1932

Abstract

Modern antiretroviral therapy safely, potently, and durably suppresses human immunodeficiency virus (HIV) that, if left untreated, predictably causes acquired immunodeficiency syndrome (AIDS), which has been responsible for tens of millions of deaths globally since it was described in 1981. In one of the most extraordinary medical success stories in modern times, a combination of pioneering basic science, innovative drug development, and ambitious public health programming resulted in access to lifesaving, safe drugs, taken as an oral tablet daily, for most of the world. However, substantial challenges remain in the fields of prevention, timely access to diagnosis, and treatment, especially in pediatric and adolescent patients. As HIV-positive adults age, treating their comorbidities will require understanding the course of different chronic diseases complicated by HIV-related and antiretroviral toxicities and finding potential treatments. Finally, new long-acting antiretrovirals on the horizon promise exciting new options in both the prevention and treatment fields.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052020-094321
2023-01-20
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/63/1/annurev-pharmtox-052020-094321.html?itemId=/content/journals/10.1146/annurev-pharmtox-052020-094321&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Fauci AS, Lane HC. 2020. Four decades of HIV/AIDS—much accomplished, much to do. N. Engl. J. Med. 383:11–4
    [Google Scholar]
  2. 2.
    UNAIDS 2021. AIDSinfo. UNAIDS. https://aidsinfo.unaids.org/
  3. 3.
    WHO (World Health Organ.) 2021. HIV/AIDS Key Facts, WHO Geneva, Switz:.
  4. 4.
    UNAIDS 2017. Ending AIDS: progress towards the 90-90-90 targets. Global AIDS update 2017 Rep. UNAIDS Geneva, Switz:.
  5. 5.
    Levi J, Raymond A, Pozniak A, Vernazza P, Kohler P, Hill A. 2016. Can the UNAIDS 90-90-90 target be achieved? A systematic analysis of national HIV treatment cascades. BMJ Glob. Health 1:2e000010
    [Google Scholar]
  6. 6.
    Hill A, Pozniak A. 2015. HIV treatment cascades: How can all countries reach the UNAIDS 90-90-90 target?. AIDS 29:182523–25
    [Google Scholar]
  7. 7.
    Santella AJ, Majam M, Van Ngo H, Luis H. 2020. HIV testing: What, where and how?. Oral Dis. 26:Suppl. 1112–16
    [Google Scholar]
  8. 8.
    Facente SN, Busch MP, Grebe E, Pilcher CD, Welte A et al. 2019. Challenges to the performance of current HIV diagnostic assays and the need for centralized specimen archives: a review of the Consortium for the Evaluation and Performance of HIV Incidence Assays (CEPHIA) repository. Gates Open Res. 3:1511
    [Google Scholar]
  9. 9.
    Wagner AD, Kinuthia J, Dettinger J, Mwongeli N, Gomez L et al. 2021. Challenges of discrepant HIV tests in pregnant women in the PrEP era-to treat or not to treat?. J. Infect. Dis. 223:2234–37
    [Google Scholar]
  10. 10.
    Amin O, Powers J, Bricker KM, Chahroudi A. 2021. Understanding viral and immune interplay during vertical transmission of HIV: implications for cure. Front. Immunol. 12:757400
    [Google Scholar]
  11. 11.
    Parker I, Khalil G, Martin A, Martin M, Vanichseni S et al. 2021. Altered antibody responses in persons infected with HIV-1 while using preexposure prophylaxis. AIDS Res. Hum. Retroviruses 37:3189–95
    [Google Scholar]
  12. 12.
    Mori L, Valente ST. 2022. Cure and long-term remission strategies. Methods Mol. Biol. 2407:391–428
    [Google Scholar]
  13. 13.
    Cohen J. 2022. Mapping where HIV hides suggests cure strategy. Science 375:6577130–31
    [Google Scholar]
  14. 14.
    Busman-Sahay K, Starke CE, Nekorchuk MD, Estes JD. 2021. Eliminating HIV reservoirs for a cure: The issue is in the tissue. Curr. Opin. HIV AIDS 16:4200–8
    [Google Scholar]
  15. 15.
    Parikh UM, McCormick K, van Zyl G, Mellors JW. 2017. Future technologies for monitoring HIV drug resistance and cure. Curr. Opin. HIV AIDS 12:2182–89
    [Google Scholar]
  16. 16.
    Lambrechts L, Cole B, Rutsaert S, Trypsteen W, Vandekerckhove L. 2020. Emerging PCR-based techniques to study HIV-1 reservoir persistence. Viruses 12:2149
    [Google Scholar]
  17. 17.
    Kibirige CN, Manak M, King D, Abel B, Hack H et al. 2022. Development of a sensitive, quantitative assay with broad subtype specificity for detection of total HIV-1 nucleic acids in plasma and PBMC. Sci. Rep. 12:11550
    [Google Scholar]
  18. 18.
