1932

Abstract

Senescence is the consequence of a signaling mechanism activated in stressed cells to prevent proliferation of cells with damage. Senescent cells (Sncs) often develop a senescence-associated secretory phenotype to prompt immune clearance, which drives chronic sterile inflammation and plays a causal role in aging and age-related diseases. Sncs accumulate with age and at anatomical sites of disease. Thus, they are regarded as a logical therapeutic target. Senotherapeutics are a new class of drugs that selectively kill Sncs (senolytics) or suppress their disease-causing phenotypes (senomorphics/senostatics). Since 2015, several senolytics went from identification to clinical trial. Preclinical data indicate that senolytics alleviate disease in numerous organs, improve physical function and resilience, and suppress all causes of mortality, even if administered to the aged. Here, we review the evidence that Sncs drive aging and disease, the approaches to identify and optimize senotherapeutics, and the current status of preclinical and clinical testing of senolytics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-050120-105018
2021-01-06
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-050120-105018.html?itemId=/content/journals/10.1146/annurev-pharmtox-050120-105018&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM et al. 2014. Geroscience: linking aging to chronic disease. Cell 159:709–13Elaborates the geroscience hypothesis of therapeutically targeting fundamental processes of aging.
    [Google Scholar]
  2. 2. 
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G 2013. The hallmarks of aging. Cell 153:1194–217
    [Google Scholar]
  3. 3. 
    St Sauver JL, Boyd CM, Grossardt BR, Bobo WV, Finney Rutten LJ et al. 2015. Risk of developing multimorbidity across all ages in an historical cohort study: differences by sex and ethnicity. BMJ Open 5:e006413
    [Google Scholar]
  4. 4. 
    Olshansky SJ. 2013. Life expectancy and education: the author replies. Health Aff 32:822
    [Google Scholar]
  5. 5. 
    Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL 2013. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Investig. 123:966–72
    [Google Scholar]
  6. 6. 
    Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC 1996. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. PNAS 93:13742–47
    [Google Scholar]
  7. 7. 
    Coppe JP, Desprez PY, Krtolica A, Campisi J 2010. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. Mech. Dis. 5:99–118
    [Google Scholar]
  8. 8. 
    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG et al. 2011. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–36
    [Google Scholar]
  9. 9. 
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ et al. 2016. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530:184–89
    [Google Scholar]
  10. 10. 
    Jeon OH, Kim C, Laberge R-M, Demaria M, Rathod S et al. 2017. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23:775–81
    [Google Scholar]
  11. 11. 
    Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T et al. 2015. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4:e12997
    [Google Scholar]
  12. 12. 
    Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T et al. 2016. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15:973–77
    [Google Scholar]
  13. 13. 
    Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM 2016. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354:472–77
    [Google Scholar]
  14. 14. 
    Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G et al. 2017. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8:14532
    [Google Scholar]
  15. 15. 
    Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL et al. 2017. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 8:15691
    [Google Scholar]
  16. 16. 
    Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG et al. 2017. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 23:1072–79
    [Google Scholar]
  17. 17. 
    Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK et al. 2018. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24:1246–56The senolytic D+Q improves frailty and physical function even when administered late in life.
    [Google Scholar]
  18. 18. 
    Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K et al. 2004. Ink4a/Arf expression is a biomarker of aging. J. Clin. Investig. 114:1299–307First demonstration of the link between Snc accumulation and health span/life span.
    [Google Scholar]
  19. 19. 
    Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H et al. 2015. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–58The first report of a senolytic drug (D+Q) and its efficacy in reversing physical decline caused by Sncs.
    [Google Scholar]
  20. 20. 
    Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y et al. 2017. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8:422Establishes a screening tool for senolytic drugs that is physiologically relevant and yields HSP90 inhibitors as senolytics.
    [Google Scholar]
  21. 21. 
    Wang Y, Chang J, Liu X, Zhang X, Zhang S et al. 2016. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging 8:2915–26
    [Google Scholar]
  22. 22. 
    Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M et al. 2017. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging 9:955–63
    [Google Scholar]
  23. 23. 
    Demaria M, Ohtani N, Youssef Sameh A, Rodier F, Toussaint W et al. 2014. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31:722–33
    [Google Scholar]
  24. 24. 
    Laberge R-M, Sun Y, Orjalo AV, Patil CK, Freund A et al. 2015. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17:1049–61
    [Google Scholar]
  25. 25. 
    Kanigur Sultuybek G, Soydas T, Yenmis G 2019. NF-κB as the mediator of metformin's effect on ageing and ageing-related diseases. Clin. Exp. Pharmacol. Physiol. 46:413–22
    [Google Scholar]
  26. 26. 
    Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H et al. 2018. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36:18–28Discovers that fisetin extends healthy aging in old mice and triggers senolysis in human adipose tissue.
    [Google Scholar]
  27. 27. 
    Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY et al. 2015. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15:3428–35
    [Google Scholar]
  28. 28. 
    Chang J, Wang Y, Shao L, Laberge R-M, Demaria M et al. 2016. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22:78–83
    [Google Scholar]
  29. 29. 
    Baar MP, Brandt RM, Putavet DA, Klein JD, Derks KW et al. 2017. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132–47
    [Google Scholar]
  30. 30. 
    Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O et al. 2019. Cellular senescence: defining a path forward. Cell 179:813–27
    [Google Scholar]
  31. 31. 
    Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M 2017. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27:2652–60
    [Google Scholar]
  32. 32. 
    Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J et al. 2013. Programmed cell senescence during mammalian embryonic development. Cell 155:1104–18
    [Google Scholar]
  33. 33. 
    Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P et al. 2016. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging 8:1294–315
    [Google Scholar]
  34. 34. 
    Ogrodnik M, Zhu Y, Langhi LGP, Tchkonia T, Krüger P et al. 2019. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab 29:1061–77.e8
    [Google Scholar]
  35. 35. 
    Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E et al. 2019. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J 38:5e100492
    [Google Scholar]
  36. 36. 
    Ma S, Sun S, Geng L, Song M, Wang W et al. 2020. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 180:984–1001
    [Google Scholar]
  37. 37. 
    Kirkland JL, Cartwright M, Tchkonia T, Lenburg M, Schlauch K et al. 2007. Aging, fat depot origin, and preadipocyte expression profiles: setting the stage for fat tissue dysfunction. Int. J. Obes. 31:Suppl. 1S18
    [Google Scholar]
  38. 38. 
    Olefsky JM, Glass CK. 2010. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72:219–46
    [Google Scholar]
  39. 39. 
    Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER et al. 2015. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. PNAS 112:E6301–10
    [Google Scholar]
  40. 40. 
    Zaragosi LE, Wdziekonski B, Villageois P, Keophiphath M, Maumus M et al. 2010. Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. Diabetes 59:2513–21
    [Google Scholar]
  41. 41. 
    Palmer AK, Gustafson B, Kirkland JL, Smith U 2019. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia 62:1835–41
    [Google Scholar]
  42. 42. 
    Palmer AK, Xu M, Zhu Y, Pirtskhalava T, Weivoda MM et al. 2019. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18:3e12950
    [Google Scholar]
  43. 43. 
    Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES et al. 2014. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J. Bone Miner. Res. 29:2520–26
    [Google Scholar]
  44. 44. 
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A 2007. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22:465–75
    [Google Scholar]
  45. 45. 
    Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB et al. 2016. Identification of senescent cells in the bone microenvironment. J. Bone Miner. Res. 31:1920–29
    [Google Scholar]
  46. 46. 
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB et al. 1998. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 147:755–63
    [Google Scholar]
  47. 47. 
    Aversa Z, Zhang X, Fielding RA, Lanza I, LeBrasseur NK 2019. The clinical impact and biological mechanisms of skeletal muscle aging. Bone 127:26–36
    [Google Scholar]
  48. 48. 
    Krell RW, Kaul DR, Martin AR, Englesbe MJ, Sonnenday CJ et al. 2013. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl 19:1396–402
    [Google Scholar]
  49. 49. 
    Lieffers JR, Bathe OF, Fassbender K, Winget M, Baracos VE 2012. Sarcopenia is associated with postoperative infection and delayed recovery from colorectal cancer resection surgery. Br. J. Cancer 107:931–36
    [Google Scholar]
  50. 50. 
    Prado CM, Baracos VE, McCargar LJ, Reiman T, Mourtzakis M et al. 2009. Sarcopenia as a determinant of chemotherapy toxicity and time to tumor progression in metastatic breast cancer patients receiving capecitabine treatment. Clin. Cancer Res. 15:2920–26
    [Google Scholar]
  51. 51. 
    Psutka SP, Carrasco A, Schmit GD, Moynagh MR, Boorjian SA et al. 2014. Sarcopenia in patients with bladder cancer undergoing radical cystectomy: impact on cancer-specific and all-cause mortality. Cancer 120:2910–18
    [Google Scholar]
  52. 52. 
    Justice JN, Gregory H, Tchkonia T, LeBrasseur NK, Kirkland JL et al. 2017. Cellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older women. J. Gerontol. A Biol. Sci. Med. Sci. 73:939–45
    [Google Scholar]
  53. 53. 
