurines: an update. Investig. New Drugs 23:523–32
    [Google Scholar]
  29. 29. 
    Roumier C, Cheok MH. 2009. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics 10:1839–51
    [Google Scholar]
  30. 30. 
    Elion GB, Callahan S, Rundles RW, Hitchings GH 1963. Relationship between metabolic fates and antitumor activities of thiopurines. Cancer Res 23:1207–17
    [Google Scholar]
  31. 31. 
    Hamilton L, Elion GB. 1954. The fate of 6-mercaptopurine in man. Ann. N. Y. Acad. Sci. 60:304–14
    [Google Scholar]
  32. 32. 
    Yuan G, Bin JC, McKay DJ, Snyder FF 1999. Cloning and characterization of human guanine deaminase. Purification and partial amino acid sequence of the mouse protein. J. Biol. Chem. 274:8175–80
    [Google Scholar]
  33. 33. 
    Lopez-Lopez E, Gutierrez-Camino A, Bilbao-Aldaiturriaga N, Pombar-Gomez M, Martin-Guerrero I, Garcia-Orad A 2014. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics 15:1383–98
    [Google Scholar]
  34. 34. 
    Marinaki AM, Ansari A, Duley JA, Arenas M, Sumi S et al. 2004. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics 14:181–87
    [Google Scholar]
  35. 35. 
    Weinshilboum RM, Sladek SL. 1980. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am. J. Hum. Genet. 32:651–62
    [Google Scholar]
  36. 36. 
    Collie-Duguid ES, Pritchard SC, Powrie RH, Sludden J, Collier DA et al. 1999. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 9:37–42
    [Google Scholar]
  37. 37. 
    Relling MV, Hancock ML, Rivera GK, Sandlund JT, Ribeiro RC et al. 1999. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J. Natl. Cancer Inst. 91:2001–8
    [Google Scholar]
  38. 38. 
    Relling MV, Gardner EE, Sandborn WJ, Schmiegelow K, Pui C-H et al. 2011. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89:387–91
    [Google Scholar]
  39. 39. 
    Relling MV, Schwab M, Whirl-Carrillo M, Suarez-Kurtz G, Pui C-H et al. 2019. Clinical Pharmacogenetics Implementation Consortium guideline for thiopurine dosing based on TPMT and NUDT15 genotypes: 2018 update. Clin. Pharmacol. Ther. 105:1095–105
    [Google Scholar]
  40. 40. 
    Yang S-K, Hong M, Baek J, Choi H, Zhao W et al. 2014. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat. Genet. 46:1017–20
    [Google Scholar]
  41. 41. 
    Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA et al. 2016. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat. Genet. 48:367–73
    [Google Scholar]
  42. 42. 
    Moriyama T, Yang YL, Nishii R, Ariffin H, Liu C et al. 2017. Novel variants in NUDT15 and thiopurine intolerance in children with acute lymphoblastic leukemia from diverse ancestry. Blood 130:1209–12
    [Google Scholar]
  43. 43. 
    Singh M, Bhatia P, Khera S, Trehan A 2017. Emerging role of NUDT15 polymorphisms in 6-mercaptopurine metabolism and dose related toxicity in acute lymphoblastic leukaemia. Leuk. Res. 62:17–22
    [Google Scholar]
  44. 44. 
    Zgheib NK, Akika R, Mahfouz R, Aridi CA, Ghanem KM et al. 2017. NUDT15 and TPMT genetic polymorphisms are related to 6-mercaptopurine intolerance in children treated for acute lymphoblastic leukemia at the Children's Cancer Center of Lebanon. Pediatr. Blood Cancer 64:146–50
    [Google Scholar]
  45. 45. 
    Cargnin S, Genazzani AA, Canonico PL, Terrazzino S 2018. Diagnostic accuracy of NUDT15 gene variants for thiopurine-induced leukopenia: a systematic review and meta-analysis. Pharmacol. Res. 135:102–11
    [Google Scholar]
  46. 46. 
    Yi ES, Choi YB, Choi R, Lee NH, Lee JW et al. 2018. NUDT15 variants cause hematopoietic toxicity with low 6-TGN levels in children with acute lymphoblastic leukemia. Cancer Res. Treat. 50:872–82
    [Google Scholar]
  47. 47. 