    Okusanya B, Kimaru LJ, Mantina N, Gerald LB, Pettygrove S et al. 2022. Interventions to increase early infant diagnosis of HIV infection: a systematic review and meta-analysis. PLOS ONE 17:2e0258863
    [Google Scholar]
  19. 19.
    Chadwick EG, Ezeanolue EE, Comm. Pediatr. AIDS, Hsu KK-C, Kourtis AP 2020. Evaluation and management of the infant exposed to HIV in the United States. Pediatrics 146:5e2020029058
    [Google Scholar]
  20. 20.
    Facente SN, Grebe E, Maher AD, Fox D, Scheer S et al. 2022. Use of HIV recency assays for HIV incidence estimation and other surveillance use cases: systematic review. JMIR Public Health Surveill. 8:3e34410
    [Google Scholar]
  21. 21.
    Lancet HIV. 2022. Time to tackle late diagnosis. Lancet HIV 9:3e139
    [Google Scholar]
  22. 22.
    Lee JS, Humes E, Hogan BC, Justice AC, Klein M, Gebo K et al. 2022. Observed CD4 counts at entry into HIV care and at antiretroviral therapy prescription by age in the USA, 2004–18: a cohort study. Lancet HIV 9:Suppl. 1S2
    [Google Scholar]
  23. 23.
    Mounzer K, Brunet L, Fusco JS, McNicholl IR, Diaz Cuervo H et al. 2022. Advanced HIV infection in treatment-naive individuals: effectiveness and persistence of recommended 3-drug regimens. Open Forum Infect. Dis. 9:3ofac018
    [Google Scholar]
  24. 24.
    Mutru M, Isosomppi S, Aho I, Liitsola K, Brummer-Korvenkontio H et al. 2022. Finnish HIV quality of care register (FINHIV). BMJ Open 12:1e053287
    [Google Scholar]
  25. 25.
    Vitoria M, Rangaraj A, Ford N, Doherty M. 2019. Current and future priorities for the development of optimal HIV drugs. Curr. Opin. HIV AIDS 14:2143–49
    [Google Scholar]
  26. 26.
    Ryom L, Boesecke C, Bracchi M, Ambrosioni J, Pozniak A et al. 2018. Highlights of the 2017 European AIDS Clinical Society (EACS) Guidelines for the treatment of adult HIV-positive persons version 9.0. HIV Med. 19:5309–15
    [Google Scholar]
  27. 27.
    Saag MS, Gandhi RT, Hoy JF, Landovitz RJ, Thompson MA et al. 2020. Antiretroviral drugs for treatment and prevention of HIV infection in adults: 2020 recommendations of the International Antiviral Society–USA panel. JAMA 324:161651–69
    [Google Scholar]
  28. 28.
    Nel J, Dlamini S, Meintjes G, Burton R, Black JM et al. 2020. Southern African HIV Clinicians Society guidelines for antiretroviral therapy in adults: 2020 update. South Afr. J. HIV Med. 21:11115
    [Google Scholar]
  29. 29.
    Ford N, Ball A, Baggaley R, Vitoria M, Low-Beer D et al. 2018. The WHO public health approach to HIV treatment and care: looking back and looking ahead. Lancet Infect. Dis. 18:3e76–86
    [Google Scholar]
  30. 30.
    Venter WDF, Serenata C, Vitoria M, Mkhondwane L, Sikwese K et al. 2021. What we have learned from antiretroviral treatment optimization efforts over the last 5 years?. AIDS 35:Suppl. 2S113–15
    [Google Scholar]
  31. 31.
    Dupont E, Yombi JC. 2019. Is antiretroviral two-drug regimen the new standard for HIV treatment in naive patients?. AIDS Rev. 21:3143–56
    [Google Scholar]
  32. 32.
    Patel R, Evitt L, Mariolis I, Di Giambenedetto S, d'Arminio Monforte A et al. 2021. HIV treatment with the two-drug regimen dolutegravir plus lamivudine in real-world clinical practice: a systematic literature review. Infect. Dis. Ther. 10:42051–70
    [Google Scholar]
  33. 33.
    Antinori A, Santoro MM, Gagliardini R, Marchetti G, Mondi A et al. 2019. Italian expert panel consensus statements on two-drug antiretroviral regimens to treat naive and virologically suppressed HIV-1 infected patients. New Microbiol. 42:269–80
    [Google Scholar]
  34. 34.
    Vitoria M, Hill A, Ford N, Doherty M, Clayden P et al. 2018. The transition to dolutegravir and other new antiretrovirals in low-income and middle-income countries: What are the issues?. AIDS 32:121551–61
    [Google Scholar]
  35. 35.
