1932

Abstract

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading single-gene form of autism spectrum disorder, encompassing cognitive, behavioral, and physical forms of clinical involvement. FXS is caused by large expansions of a noncoding CGG repeat (>200 repeats) in the gene, at which point the gene is generally silenced. Absence of protein (FMRP), important for synaptic development and maintenance, gives rise to the neurodevelopmental disorder. There is, at present, no therapeutic approach that directly reverses the loss of FMRP; however, there is an increasing number of potential treatments that target the pathways dysregulated in FXS, including those that address the enhanced activity of the mGluR5 pathway and deficits in GABA pathways. Based on studies of targeted therapeutics to date, the prospects are good for one or more effective therapies for FXS in the near future.

Keyword(s): autismCGG repeatFMR1FMRPFXAND
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052120-090147
2022-01-06
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052120-090147.html?itemId=/content/journals/10.1146/annurev-pharmtox-052120-090147&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB Jr., Moine H et al. 2017. Fragile X syndrome. Nat. Rev. Dis. Primers 3:17065
    [Google Scholar]
  2. 2. 
    Jasoliya M, Tassone F 2020. The diagnosis of fragile X syndrome: new advances, population screening, and cascade testing. Fragile X Syndrome and Premutation Disorders: New Developments and Treatments R Hagerman, P Hagerman 15–24 London: Mac Keith Press
    [Google Scholar]
  3. 3. 
    Tassone F, Hagerman RJ, Ikle DN, Dyer PN, Lampe M et al. 1999. FMRP expression as a potential prognostic indicator in fragile X syndrome. Am. J. Med. Genet. 84:250–61
    [Google Scholar]
  4. 4. 
    Kim K, Hessl D, Randol JL, Espinal GM, Schneider A et al. 2019. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLOS ONE 14:e0226811
    [Google Scholar]
  5. 5. 
    Holm KN, Herren AW, Taylor SL, Randol JL, Kim K et al. 2020. Human cerebral cortex proteome of fragile X-associated tremor/ataxia syndrome. Front. Mol. Biosci. 7:600840
    [Google Scholar]
  6. 6. 
    Randol J, Bzymek M, Hagerman P 2020. Molecular advances in fragile X syndrome and fragile X-associated disorders. Fragile X Syndrome and Premutation Disorders: New Developments and Treatments R Hagerman, P Hagerman 25–40 London: Mac Keith Press
    [Google Scholar]
  7. 7. 
    Sitzmann AF, Hagelstrom RT, Tassone F, Hagerman RJ, Butler MG. 2018. Rare FMR1 gene mutations causing fragile X syndrome: a review. Am. J. Med. Genet. A 176:11–18
    [Google Scholar]
  8. 8. 
    Saldarriaga W, Forero-Forero JV, Gonzalez-Teshima LY, Fandino-Losada A, Isaza C et al. 2018. Genetic cluster of fragile X syndrome in a Colombian district. J. Hum. Genet. 63:509–16
    [Google Scholar]
  9. 9. 
    Sihombing NRB, Winarni TI, Utari A, van Bokhoven H, Hagerman RJ, Faradz SM. 2021. Surveillance and prevalence of fragile X syndrome in Indonesia. Intractable Rare Dis. Res. 10:11–16
    [Google Scholar]
  10. 10. 
    de Vries BB, Wiegers AM, Smits AP, Mohkamsing S, Duivenvoorden HJ et al. 1996. Mental status of females with an FMR1 gene full mutation. Am. J. Hum. Genet. 58:1025–32
    [Google Scholar]
  11. 11. 
    Hagerman RJ, Hagerman PJ, eds. 2020. Fragile X Syndrome and Premutation Disorders: New Developments and Treatments London: Mac Keith Press
    [Google Scholar]
  12. 12. 
    Ramirez-Cheyne JA, Duque GA, Ayala-Zapata S, Saldarriaga-Gil W, Hagerman P et al. 2019. Fragile X syndrome and connective tissue dysregulation. Clin. Genet. 95:262–67
    [Google Scholar]
  13. 13. 