    Zhou H, Li L, Yang P, Yang L, Zheng JE et al. 2018. Optimal predictor for 6-mercaptopurine intolerance in Chinese children with acute lymphoblastic leukemia: NUDT15, TPMT, or ITPA genetic variants. ? BMC Cancer 18:516
    [Google Scholar]
  48. 48. 
    Zhu Y, Yin D, Su Y, Xia X, Moriyama T et al. 2018. Combination of common and novel rare NUDT15 variants improves predictive sensitivity of thiopurine-induced leukopenia in children with acute lymphoblastic leukemia. Haematologica 103:e293–95
    [Google Scholar]
  49. 49. 
    Moradveisi B, Muwakkit S, Zamani F, Ghaderi E, Mohammadi E, Zgheib NK 2019. ITPA, TPMT, and NUDT15 genetic polymorphisms predict 6-mercaptopurine toxicity in Middle Eastern children with acute lymphoblastic leukemia. Front. Pharmacol 10:916
    [Google Scholar]
  50. 50. 
    Schaeffeler E, Jaeger SU, Klumpp V, Yang JJ, Igel S et al. 2019. Impact of NUDT15 genetics on severe thiopurine-related hematotoxicity in patients with European ancestry. Genet. Med. 21:2145–50
    [Google Scholar]
  51. 51. 
    Rosenberg B, VanCamp L, Trosko JE, Mansour VH 1969. Platinum compounds: a new class of potent antitumour agents. Nature 222:385–86
    [Google Scholar]
  52. 52. 
    Ruggiero A, Trombatore G, Triarico S, Arena R, Ferrara P et al. 2013. Platinum compounds in children with cancer: toxicity and clinical management. Anticancer Drugs 24:1007–19
    [Google Scholar]
  53. 53. 
    Zheng Y, Deng Z, Yin J, Wang S, Lu D et al. 2017. The association of genetic variations in DNA repair pathways with severe toxicities in NSCLC patients undergoing platinum-based chemotherapy. Int. J. Cancer 141:2336–47
    [Google Scholar]
  54. 54. 
    Lin Z, Zhang X, Tuo J, Guo Y, Green B et al. 2008. A variant of the Cockayne syndrome B gene ERCC6 confers risk of lung cancer. Hum. Mutat. 29:113–22
    [Google Scholar]
  55. 55. 
    Somers J, Wilson LA, Kilday JP, Horvilleur E, Cannell IG et al. 2015. A common polymorphism in the 5′ UTR of ERCC5 creates an upstream ORF that confers resistance to platinum-based chemotherapy. Genes Dev 29:1891–96
    [Google Scholar]
  56. 56. 
    Sullivan I, Salazar J, Majem M, Pallares C, Del Rio E et al. 2014. Pharmacogenetics of the DNA repair pathways in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Cancer Lett 353:160–66
    [Google Scholar]
  57. 57. 
    Caronia D, Patiño-García A, Milne RL, Zalacain-Díez M, Pita G et al. 2009. Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenom. J. 9:347–53
    [Google Scholar]
  58. 58. 
    Sakano S, Hinoda Y, Sasaki M, Wada T, Matsumoto H et al. 2010. Nucleotide excision repair gene polymorphisms may predict acute toxicity in patients treated with chemoradiotherapy for bladder cancer. Pharmacogenomics 11:1377–87
    [Google Scholar]
  59. 59. 
    Clemens E, Broer L, Langer T, Uitterlinden AG, de Vries ACH et al. 2019. Genetic variation of cisplatin-induced ototoxicity in non-cranial-irradiated pediatric patients using a candidate gene approach: the International PanCareLIFE Study. Pharmacogenom. J. 20:294–305
    [Google Scholar]
  60. 60. 
    Drögemöller BI, Brooks B, Critchley C, Monzon JG, Wright GEB et al. 2018. Further investigation of the role of ACYP2 and WFS1 pharmacogenomic variants in the development of cisplatin-induced ototoxicity in testicular cancer patients. Clin. Cancer Res. 24:1866–71
    [Google Scholar]
  61. 61. 
    Ross CJD, Katzov-Eckert H, Dubé M-P, Brooks B, Rassekh SR et al. 2009. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat. Genet. 41:1345–49
    [Google Scholar]
  62. 62. 