    Gotham D, Hill A, Pozniak AL. 2017. Candidates for inclusion in a universal antiretroviral regimen: tenofovir alafenamide. Curr. Opin. HIV AIDS 12:4324–33
    [Google Scholar]
  36. 36.
    Squillace N, Ricci E, Menzaghi B, De Socio GV, Passerini S et al. 2020. The effect of switching from tenofovir disoproxil fumarate (TDF) to tenofovir alafenamide (TAF) on liver enzymes, glucose, and lipid profile. Drug Des. Devel. Ther. 14:5515–20
    [Google Scholar]
  37. 37.
    Agarwal K, Brunetto M, Seto WK, Lim Y-S, Fung S et al. 2018. 96 weeks treatment of tenofovir alafenamide vs. tenofovir disoproxil fumarate for hepatitis B virus infection. J. Hepatol. 68:4672–81
    [Google Scholar]
  38. 38.
    Gupta SK, Post FA, Arribas JR, Eron JJ Jr., Wohl DA et al. 2019. Renal safety of tenofovir alafenamide vs. tenofovir disoproxil fumarate: a pooled analysis of 26 clinical trials. AIDS 33:91455–65
    [Google Scholar]
  39. 39.
    Venter WDF, Moorhouse M, Sokhela S, Fairlie L, Mashabane N et al. 2019. Dolutegravir plus two different prodrugs of tenofovir to treat HIV. N. Engl. J. Med. 381:9803–15
    [Google Scholar]
  40. 40.
    Sax PE, Erlandson KM, Lake JE, McComsey GA, Orkin C et al. 2020. Weight gain following initiation of antiretroviral therapy: risk factors in randomized comparative clinical trials. Clin. Infect. Dis. 71:61379–89
    [Google Scholar]
  41. 41.
    Calmy A, Tovar Sanchez T, Kouanfack C, Mpoudi-Etame M, Leroy S et al. 2020. Dolutegravir-based and low-dose efavirenz-based regimen for the initial treatment of HIV-1 infection (NAMSAL): week 96 results from a two-group, multicentre, randomised, open label, phase 3 non-inferiority trial in Cameroon. Lancet HIV 7:10e677–87
    [Google Scholar]
  42. 42.
    Rebeiro PF, Jenkins CA, Bian A, Lake JE, Bourgi K et al. 2021. Risk of incident diabetes mellitus, weight gain, and their relationships with integrase inhibitor-based initial antiretroviral therapy among persons with human immunodeficiency virus in the United States and Canada. Clin. Infect. Dis. 73:7e2234–42
    [Google Scholar]
  43. 43.
    Lu CH, Bednarczyk EM, Catanzaro LM, Shon A, Xu JC, Ma Q. 2021. Pharmacokinetic drug interactions of integrase strand transfer inhibitors. Curr. Res. Pharmacol. Drug Discov. 2:100044
    [Google Scholar]
  44. 44.
    Chandiwana NC, Serenata CM, Owen A, Rannard S, Perez Casas C et al. 2021. Impact of long-acting therapies on the global HIV epidemic. AIDS 35:Suppl. 2S137–43
    [Google Scholar]
  45. 45.
    Philbin MM, Perez-Brumer A. 2022. Promise, perils and cautious optimism: the next frontier in long-acting modalities for the treatment and prevention of HIV. Curr. Opin. HIV AIDS 17:272–88
    [Google Scholar]
  46. 46.
    Collins S. 2022. CROI 2022: lenacapavir in treatment-experienced participants, and as PrEP in macaques. HIV Treatment Bulletin March 1. https://i-base.info/htb/42123
    [Google Scholar]
  47. 47.
    Taylor K. 2022. CROI 2022: islatravir studies for HIV treatment and PrEP. HIV Treatment Bulletin March 3. https://i-base.info/htb/42503
    [Google Scholar]
  48. 48.
    Abrams EJ, Mofenson LM, Pozniak A, Lockman S, Colbers A et al. 2021. Enhanced and timely investigation of ARVs for use in pregnant women. J. Acquir. Immune Defic. Syndr. 86:5607–15
    [Google Scholar]
  49. 49.
    Vitoria M, Ford N, Clayden P, Pozniak AL, Hill AM. 2017. When could new antiretrovirals be recommended for national treatment programmes in low-income and middle-income countries: results of a WHO think tank. Curr. Opin. HIV AIDS 12:4414–22
    [Google Scholar]
  50. 50.
    Pepperrell T, Hill A, Moorhouse M, Clayden P, McCann K et al. 2020. Phase 3 trials of new antiretrovirals are not representative of the global HIV epidemic. J. Virus Erad. 6:270–73
    [Google Scholar]
  51. 51.