    Kidd SA, Lachiewicz A, Barbouth D, Blitz RK, Delahunty C et al. 2014. Fragile X syndrome: a review of associated medical problems. Pediatrics 134:995–1005
    [Google Scholar]
  14. 14. 
    Hagerman RJ 2002. Physical and behavioral phenotype. Fragile X Syndrome: Diagnosis, Treatment and Research RJ Hagerman, PJ Hagerman 3–109 Baltimore: Johns Hopkins Univ. Press
    [Google Scholar]
  15. 15. 
    Miller LJ, McIntosh DN, McGrath J, Shyu V, Lampe M et al. 1999. Electrodermal responses to sensory stimuli in individuals with fragile X syndrome: a preliminary report. Am. J. Med. Genet. 83:268–79
    [Google Scholar]
  16. 16. 
    Erickson CA, Stigler KA, Posey DJ, McDougle CJ. 2010. Aripiprazole in autism spectrum disorders and fragile X syndrome. Neurotherapeutics 7:258–63
    [Google Scholar]
  17. 17. 
    Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N et al. 2009. Advances in the treatment of fragile X syndrome. Pediatrics 123:378–90
    [Google Scholar]
  18. 18. 
    Berry-Kravis E, Sumis A, Hervey C, Nelson M, Porges SW et al. 2008. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J. Dev. Behav. Pediatr. 29:293–302
    [Google Scholar]
  19. 19. 
    Rivera S, Roberts J, Wheeler A, Hagerman R 2020. My baby has just been diagnosed with fragile X syndrome: What is there to know?. Fragile X Syndrome and Premutation Disorders: New Developments and Treatments R Hagerman, P Hagerman 97–110 London: Mac Keith Press
    [Google Scholar]
  20. 20. 
    Berry-Kravis E, Raspa M, Loggin-Hester L, Bishop E, Holiday D, Bailey DB 2010. Seizures in fragile X syndrome: characteristics and comorbid diagnoses. Am. J. Intellect. Dev. Disabil. 115:461–72
    [Google Scholar]
  21. 21. 
    Hagerman R, Protic D, Berry-Kravis E 2020. Medical, psychopharmacological, and targeted treatment for FXS. Fragile X Syndrome and Premutation Disorders: New Developments and Treatments R Hagerman, P Hagerman 41–58 London: Mac Keith Press
    [Google Scholar]
  22. 22. 
    Kaufmann WE, Kidd SA, Andrews HF, Budimirovic DB, Esler A et al. 2017. Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics 139:S194–206
    [Google Scholar]
  23. 23. 
    Abbeduto L, Thurman A, Villarreal J 2020. Autism spectrum disorder and fragile X syndrome: intertwined and guiding interventions. Fragile X Syndrome and Premutation Disorders: New Developments and Treatments R Hagerman, P Hagerman 5–14 London: Mac Keith Press
    [Google Scholar]
  24. 24. 
    Harris SW, Hessl D, Goodlin-Jones B, Ferranti J, Bacalman S et al. 2008. Autism profiles of males with fragile X syndrome. Am. J. Ment. Retard. 113:427–38
    [Google Scholar]
  25. 25. 
    Cordeiro L, Ballinger E, Hagerman R, Hessl D. 2011. Clinical assessment of DSM-IV anxiety disorders in fragile X syndrome: prevalence and characterization. J. Neurodev. Disord. 3:57–67
    [Google Scholar]
  26. 26. 
    Hagerman RJ, Hagerman P. 2016. Fragile X-associated tremor/ataxia syndrome—features, mechanisms and management. Nat. Rev. Neurol. 12:403–12
    [Google Scholar]
  27. 27. 
    Dockendorff TC, Labrador M. 2019. The fragile X protein and genome function. Mol. Neurobiol. 56:711–21
    [Google Scholar]
  28. 28. 
    Schaeffer C, Bardoni B, Mandel JL, Ehresmann B, Ehresmann C, Moine H. 2001. The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif. EMBO J 20:4803–13
    [Google Scholar]
  29. 29. 