    Thiesen S, Yin P, Jorgensen AL, Zhang JE, Manzo V et al. 2017. TPMT, COMT and ACYP2 genetic variants in paediatric cancer patients with cisplatin-induced ototoxicity. Pharmacogenet. Genom 27:213–22
    [Google Scholar]
  63. 63. 
    Vos HI, Guchelaar H-J, Gelderblom H, de Bont ES, Kremer LC et al. 2016. Replication of a genetic variant in ACYP2 associated with cisplatin-induced hearing loss in patients with osteosarcoma. Pharmacogenet. Genom. 26:243–47
    [Google Scholar]
  64. 64. 
    Xu H, Robinson GW, Huang J, Lim JY, Zhang H et al. 2015. Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nat. Genet. 47:263–66
    [Google Scholar]
  65. 65. 
    Lanvers-Kaminsky C, Sprowl JA, Malath I, Deuster D, Eveslage M et al. 2015. Human OCT2 variant c.808G>T confers protection effect against cisplatin-induced ototoxicity. Pharmacogenomics 16:323–32
    [Google Scholar]
  66. 66. 
    Spracklen TF, Vorster AA, Ramma L, Dalvie S, Ramesar RS 2017. Promoter region variation in NFE2L2 influences susceptibility to ototoxicity in patients exposed to high cumulative doses of cisplatin. Pharmacogenom. J. 17:515–20
    [Google Scholar]
  67. 67. 
    Di Marco A, Cassinelli G, Arcamone F 1981. The discovery of daunorubicin. Cancer Treat. Rep. 65:Suppl. 43–8
    [Google Scholar]
  68. 68. 
    Lefrak EA, Pitha J, Rosenheim S, Gottlieb JA 1973. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32:302–14
    [Google Scholar]
  69. 69. 
    Von Hoff DD, Layard MW, Basa P, Davis HL Jr., Von Hoff AL et al. 1979. Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 91:710–17
    [Google Scholar]
  70. 70. 
    Peng X, Chen B, Lim CC, Sawyer DB 2005. The cardiotoxicology of anthracycline chemotherapeutics: translating molecular mechanism into preventative medicine. Mol. Interv. 5:163–71
    [Google Scholar]
  71. 71. 
    Geisberg CA, Sawyer DB. 2010. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr. Hypertens. Rep. 12:404–10
    [Google Scholar]
  72. 72. 
    Aminkeng F, Bhavsar AP, Visscher H, Rassekh SR, Li Y et al. 2015. A coding variant in RARG confers susceptibility to anthracycline-induced cardiotoxicity in childhood cancer. Nat. Genet. 47:1079–84
    [Google Scholar]
  73. 73. 
    Bilbija D, Haugen F, Sagave J, Baysa A, Bastani N et al. 2012. Retinoic acid signalling is activated in the postischemic heart and may influence remodelling. PLOS ONE 7:e44740
    [Google Scholar]
  74. 74. 
    Duester G. 2013. Retinoid signaling in control of progenitor cell differentiation during mouse development. Semin. Cell Dev. Biol. 24:694–700
    [Google Scholar]
  75. 75. 
    Visscher H, Ross CJD, Rassekh SR, Barhdadi A, Dube MP et al. 2012. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J. Clin. Oncol. 30:1422–28
    [Google Scholar]
  76. 76. 
    Visscher H, Ross CJD, Rassekh SR, Sandor GSS, Caron HN et al. 2013. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr. Blood Cancer 60:1375–81
    [Google Scholar]
  77. 77. 
    Visscher H, Rassekh SR, Sandor GSS, Caron HN, van Dalen EC et al. 2015. Genetic variants in SLC22A17 and SLC22A7 are associated with anthracycline-induced cardiotoxicity in children. Pharmacogenomics 16:1065–76
    [Google Scholar]
  78. 78. 
    Bock KW, Kohle C. 2005. UDP-glucuronosyltransferase 1A6: structural, functional, and regulatory aspects. Methods Enzymol 400:57–75
    [Google Scholar]
  79. 79. 
    Semsei AF, Erdelyi DJ, Ungvari I, Csagoly E, Hegyi MZ et al. 2012. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol. Int. 36:79–86
    [Google Scholar]
  80. 80. 
    Vulsteke C, Pfeil AM, Maggen C, Schwenkglenks M, Pettengell R et al. 2015. Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients. Breast Cancer Res. Treat. 152:67–76
    [Google Scholar]
  81. 81. 