    Penazzato M, Irvine C, Vicari M, Essajee SM, Sharma A et al. 2018. A global research agenda for pediatric HIV. J. Acquir. Immune Defic. Syndr. 78:Suppl. 1S10–15
    [Google Scholar]
  52. 52.
    Astawesegn FH, Stulz V, Conroy E, Mannan H 2022. Trends and effects of antiretroviral therapy coverage during pregnancy on mother-to-child transmission of HIV in Sub-Saharan Africa. Evidence from panel data analysis. BMC Infect. Dis. 22:1134
    [Google Scholar]
  53. 53.
    le Roux SM, Abrams EJ, Nguyen KK, Myer L. 2019. HIV incidence during breastfeeding and mother-to-child transmission in Cape Town, South Africa. AIDS 33:81399–401
    [Google Scholar]
  54. 54.
    Adelekan B, Harry-Erin B, Okposo M, Aliyu A, Ndembi N et al. 2022. Final HIV status outcome for HIV-exposed infants at 18 months of age in nine states and the Federal Capital Territory, Nigeria. PLOS ONE 17:2e0263921
    [Google Scholar]
  55. 55.
    Abbas M, Bakhtyar A, Bazzi R. 2022. Neonatal HIV. StatPearls Treasure Island, FL: StatPearls Publ.
    [Google Scholar]
  56. 56.
    Abrams EJ, Mofenson LM, Pozniak A, Lockman S, Colbers A et al. 2021. Enhanced and timely investigation of ARVs for use in pregnant women. J. Acquir. Immune Defic. Syndr. 86:5607–15
    [Google Scholar]
  57. 57.
    Chiappini E, Larotonda F, Lisi C, Giacomet V, Erba P et al. 2021. Real-world analysis of survival and clinical events in a cohort of Italian perinatally HIV-1 infected children from 2001 to 2018. Front. Pediatr. 9:665764
    [Google Scholar]
  58. 58.
    Wainberg MA, Mesplede T, Raffi F. 2013. What if HIV were unable to develop resistance against a new therapeutic agent?. BMC Med. 11:249
    [Google Scholar]
  59. 59.
    McCluskey SM, Pepperrell T, Hill A, Venter WDF, Gupta RK, Siedner MJ. 2021. Adherence, resistance, and viral suppression on dolutegravir in sub-Saharan Africa: implications for the TLD era. AIDS 35:Suppl. 2S127–35
    [Google Scholar]
  60. 60.
    Inzaule SC, Hamers RL, Bertagnolio S. 2020. Is increasing pretreatment HIV drug resistance a real menace or minor detail?. Lancet HIV 7:5e316–17
    [Google Scholar]
  61. 61.
    Ávila-Ríos S, Parkin N, Swanstrom R, Paredes R, Shafer R et al. 2020. Next-generation sequencing for HIV drug resistance testing: laboratory, clinical, and implementation considerations. Viruses 12:6617
    [Google Scholar]
  62. 62.
    Howgego GD. 2021. How does HIV persist under antiretroviral therapy: a review of the evidence. AIDS Rev. 23:265–73
    [Google Scholar]
  63. 63.
    Clutter DS, Jordan MR, Bertagnolio S, Shafer RW. 2016. HIV-1 drug resistance and resistance testing. Infect. Genet. Evol. 46:292–307
    [Google Scholar]
  64. 64.
    Manyana S, Gounder L, Pillay M, Manasa J, Naidoo K, Chimukangara B. 2021. HIV-1 drug resistance genotyping in resource limited settings: current and future perspectives in sequencing technologies. Viruses 13:61125
    [Google Scholar]
  65. 65.
    De Luca A, Hamers RL, Schapiro JM. 2013. Antiretroviral treatment sequencing strategies to overcome HIV type 1 drug resistance in adolescents and adults in low-middle-income countries. J. Infect. Dis. 207:Suppl. 2S63–69
    [Google Scholar]
  66. 66.
    Hill AM, Venter F. 2018. The unexpected success of NRTIs in second-line treatment. Lancet Infect. Dis. 18:3–5
    [Google Scholar]
  67. 67.
    Hakim JG, Thompson J, Kityo C, Hoppe A, Kambugu A et al. 2018. Lopinavir plus nucleoside reverse-transcriptase inhibitors, lopinavir plus raltegravir, or lopinavir monotherapy for second-line treatment of HIV (EARNEST): 144-week follow-up results from a randomised controlled trial. Lancet Infect. Dis. 18:147–57
    [Google Scholar]
  68. 68.
    Paton NI, Kityo C, Thompson J, Nankya I, Bagenda L et al. 2017. Nucleoside reverse-transcriptase inhibitor cross-resistance and outcomes from second-line antiretroviral therapy in the public health approach: an observational analysis within the randomised, open-label, EARNEST trial. Lancet HIV 4:8e341–48
    [Google Scholar]
  69. 69.