    Brown V, Jin P, Ceman S, Darnell JC, O'Donnell WT et al. 2001. Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–87
    [Google Scholar]
  30. 30. 
    Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A et al. 2011. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247–61
    [Google Scholar]
  31. 31. 
    Fernandez E, Rajan N, Bagni C 2013. The FMRP regulon: from targets to disease convergence. Front. Neurosci. 7:191
    [Google Scholar]
  32. 32. 
    Maurin T, Lebrigand K, Castagnola S, Paquet A, Jarjat M et al. 2018. HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein. Nucleic Acids Res 46:6344–55
    [Google Scholar]
  33. 33. 
    Banerjee A, Ifrim MF, Valdez AN, Raj N, Bassell GJ 2018. Aberrant RNA translation in fragile X syndrome: from FMRP mechanisms to emerging therapeutic strategies. Brain Res 1693:24–36
    [Google Scholar]
  34. 34. 
    D'Annessa I, Cicconardi F, Di Marino D 2019. Handling FMRP and its molecular partners: structural insights into fragile X syndrome. Prog. Biophys. Mol. Biol. 141:3–14
    [Google Scholar]
  35. 35. 
    Bagni C, Zukin RS. 2019. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron 101:1070–88
    [Google Scholar]
  36. 36. 
    Telias M. 2019. Molecular mechanisms of synaptic dysregulation in fragile X syndrome and autism spectrum disorders. Front. Mol. Neurosci. 12:51
    [Google Scholar]
  37. 37. 
    Maurin T, Bardoni B. 2018. Fragile X mental retardation protein: to be or not to be a translational enhancer. Front. Mol. Biosci. 5:113
    [Google Scholar]
  38. 38. 
    Gantois I, Vandesompele J, Speleman F, Reyniers E, D'Hooge R et al. 2006. Expression profiling suggests underexpression of the GABAA receptor subunit δ in the fragile X knockout mouse model. Neurobiol. Dis. 21:346–57
    [Google Scholar]
  39. 39. 
    Narayanan U, Nalavadi V, Nakamoto M, Pallas DC, Ceman S et al. 2007. FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J. Neurosci. 27:14349–57
    [Google Scholar]
  40. 40. 
    Nalavadi VC, Muddashetty RS, Gross C, Bassell GJ. 2012. Dephosphorylation-induced ubiquitination and degradation of FMRP in dendrites: a role in immediate early mGluR-stimulated translation. J. Neurosci. 32:2582–87
    [Google Scholar]
  41. 41. 
    Muddashetty RS, Nalavadi VC, Gross C, Yao X, Xing L et al. 2011. Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling. Mol. Cell 42:673–88
    [Google Scholar]
  42. 42. 
    Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F et al. 2008. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134:1042–54
    [Google Scholar]
  43. 43. 
    Bechara EG, Didiot MC, Melko M, Davidovic L, Bensaid M et al. 2009. A novel function for fragile X mental retardation protein in translational activation. PLOS Biol 7:e16
    [Google Scholar]
  44. 44. 
    Korb E, Herre M, Zucker-Scharff I, Gresack J, Allis CD, Darnell RB 2017. Excess translation of epigenetic regulators contributes to fragile X syndrome and is alleviated by Brd4 inhibition. Cell 170:1209–23.e20
    [Google Scholar]
  45. 45. 
    Kooy RF, Jin P, Bao H, Till S, Kind P, Willemsen R 2017. Animal models of fragile X syndrome. Fragile X Syndrome R Willemsen, RF Kooy 123–47 London: Academic
    [Google Scholar]
  46. 46. 
    Kelley DJ, Davidson RJ, Elliott JL, Lahvis GP, Yin JC, Bhattacharyya A. 2007. The cyclic AMP cascade is altered in the fragile X nervous system. PLOS ONE 2:e931
    [Google Scholar]
  47. 47. 
    Dahlhaus R. 2018. Of men and mice: modeling the fragile X syndrome. Front. Mol. Neurosci. 11:41
    [Google Scholar]
  48. 48. 
    Chugani DC, Muzik O, Rothermel R, Behen M, Chakraborty P et al. 1997. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann. Neurol. 42:666–69
    [Google Scholar]
  49. 49. 