    Wang X, Liu W, Sun C-L, Armenian SH, Hakonarson H et al. 2014. Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children's oncology group. J. Clin. Oncol. 32:647–53
    [Google Scholar]
  82. 82. 
    Wojnowski L, Kulle B, Schirmer M, Schlüter G, Schmidt A et al. 2005. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–62
    [Google Scholar]
  83. 83. 
    Reichwagen A, Ziepert M, Kreuz M, Gödtel-Armbrust U, Rixecker T et al. 2015. Association of NADPH oxidase polymorphisms with anthracycline-induced cardiotoxicity in the RICOVER-60 trial of patients with aggressive CD20+ B-cell lymphoma. Pharmacogenomics 16:361–72
    [Google Scholar]
  84. 84. 
    Kassner N, Huse K, Martin H-J, Gödtel-Armbrust U, Metzger A et al. 2008. Carbonyl reductase 1 is a predominant doxorubicin reductase in the human liver. Drug Metab. Dispos. 36:2113–20
    [Google Scholar]
  85. 85. 
    Blanco JG, Leisenring WM, Gonzalez-Covarrubias VM, Kawashima TI, Davies SM et al. 2008. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer 112:2789–95
    [Google Scholar]
  86. 86. 
    Blanco JG, Sun C-L, Landier W, Chen L, Esparza-Duran D et al. 2012. Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children's Oncology Group. J. Clin. Oncol. 30:1415–21
    [Google Scholar]
  87. 87. 
    Armenian SH, Ding Y, Mills G, Sun C, Venkataraman K et al. 2013. Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. Br. J. Haematol. 163:205–13
    [Google Scholar]
  88. 88. 
    Lubieniecka JM, Liu J, Heffner D, Graham J, Reid R et al. 2012. Single-nucleotide polymorphisms in aldo-keto and carbonyl reductase genes are not associated with acute cardiotoxicity after daunorubicin chemotherapy. Cancer Epidemiol. Biomarkers Prev. 21:2118–20
    [Google Scholar]
  89. 89. 
    Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, Lunde IG, Wakimoto H et al. 2019. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation 140:31–41
    [Google Scholar]
  90. 90. 
    Arnold H, Bourseaux F, Brock N 1958. Chemotherapeutic action of a cyclic nitrogen mustard phosphamide ester (B 518-ASTA) in experimental tumours of the rat. Nature 181:931
    [Google Scholar]
  91. 91. 
    Friedman HS, Bigner SH, Bigner DD 1995. Cyclophosphamide therapy of medulloblastoma: from the laboratory to the clinic and back again (and again and again). J. Neurooncol. 24:103–8
    [Google Scholar]
  92. 92. 
    Gorlick R, Janeway K, Lessnick S, Randall RL, Marina N 2013. Children's Oncology Group's 2013 blueprint for research: bone tumors. Pediatr. Blood Cancer 60:1009–15
    [Google Scholar]
  93. 93. 
    Malempati S, Hawkins DS. 2012. Rhabdomyosarcoma: review of the Children's Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr. Blood Cancer 59:5–10
    [Google Scholar]
  94. 94. 
    Shulman-Roskes EM, Noe DA, Gamcsik MP, Marlow AL, Hilton J et al. 1998. The partitioning of phosphoramide mustard and its aziridinium ions among alkylation and P-N bond hydrolysis reactions. J. Med. Chem. 41:515–29
    [Google Scholar]
  95. 95. 
    Connors TA, Cox PJ, Farmer PB, Foster AB, Jarman M 1974. Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide. Biochem. Pharmacol. 23:115–29
    [Google Scholar]
  96. 96. 
    Grochow LB, Colvin M. 1979. Clinical pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 4:380–94
    [Google Scholar]
  97. 97. 
    Chang TK, Weber GF, Crespi CL, Waxman DJ 1993. Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53:5629–37
    [Google Scholar]
  98. 98. 
    Chang TK, Yu L, Maurel P, Waxman DJ 1997. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 57:1946–54
    [Google Scholar]
  99. 99. 
    Huang Z, Raychowdhury MK, Waxman DJ 2000. Impact of liver P450 reductase suppression on cyclophosphamide activation, pharmacokinetics and antitumoral activity in a cytochrome P450-based cancer gene therapy model. Cancer Gene Ther 7:1034–42
    [Google Scholar]
  100. 100. 