    Wainberg MA. 2004. The impact of the M184V substitution on drug resistance and viral fitness. Expert Rev. Anti-Infect. Ther. 2:1147–51
    [Google Scholar]
  70. 70.
    Raffi F, Pozniak AL, Wainberg MA. 2014. Has the time come to abandon efavirenz for first-line antiretroviral therapy?. J. Antimicrob. Chemother. 69:71742–47
    [Google Scholar]
  71. 71.
    Inzaule SC, Hamers RL, Doherty M, Shafer RW, Bertagnolio S, Rinke de Wit TF. 2019. Curbing the rise of HIV drug resistance in low-income and middle-income countries: the role of dolutegravir-containing regimens. Lancet Infect. Dis. 19:7e246–52
    [Google Scholar]
  72. 72.
    Phillips AN, Bansi-Matharu L, Cambiano V, Ehrenkranz P, Serenata C et al. 2021. The potential role of long-acting injectable cabotegravir-rilpivirine in the treatment of HIV in sub-Saharan Africa: a modelling analysis. Lancet Glob. Health 9:5e620–27
    [Google Scholar]
  73. 73.
    Landovitz RJ, Li S, Eron JJ Jr., Grinsztejn B, Dawood H et al. 2020. Tail-phase safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in HIV-uninfected adults: a secondary analysis of the HPTN 077 trial. Lancet HIV 7:7e472–81
    [Google Scholar]
  74. 74.
    Markham A. 2020. Cabotegravir plus rilpivirine: first approval. Drugs 80:9915–22
    [Google Scholar]
  75. 75.
    Landovitz RJ, Donnell D, Clement ME, Hanscom B, Cottle L et al. 2021. Cabotegravir for HIV prevention in cisgender men and transgender women. N. Engl. J. Med. 385:7595–608
    [Google Scholar]
  76. 76.
    Engelman KD, Engelman AN. 2021. Long-acting cabotegravir for HIV/AIDS prophylaxis. Biochemistry 60:221731–40
    [Google Scholar]
  77. 77.
    Hauser A, Goldstein F, Reichmuth ML, Kouyos RD, Wandeler G et al. 2022. Acquired HIV drug resistance mutations on first-line antiretroviral therapy in southern Africa: systematic review and Bayesian evidence synthesis. J. Clin. Epidemiol. 148:135–45
    [Google Scholar]
  78. 78.
    Phillips AN, Venter F, Havlir D, Pozniak A, Kuritzkes D et al. 2019. Risks and benefits of dolutegravir-based antiretroviral drug regimens in sub-Saharan Africa: a modelling study. Lancet HIV 6:2e116–27
    [Google Scholar]
  79. 79.
    Clayden P. 2017. Preliminary results on dolutegravir use in pregnancy are reassuring. HIV Treatment Bulletin Aug. 10. https://i-base.info/htb/32182
    [Google Scholar]
  80. 80.
    Cahn P. 2017. Candidates for inclusion in a universal antiretroviral regimen: dolutegravir. Curr. Opin. HIV AIDS 12:4318–23
    [Google Scholar]
  81. 81.
    Paton NI, Musaazi J, Kityo C, Walimbwa S, Hoppe A et al. 2021. Dolutegravir or darunavir in combination with zidovudine or tenofovir to treat HIV. N. Engl. J. Med. 385:4330–41
    [Google Scholar]
  82. 82.
    Keene CM, Griesel R, Zhao Y, Gcwabe Z, Sayed K et al. 2021. Virologic efficacy of tenofovir, lamivudine and dolutegravir as second-line antiretroviral therapy in adults failing a tenofovir-based first-line regimen. AIDS 35:91423–32
    [Google Scholar]
  83. 83.
    Marukutira T, Wood BR. 2021. Growing data for recycling tenofovir and lamivudine with dolutegravir as empiric second-line antiretroviral therapy in resource-limited settings. AIDS 35:91505–7
    [Google Scholar]
  84. 84.
    Kantor R. 2021. Next generation sequencing for HIV-1 drug resistance testing-a special issue walkthrough. Viruses 13:2340
    [Google Scholar]
  85. 85.
    Moyano A, Ndung'u T, Mann JK 2022. Determinants of natural HIV-1 control. AIDS Rev. 24:25158
    [Google Scholar]
  86. 86.
    Mellors JW, Rinaldo CR Jr., Gupta P, White RM, Todd JA, Kingsley LA. 1996. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272:52651167–70
    [Google Scholar]
  87. 87.
    Hermans LE, Moorhouse M, Carmona S, Grobbee DE, Hofstra LM et al. 2018. Effect of HIV-1 low-level viraemia during antiretroviral therapy on treatment outcomes in WHO-guided South African treatment programmes: a multicentre cohort study. Lancet Infect. Dis. 18:2188–97
    [Google Scholar]
  88. 88.