    Sousa-Victor P, Perdiguero E, Muñoz-Cánoves P 2014. Geroconversion of aged muscle stem cells under regenerative pressure. Cell Cycle 13:3183–90
    [Google Scholar]
  54. 54. 
    Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA 2013. Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14:1062–72
    [Google Scholar]
  55. 55. 
    Hebert LE, Weuve J, Scherr PA, Evans DA 2013. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80:1778–83
    [Google Scholar]
  56. 56. 
    Kelley AS, McGarry K, Gorges R, Skinner JS 2015. The burden of health care costs for patients with dementia in the last 5 years of life. Ann. Intern. Med. 163:729–36
    [Google Scholar]
  57. 57. 
    Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS et al. 2018. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17:6e12840
    [Google Scholar]
  58. 58. 
    Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ 2018. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562:578–82
    [Google Scholar]
  59. 59. 
    Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG et al. 2019. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat. Neurosci. 22:719–28
    [Google Scholar]
  60. 60. 
    Julien C, Tremblay C, Phivilay A, Berthiaume L, Émond V et al. 2010. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol. Aging 31:1516–31
    [Google Scholar]
  61. 61. 
    McEwen JE, Zimniak P, Mehta JL, Shmookler Reis RJ 2005. Molecular pathology of aging and its implications for senescent coronary atherosclerosis. Curr. Opin. Cardiol. 20:399–406
    [Google Scholar]
  62. 62. 
    Burton DG, Matsubara H, Ikeda K 2010. Pathophysiology of vascular calcification: pivotal role of cellular senescence in vascular smooth muscle cells. Exp. Gerontol. 45:819–24
    [Google Scholar]
  63. 63. 
    Rudolph D, Yeh W-C, Wakeham A, Rudolph B, Nallainathan D et al. 2000. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev 14:854–62
    [Google Scholar]
  64. 64. 
    Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C et al. 2014. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2:4172
    [Google Scholar]
  65. 65. 
    Wilson CL, Jurk D, Fullard N, Banks P, Page A et al. 2015. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat. Commun. 6:6818
    [Google Scholar]
  66. 66. 
    Sekoguchi S, Nakajima T, Moriguchi M, Jo M, Nishikawa T et al. 2007. Role of cell-cycle turnover and oxidative stress in telomere shortening and cellular senescence in patients with chronic hepatitis C. J. Gastroenterol. Hepatol. 22:182–90
    [Google Scholar]
  67. 67. 
    Aravinthan A, Scarpini C, Tachtatzis P, Verma S, Penrhyn-Lowe S et al. 2013. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J. Hepatol. 58:549–56
    [Google Scholar]
  68. 68. 
    Wood MJ, Gadd VL, Powell LW, Ramm GA, Clouston AD 2014. Ductular reaction in hereditary hemochromatosis: the link between hepatocyte senescence and fibrosis progression. Hepatology 59:848–57
    [Google Scholar]
  69. 69. 
    Bitler BG, Fink LS, Wei Z, Peterson JR, Zhang R 2013. A high-content screening assay for small-molecule modulators of oncogene-induced senescence. J. Biomol. Screen. 18:1054–61
    [Google Scholar]
  70. 70. 
    Laberge R-M, Zhou L, Sarantos MR, Rodier F, Freund A et al. 2012. Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell 11:569–78
    [Google Scholar]
  71. 71. 
    Lahtela J, Corson LB, Hemmes A, Brauer MJ, Koopal S et al. 2013. A high-content cellular senescence screen identifies candidate tumor suppressors, including EPHA3. Cell Cycle 12:625–34
    [Google Scholar]
  72. 72. 
    Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X et al. 2018. Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 17:259–73
    [Google Scholar]
  73. 73. 
    Christopher LJ, Cui D, Li W, Barros A Jr, Arora VK et al. 2008. Biotransformation of [14C]dasatinib: in vitro studies in rat, monkey, and human and disposition after administration to rats and monkeys. Drug Metab. Dispos. 36:1341–56
    [Google Scholar]
  74. 74. 
    Graefe EU, Wittig J, Mueller S, Riethling AK, Uehleke B et al. 2001. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 41:492–99
    [Google Scholar]
  75. 75. 
    Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF et al. 2010. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 11:1149–59
    [Google Scholar]
  76. 76. 
    Khan S, Zhang X, Lv D, Zhang Q, He Y et al. 2019. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25:1938–47
    [Google Scholar]
  77. 77. 