    Huang Z, Roy P, Waxman DJ 2000. Role of human liver microsomal CYP3A4 and CYP2B6 in catalyzing N-dechloroethylation of cyclophosphamide and ifosfamide. Biochem. Pharmacol. 59:961–72
    [Google Scholar]
  101. 101. 
    Ren S, Yang JS, Kalhorn TF, Slattery JT 1997. Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res 57:4229–35
    [Google Scholar]
  102. 102. 
    Ludeman SM. 1999. The chemistry of the metabolites of cyclophosphamide. Curr. Pharm. Des. 5:627–43
    [Google Scholar]
  103. 103. 
    Black WJ, Stagos D, Marchitti SA, Nebert DW, Tipton KF et al. 2009. Human aldehyde dehydrogenase genes: alternatively spliced transcriptional variants and their suggested nomenclature. Pharmacogenet. Genom. 19:893–902
    [Google Scholar]
  104. 104. 
    Sladek NE. 1999. Aldehyde dehydrogenase-mediated cellular relative insensitivity to the oxazaphosphorines. Curr. Pharm. Des. 5:607–25
    [Google Scholar]
  105. 105. 
    Ekhart C, Doodeman VD, Rodenhuis S, Smits PH, Beijnen JH, Huitema AD 2008. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet. Genom. 18:515–23
    [Google Scholar]
  106. 106. 
    Fonseca F, Gratacòs M, Escaramís G, De Cid R, Martín-Santos R et al. 2014. ALDH5A1 variability in opioid dependent patients could influence response to methadone treatment. Eur. Neuropsychopharmacol. 24:420–24
    [Google Scholar]
  107. 107. 
    Xie H, Griskevicius L, Stahle L, Hassan Z, Yasar U et al. 2006. Pharmacogenetics of cyclophosphamide in patients with hematological malignancies. Eur. J. Pharm. Sci. 27:54–61
    [Google Scholar]
  108. 108. 
    Nakajima M, Komagata S, Fujiki Y, Kanada Y, Ebi H et al. 2007. Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet. Genom. 17:431–45
    [Google Scholar]
  109. 109. 
    Stevens JF, Maier CS. 2008. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease. Mol. Nutr. Food Res. 52:7–25
    [Google Scholar]
  110. 110. 
    Mitchell DY, Petersen DR. 1989. Oxidation of aldehydic products of lipid peroxidation by rat liver microsomal aldehyde dehydrogenase. Arch. Biochem. Biophys. 269:11–17
    [Google Scholar]
  111. 111. 
    Timm R, Kaiser R, Lötsch J, Heider U, Sezer O et al. 2005. Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. Pharmacogenom. J. 5:365–73
    [Google Scholar]
  112. 112. 
    Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA 1966. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc 88:3888–90
    [Google Scholar]
  113. 113. 
    Wagner LM. 2015. Fifteen years of irinotecan therapy for pediatric sarcoma: Where to next. ? Clin. Sarcoma Res. 5:20
    [Google Scholar]
  114. 114. 
    Liu LF, Desai SD, Li TK, Mao Y, Sun M, Sim SP 2000. Mechanism of action of camptothecin. Ann. N. Y. Acad. Sci. 922:1–10
    [Google Scholar]
  115. 115. 
    Humerickhouse R, Lohrbach K, Li L, Bosron WF, Dolan ME 2000. Characterization of CPT-11 hydrolysis by human liver carboxylesterase isoforms hCE-1 and hCE-2. Cancer Res 60:1189–92
    [Google Scholar]
  116. 116. 
    Rosner GL, Panetta JC, Innocenti F, Ratain MJ 2008. Pharmacogenetic pathway analysis of irinotecan. Clin. Pharmacol. Ther. 84:393–402
    [Google Scholar]
  117. 117. 
    Di Martino MT, Arbitrio M, Leone E, Guzzi PH, Rotundo MS et al. 2011. Single nucleotide polymorphisms of ABCC5 and ABCG1 transporter genes correlate to irinotecan-associated gastrointestinal toxicity in colorectal cancer patients: a DMET microarray profiling study. Cancer Biol. Ther. 12:780–87
    [Google Scholar]
  118. 118. 
    Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K et al. 2001. Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin. Cancer Res. 7:2182–94
    [Google Scholar]
  119. 119. 
    Sugatani J. 2013. Function, genetic polymorphism, and transcriptional regulation of human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metab. Pharmacokinet. 28:83–92
    [Google Scholar]
  120. 120. 
    Gagne J-F, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C 2002. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol. Pharmacol. 62:608–17
    [Google Scholar]
  121. 121. 
    Zhang D, Zhang D, Cui D, Gambardella J, Ma L et al. 2007. Characterization of the UDP glucuronosyltransferase activity of human liver microsomes genotyped for the UGT1A1*28 polymorphism. Drug Metab. Dispos. 35:2270–80
    [Google Scholar]
  122. 122. 
    Etienne-Grimaldi M-C, Boyer J-C, Thomas F, Quaranta S, Picard N et al. 2015. UGT1A1 genotype and irinotecan therapy: general review and implementation in routine practice. Fundam. Clin. Pharmacol. 29:219–37
    [Google Scholar]
  123. 123. 
    Sakaguchi S, Garcia-Bournissen F, Kim R, Schwarz UI, Nathan PC, Ito S 2009. Prolonged neutropenia after irinotecan-based chemotherapy in a child with polymorphisms of UGT1A1 and SLCO1B1. Arch. Dis. Child 94:981–82
    [Google Scholar]
  124. 124. 
    Ma C-J, Chang T-K, Tsai H-L, Su W-C, Huang C-W et al. 2019. Regorafenib plus FOLFIRI with irinotecan dose escalated according to uridine diphosphate glucuronosyltransferase 1A1genotyping in previous treated metastatic colorectal cancer patients:study protocol for a randomized controlled trial. Trials 20:751
    [Google Scholar]
  125. 125. 
    Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL 2007. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J. Natl. Cancer Inst. 99:1290–95
    [Google Scholar]
  126. 126. 
    Zhang X, Yin J-F, Zhang J, Kong S-J, Zhang H-Y, Chen X-M 2017. UGT1A1*6 polymorphisms are correlated with irinotecan-induced neutropenia: a systematic review and meta-analysis. Cancer Chemother. Pharmacol. 80:135–49
    [Google Scholar]
  127. 127. 
    Han JY, Lee YS, Shin ES, Hwang JA, Nam S et al. 2014. A genome-wide association study of survival in small-cell lung cancer patients treated with irinotecan plus cisplatin chemotherapy. Pharmacogenom. J. 14:20–27
    [Google Scholar]
  128. 128. 
    Han JY, Shin ES, Lee YS, Ghang HY, Kim SY et al. 2013. A genome-wide association study for irinotecan-related severe toxicities in patients with advanced non-small-cell lung cancer. Pharmacogenom. J. 13:417–22
    [Google Scholar]
  129. 129. 
    Takano M, Sugiyama T. 2017. UGT1A1 polymorphisms in cancer: impact on irinotecan treatment. Pharmgenom. Pers. Med. 10:61–68
    [Google Scholar]
  130. 130. 
    Jordan MA, Thrower D, Wilson L 1991. Mechanism of inhibition of cell proliferation by Vinca alkaloids. Cancer Res 51:2212–22
    [Google Scholar]
  131. 131. 
    Levêque D, Jehl F. 2007. Molecular pharmacokinetics of catharanthus (vinca) alkaloids. J. Clin. Pharmacol. 47:579–88
    [Google Scholar]
  132. 132. 
    van de Velde ME, Kaspers GL, Abbink FCH, Wilhelm AJ, Ket JCF, van den Berg MH 2017. Vincristine-induced peripheral neuropathy in children with cancer: a systematic review. Crit. Rev. Oncol. Hematol. 114:114–30
    [Google Scholar]
  133. 133. 
    Mora E, Smith EM, Donohoe C, Hertz DL 2016. Vincristine-induced peripheral neuropathy in pediatric cancer patients. Am. J. Cancer Res. 6:2416–30
    [Google Scholar]
  134. 134. 
    Gomber S, Dewan P, Chhonker D 2010. Vincristine induced neurotoxicity in cancer patients. Indian J. Pediatr. 77:97–100
    [Google Scholar]
  135. 135. 