    Grimsrud A, Bygrave H, Doherty M, Ehrenkranz P, Ellman T et al. 2016. Reimagining HIV service delivery: the role of differentiated care from prevention to suppression. J. Int. AIDS Soc. 19:121484
    [Google Scholar]
  89. 89.
    Brennan-Ing M, Ramirez-Valles J, Tax A. 2021. Aging with HIV: health policy and advocacy priorities. Health Educ. Behav. 48:15–8
    [Google Scholar]
  90. 90.
    Shiau S, Bender AA, O'Halloran JA, Sundermann E, Aggarwal J et al. 2020. The current state of HIV and aging: findings presented at the 10th International Workshop on HIV and Aging. AIDS Res. Hum. Retroviruses 36:12973–81
    [Google Scholar]
  91. 91.
    Pahwa S, Deeks S, Zou S, Tomitch N, Miller-Novak L et al. 2021. NIH workshop on HIV-associated comorbidities, coinfections, and complications: summary and recommendation for future research. J. Acquir. Immune Defic. Syndr. 86:111–18
    [Google Scholar]
  92. 92.
    Peprah E, Armstrong-Hough M, Cook SH, Mukasa B, Taylor JY et al. 2021. An emerging syndemic of smoking and cardiopulmonary diseases in people living with HIV in Africa. Int. J. Environ. Res. Public Health 18:63111
    [Google Scholar]
  93. 93.
    van Riel SE, Klipstein-Grobusch K, Barth RE, Grobbee DE, Feldman C et al. 2021. Predictors of impaired pulmonary function in people living with HIV in an urban African setting. South Afr. J. HIV Med 2211252
  94. 94.
    Bourgi K, Wanjalla C, Koethe JR. 2018. Inflammation and metabolic complications in HIV. Curr. HIV/AIDS Rep. 15:5371–81
    [Google Scholar]
  95. 95.
    Godfrey C, Bremer A, Alba D, Apovian C, Koethe JR et al. 2019. Obesity and fat metabolism in human immunodeficiency virus-infected individuals: immunopathogenic mechanisms and clinical implications. J. Infect. Dis. 220:3420–31
    [Google Scholar]
  96. 96.
    Peterson TE, Baker JV. 2019. Assessing inflammation and its role in comorbidities among persons living with HIV. Curr. Opin. Infect. Dis. 32:18–15
    [Google Scholar]
  97. 97.
    Sereti I, Krebs SJ, Phanuphak N, Fletcher JL, Slike B et al. 2017. Persistent, albeit reduced, chronic inflammation in persons starting antiretroviral therapy in acute HIV infection. Clin. Infect. Dis. 64:2124–31
    [Google Scholar]
  98. 98.
    Baker JV, Sharma S, Achhra AC, Bernardino JI, Bogner JR et al. 2017. Changes in cardiovascular disease risk factors with immediate versus deferred antiretroviral therapy initiation among HIV-positive participants in the START (Strategic Timing of Antiretroviral Treatment) trial. J. Am. Heart Assoc. 6:5e004987
    [Google Scholar]
  99. 99.
    Kettelhut A, Bowman E, Funderburg NT. 2020. Immunomodulatory and anti-inflammatory strategies to reduce comorbidity risk in people with HIV. Curr. HIV/AIDS Rep. 17:4394–404
    [Google Scholar]
  100. 100.
    Shah S, Hindley L, Hill A. 2021. Are new antiretroviral treatments increasing the risk of weight gain?. Drugs 81:3299–315
    [Google Scholar]
  101. 101.
    Erlandson KM, Carter CC, Melbourne K, Brown TT, Cohen C et al. 2021. Weight change following antiretroviral therapy switch in people with viral suppression: pooled data from randomized clinical trials. Clin. Infect. Dis. 73:81440–51
    [Google Scholar]
  102. 102.
    Surial B, Mugglin C, Calmy A, Cavassini M, Gunthard HF et al. 2021. Weight and metabolic changes after switching from tenofovir disoproxil fumarate to tenofovir alafenamide in people living with HIV: a cohort study. Ann. Intern. Med. 174:6758–67
    [Google Scholar]
  103. 103.
    Lake JE, Trevillyan J. 2021. Impact of integrase inhibitors and tenofovir alafenamide on weight gain in people with HIV. Curr. Opin. HIV AIDS 16:3148–51
    [Google Scholar]
  104. 104.
    Venter WDF, Sokhela S, Simmons B, Moorhouse M, Fairlie L et al. 2020. Dolutegravir with emtricitabine and tenofovir alafenamide or tenofovir disoproxil fumarate versus efavirenz, emtricitabine, and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection (ADVANCE): week 96 results from a randomised, phase 3, non-inferiority trial. Lancet HIV 7:10e666–76
    [Google Scholar]
  105. 105.