    Guerrero A, Guiho R, Herranz N, Uren A, Withers DJ et al. 2020. Galactose-modified duocarmycin prodrugs as senolytics. Aging Cell 19:4e13133
    [Google Scholar]
  78. 78. 
    Gregg SQ, Robinson AR, Niedernhofer LJ 2011. Physiological consequences of defects in ERCC1-XPF DNA repair endonuclease. DNA Repair 10:781–91
    [Google Scholar]
  79. 79. 
    Yousefzadeh MJ, Zhao J, Bukata C, Wade EA, McGowan SJ et al. 2020. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell 19:3e13094
    [Google Scholar]
  80. 80. 
    Baker DJ, Jeganathan KB, Cameron JD, Thompson M, Juneja S et al. 2004. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet. 36:744–49
    [Google Scholar]
  81. 81. 
    Carter CS, Richardson A, Huffman DM, Austad S 2020. Bring back the rat. ! J. Gerontol. A Biol. Sci. Med. Sci. 75:405–15
    [Google Scholar]
  82. 82. 
    Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N et al. 2019. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–56
    [Google Scholar]
  83. 83. 
    Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R et al. 2019. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40:554–63One of the first clinical trials to use senolytics.
    [Google Scholar]
  84. 84. 
    Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL 2020. Discovery, development and future application of senolytics: theories and predictions. FEBS J 287:122418–27
    [Google Scholar]
  85. 85. 
    Li W, He Y, Zhang R, Zheng G, Zhou D 2019. The curcumin analog EF24 is a novel senolytic agent. Aging 11:771–82
    [Google Scholar]
  86. 86. 
    Liu X, Wang Y, Zhang X, Gao Z, Zhang S et al. 2018. Senolytic activity of piperlongumine analogues: synthesis and biological evaluation. Bioorg. Med. Chem. 26:3925–38
    [Google Scholar]
  87. 87. 
    Xu X, Liu Q, Zhang C, Ren S, Xu L et al. 2019. Inhibition of DYRK1A-EGFR axis by p53-MDM2 cascade mediates the induction of cellular senescence. Cell Death Dis 10:282
    [Google Scholar]
  88. 88. 
    Vilgelm AE, Pawlikowski JS, Liu Y, Hawkins OE, Davis TA et al. 2015. Mdm2 and aurora kinase A inhibitors synergize to block melanoma growth by driving apoptosis and immune clearance of tumor cells. Cancer Res 75:181–93
    [Google Scholar]
  89. 89. 
    Triana-Martínez F, Picallos-Rabina P, Da Silva-Álvarez S, Pietrocola F, Llanos S et al. 2019. Identification and characterization of cardiac glycosides as senolytic compounds. Nat. Commun. 10:4731
    [Google Scholar]
  90. 90. 
    Guerrero A, Herranz N, Sun B, Wagner V, Gallage S et al. 2019. Cardiac glycosides are broad-spectrum senolytics. Nat. Metab. 1:1074–88
    [Google Scholar]
  91. 91. 
    Feng M, Kim J, Field K, Reid C, Chatzistamou I, Shim M 2019. Aspirin ameliorates the long-term adverse effects of doxorubicin through suppression of cellular senescence. FASEB Bioadv 1:579–90
    [Google Scholar]
  92. 92. 
    Fuhrmann-Stroissnigg H, Santiago FE, Grassi D, Ling Y, Niedernhofer LJ, Robbins PD 2019. SA-β-galactosidase-based screening assay for the identification of senotherapeutic drugs. J. Vis. Exp. 2019:148
    [Google Scholar]
  93. 93. 
    Weiland T, Lampe J, Essmann F, Venturelli S, Berger A et al. 2014. Enhanced killing of therapy-induced senescent tumor cells by oncolytic measles vaccine viruses. Int. J. Cancer 134:235–43
    [Google Scholar]
  94. 94. 
    Chen Z, Hu K, Feng L, Su R, Lai N et al. 2018. Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer. Cancer Sci 109:1753–63
    [Google Scholar]
  95. 95. 
    Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B et al. 2018. A versatile drug delivery system targeting senescent cells. EMBO Mol. Med. 10:e9355
    [Google Scholar]
  96. 96. 
    Nakagami H. 2020. Cellular senescence and senescence-associated T cells as a potential therapeutic target. Geriatr. Gerontol. Int. 20:97–100
    [Google Scholar]
  97. 97. 
    Amor C, Feucht J, Leibold J, Ho Y-J, Zhu C 2020. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583:127–32
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-050120-105018
Loading
/content/journals/10.1146/annurev-pharmtox-050120-105018
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error