    Below J, Das JM. 2020. Vincristine. StatPearls Treasure Island, FL: StatPearls Publishing
    [Google Scholar]
  136. 136. 
    Dennison JB, Kulanthaivel P, Barbuch RJ, Renbarger JL, Ehlhardt WJ, Hall SD 2006. Selective metabolism of vincristine in vitro by CYP3A5. Drug Metab. Dispos. 34:1317–27
    [Google Scholar]
  137. 137. 
    Topletz AR, Dennison JB, Barbuch RJ, Hadden CE, Hall SD, Renbarger JL 2013. The relative contributions of CYP3A4 and CYP3A5 to the metabolism of vinorelbine. Drug Metab. Dispos. 41:1651–61
    [Google Scholar]
  138. 138. 
    Sims RP. 2016. The effect of race on the CYP3A-mediated metabolism of vincristine in pediatric patients with acute lymphoblastic leukemia. J. Oncol. Pharm. Pract. 22:76–81
    [Google Scholar]
  139. 139. 
    Kayilioğlu H, Kocak U, Kan Karaer D, Percin EF, Sal E et al. 2017. Association of CYP3A5 expression and vincristine neurotoxicity in pediatric malignancies in Turkish population. J. Pediatr. Hematol. Oncol. 39:458–62
    [Google Scholar]
  140. 140. 
    Skiles JL, Chiang C, Li CH, Martin S, Smith EL et al. 2018. CYP3A5 genotype and its impact on vincristine pharmacokinetics and development of neuropathy in Kenyan children with cancer. Pediatr. Blood Cancer 65:e26854
    [Google Scholar]
  141. 141. 
    Egbelakin A, Ferguson MJ, MacGill EA, Lehmann AS, Topletz AR et al. 2011. Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr. Blood Cancer 56:361–67
    [Google Scholar]
  142. 142. 
    Guilhaumou R, Simon N, Quaranta S, Verschuur A, Lacarelle B et al. 2011. Population pharmacokinetics and pharmacogenetics of vincristine in paediatric patients treated for solid tumour diseases. Cancer Chemother. Pharmacol. 68:1191–98
    [Google Scholar]
  143. 143. 
    Bosilkovska M, Lorenzini KI, Uppugunduri CR, Desmeules J, Daali Y, Escher M 2016. Severe vincristine-induced neuropathic pain in a CYP3A5 nonexpressor with reduced CYP3A4/5 activity: case study. Clin. Ther. 38:216–20
    [Google Scholar]
  144. 144. 
    Dennison JB, Jones DR, Renbarger JL, Hall SD 2007. Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J. Pharmacol. Exp. Ther. 321:553–63
    [Google Scholar]
  145. 145. 
    Pham R, Hoeft A, Roberts C, Hamby T, Maloy C, Ray A 2019. Mutation of CEP72 gene may predispose patients to hepatotoxicity. J. Pediatr. Hematol. Oncol. 42:e634–36
    [Google Scholar]
  146. 146. 
    Wright GEB, Amstutz U, Drögemöller BI, Shih J, Rassekh SR et al. 2019. Pharmacogenomics of vincristine-induced peripheral neuropathy implicates pharmacokinetic and inherited neuropathy genes. Clin. Pharmacol. Ther. 105:402–10
    [Google Scholar]
  147. 147. 
    Diouf B, Crews KR, Lew G, Pei D, Cheng C et al. 2015. Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia. JAMA 313:815–23
    [Google Scholar]
  148. 148. 
    Agrawal V, Smelser DT, Carey DJ, Khan SS, Vadakara J 2016. Association of CEP72 genotype with chemotherapy-induced neuropathy. J. Clin. Oncol. 34:Suppl. 15e14107
    [Google Scholar]
  149. 149. 
    Zgheib NK, Ghanem KM, Tamim H, Aridi C, Shahine R et al. 2018. Genetic polymorphisms in candidate genes are not associated with increased vincristine-related peripheral neuropathy in Arab children treated for acute childhood leukemia: a single institution study. Pharmacogenet. Genom. 28:189–95
    [Google Scholar]
  150. 150. 
    Parascandola J. 1981. The theoretical basis of Paul Ehrlich's chemotherapy. J. Hist. Med. Allied Sci. 36:19–43
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031320-104151
Loading
/content/journals/10.1146/annurev-pharmtox-031320-104151
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error