    Ruderman SA, Crane HM, Nance RM, Whitney BM, Harding BN et al. 2021. Brief report: weight gain following ART initiation in ART-naive people living with HIV in the current treatment era. J. Acquir. Immune Defic. Syndr. 86:3339–43
    [Google Scholar]
  106. 106.
    Heymsfield SB, Wadden TA. 2017. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376:151492
    [Google Scholar]
  107. 107.
    Wharton S, Lau DCW, Vallis M, Sharma AM, Biertho L et al. 2020. Obesity in adults: a clinical practice guideline. Can. Med. Assoc. J. 192:31E875–91
    [Google Scholar]
  108. 108.
    Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF et al. 2021. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384:119891002
    [Google Scholar]
  109. 109.
    Vos AG, Venter WDF. 2021. Cardiovascular toxicity of contemporary antiretroviral therapy. Curr. Opin. HIV AIDS 16:6286–91
    [Google Scholar]
  110. 110.
    Baxevanidi EE, Sumbul A, Qavi A, Hill A, Venter F et al. 2021. Predicted long-term adverse birth and child health outcomes in the ADVANCE trial Paper presented at the Conference on Retroviruses and Opportunistic Infections virtual: March 6–10
  111. 111.
    Asif S, Baxevanidi E, Hill A, Venter WDF, Fairlie L et al. 2021. The predicted risk of adverse pregnancy outcomes as a result of treatment-associated obesity in a hypothetical population receiving tenofovir alafenamide/emtricitabine/dolutegravir, tenofovir disoproxil fumarate/emtricitabine/dolutegravir or tenofovir disoproxil fumarate/emtricitabine/efavirenz. AIDS 35:Suppl. 2S117–25
    [Google Scholar]
  112. 112.
    McCann K, Shah S, Hindley L, Hill A, Qavi A et al. 2021. Implications of weight gain with newer anti-retrovirals: 10-year predictions of cardiovascular disease and diabetes. AIDS 35:101657–65
    [Google Scholar]
  113. 113.
    Spinelli MA, Haberer JE, Chai PR, Castillo-Mancilla J, Anderson PL, Gandhi M. 2020. Approaches to objectively measure antiretroviral medication adherence and drive adherence interventions. Curr. HIV/AIDS Rep. 17:4301–14
    [Google Scholar]
  114. 114.
    Drain PK, Bardon AR, Simoni JM, Cressey TR, Anderson P et al. 2020. Point-of-care and near real-time testing for antiretroviral adherence monitoring to HIV treatment and prevention. Curr. HIV/AIDS Rep. 17:5487–98
    [Google Scholar]
  115. 115.
    Berg RC, Page S, Ogard-Repal A. 2021. The effectiveness of peer-support for people living with HIV: a systematic review and meta-analysis. PLOS ONE 16:6e0252623
    [Google Scholar]
  116. 116.
    Beletsky L, Thumath M, Haley DF, Gonsalves G, Jordan A 2021. HIV's trajectory: biomedical triumph, structural failure. Am. J. Public Health 111:71258–60
    [Google Scholar]
  117. 117.
    Mateo-Urdiales A, Johnson S, Smith R, Nachega JB, Eshun-Wilson I 2019. Rapid initiation of antiretroviral therapy for people living with HIV. Cochrane Database Syst. Rev. 6:CD012962
    [Google Scholar]
  118. 118.
    Rosen S, Maskew M, Brennan AT, Fox MP, Vezi L et al. 2018. Improved simplified clinical algorithm for identifying patients eligible for immediate initiation of antiretroviral therapy for HIV (SLATE II): protocol for a randomized evaluation. Trials 19:1548
    [Google Scholar]
  119. 119.
    Bygrave H, Golob L, Wilkinson L, Roberts T, Grimsrud A. 2020. Let's talk chronic disease: Can differentiated service delivery address the syndemics of HIV, hypertension and diabetes?. Curr. Opin. HIV AIDS 15:4256–60
    [Google Scholar]
  120. 120.
    Ford N, Geng E, Ellman T, Orrell C, Ehrenkranz P et al. 2020. Emerging priorities for HIV service delivery. PLOS Med 17:2e1003028
    [Google Scholar]
  121. 121.
    Jandoo T. 2020. WHO guidance for digital health: what it means for researchers. Digit. Health 6:2055207619898984
    [Google Scholar]
  122. 122.
    WHO (World Health Organ.) 2019. Recommendations on digital interventions for health system strengthening WHO Guidel. Geneva, Switz:.
  123. 123.
    Moodley S, Gray A, Schellack N, Venter F, Suleman F et al. 2021. Pharmacist-initiated antiretroviral therapy (PIMART). S. Afr. Med. J. 111:121162–63
    [Google Scholar]
  124. 124.
    Kennedy CE, Yeh PT, Atkins K, Ferguson L, Baggaley R, Narasimhan M. 2022. PrEP distribution in pharmacies: a systematic review. BMJ Open 12:2e054121
    [Google Scholar]
  125. 125.
    Meintjes G, Brust JCM, Nuttall J, Maartens G. 2019. Management of active tuberculosis in adults with HIV. Lancet HIV 6:7e463–74
    [Google Scholar]
  126. 126.
    Shroufi A, Chiller T, Jordan A, Denning DW, Harrison TS et al. 2021. Ending deaths from HIV-related cryptococcal meningitis by 2030. Lancet Infect. Dis. 21:116–18
    [Google Scholar]
  127. 127.
    Lerner AM, Eisinger RW, Fauci AS. 2020. Comorbidities in persons with HIV: the lingering challenge. JAMA 323:119–20
    [Google Scholar]
  128. 128.
    Lee MJ, Fidler S, Frater J. 2022. Immunotherapeutic approaches to HIV cure and remission. Curr. Opin. Infect. Dis. 35:131–41
    [Google Scholar]
  129. 129.
    Dybul M, Attoye T, Baptiste S, Cherutich P, Dabis F et al. 2021. The case for an HIV cure and how to get there. Lancet HIV 8:1e51–58
    [Google Scholar]
  130. 130.
    Lewin SR, Attoye T, Bansbach C, Doehle B, Dube K et al. 2021. Multi-stakeholder consensus on a target product profile for an HIV cure. Lancet HIV 8:1e42–50
    [Google Scholar]
  131. 131.
    Devanathan AS, Cottrell ML. 2021. Pharmacology of HIV cure: site of action. Clin. Pharmacol. Ther. 109:4841–55
    [Google Scholar]
  132. 132.
    Fletcher CV, Dyavar SR, Acharya A, Byrareddy SN. 2021. The contributions of clinical pharmacology to HIV cure research. Clin. Pharmacol. Ther. 110:2334–45
    [Google Scholar]
  133. 133.
    Migliori GB, Tiberi S, Zumla A, Petersen E, Chakaya JM et al. 2020. MDR/XDR-TB management of patients and contacts: challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. Int. J. Infect. Dis. 92S:S15–25
    [Google Scholar]
  134. 134.
    Cambiano V, Lampe F, Miners A, McCormack S, Gill N et al. 2022. Contributions to the decline in HIV incidence among GBM in the UK: a modelling study Paper presented at the Conference on Retroviruses and Opportunistic Infections virtual, Febr:11–16
  135. 135.
    Wymant C, Bezemer D, Blanquart F, Ferretti L, Gall A et al. 2022. A highly virulent variant of HIV-1 circulating in the Netherlands. Science 375:6580540–45
    [Google Scholar]
  136. 136.
    Cohen MS, Gamble T, McCauley M. 2020. Prevention of HIV transmission and the HPTN 052 study. Annu. Rev. Med. 71:347–60
    [Google Scholar]
  137. 137.
    Laher F, Richardson SI, Smith P, Sullivan PS, Abrahams AG et al. 2021. HIV prevention in a time of COVID-19: a report from the HIVR4P // virtual conference 2021. AIDS Res. Hum. Retroviruses 38:5350–58
    [Google Scholar]
  138. 138.
    Bavinton BR, Grulich AE. 2021. HIV pre-exposure prophylaxis: scaling up for impact now and in the future. Lancet Public Health 6:7e528–33
    [Google Scholar]
  139. 139.
    Bor J, Onoya D, Richman B, Mayer KH. 2021. A failure to disseminate transformative science—HIV treatment as prevention, 10 years on. N. Engl. J. Med. 385:252305–7
    [Google Scholar]
  140. 140.
    Dieffenbach CW, Fauci AS. 2020. The search for an HIV vaccine, the journey continues. J. Int. AIDS Soc. 23:5e25506
    [Google Scholar]
  141. 141.
    Enoch J, Piot P. 2017. Human rights in the fourth decade of the HIV/AIDS response: an inspiring legacy and urgent imperative. Health Hum. Rights 19:2117–22
    [Google Scholar]
  142. 142.
    Honermann B, O'Hagan R. 2017. Use of expenditure analysis to enhance returns on investments in HIV services. Curr. Opin. HIV AIDS 12:5494–500
    [Google Scholar]
  143. 143.
    Maartens G, Celum C, Lewin SR. 2014. HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 384:9939258–71
    [Google Scholar]
  144. 144.
    INSIGHT START Study Group 2015. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N. Engl. J. Med. 373:9795–807
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052020-094321
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error