    Chandana SR, Behen ME, Juhasz C, Muzik O, Rothermel RD et al. 2005. Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. Int. J. Dev. Neurosci. 23:171–82
    [Google Scholar]
  50. 50. 
    Hanson AC, Hagerman RJ. 2014. Serotonin dysregulation in fragile X syndrome: implications for treatment. Intractable Rare Dis. Res. 3:110–17
    [Google Scholar]
  51. 51. 
    Indah Winarni T, Chonchaiya W, Adams E, Au J, Mu Y et al. 2012. Sertraline may improve language developmental trajectory in young children with fragile X syndrome: a retrospective chart review. Autism Res. Treat. 2012:104317
    [Google Scholar]
  52. 52. 
    Greiss Hess L, Fitzpatrick SE, Nguyen DV, Chen Y, Gaul KN et al. 2016. A randomized, double-blind, placebo-controlled trial of low-dose sertraline in young children with fragile X syndrome. J. Dev. Behav. Pediatr. 37:619–28
    [Google Scholar]
  53. 53. 
    Sodhi MS, Sanders-Bush E. 2004. Serotonin and brain development. Int. Rev. Neurobiol. 59:111–74
    [Google Scholar]
  54. 54. 
    Costa L, Spatuzza M, D'Antoni S, Bonaccorso CM, Trovato C et al. 2012. Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of fragile X syndrome. Biol. Psychiatry 72:924–33
    [Google Scholar]
  55. 55. 
    Bear MF, Huber KM, Warren ST. 2004. The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–77
    [Google Scholar]
  56. 56. 
    Berry-Kravis E, Des Portes V, Hagerman R, Jacquemont S, Charles P et al. 2016. Mavoglurant in fragile X syndrome: results of two randomized, double-blind, placebo-controlled trials. Sci. Transl. Med. 8:321ra5
    [Google Scholar]
  57. 57. 
    Youssef EA, Berry-Kravis E, Czech C, Hagerman RJ, Hessl D et al. 2018. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled trial: FragXis phase 2 results. Neuropsychopharmacology 43:503–12
    [Google Scholar]
  58. 58. 
    Berry-Kravis EM, Lindemann L, Jonch AE, Apostol G, Bear MF et al. 2018. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat. Rev. Drug Discov. 17:280–99
    [Google Scholar]
  59. 59. 
    Abbeduto L. 2020. Presidential address, 2020—Using technology to deliver services and supports in homes, neighborhoods, and communities: evidence and promise. Intellect. Dev. Disabil. 58:525–31
    [Google Scholar]
  60. 60. 
    McDuffie A, Banasik A, Bullard L, Nelson S, Feigles RT et al. 2018. Distance delivery of a spoken language intervention for school-aged and adolescent boys with fragile X syndrome. Dev. Neurorehabil. 21:48–63
    [Google Scholar]
  61. 61. 
    Monyak RE, Emerson D, Schoenfeld BP, Zheng X, Chambers DB et al. 2017. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol. Psychiatry 22:1140–48
    [Google Scholar]
  62. 62. 
    Gantois I, Khoutorsky A, Popic J, Aguilar-Valles A, Freemantle E et al. 2017. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat. Med. 23:674–77
    [Google Scholar]
  63. 63. 
    Gantois I, Popic J, Khoutorsky A, Sonenberg N 2019. Metformin for treatment of fragile X syndrome and other neurological disorders. Annu. Rev. Med. 70:167–81
    [Google Scholar]
  64. 64. 
    Dy ABC, Tassone F, Eldeeb M, Salcedo-Arellano MJ, Tartaglia N, Hagerman R 2018. Metformin as targeted treatment in fragile X syndrome. Clin. Genet. 93:216–22
    [Google Scholar]
  65. 65. 
    Biag HMB, Potter LA, Wilkins V, Afzal S, Rosvall A et al. 2019. Metformin treatment in young children with fragile X syndrome. Mol. Genet. Genom. Med. 7:e956
    [Google Scholar]
  66. 66. 
    Protic D, Aydin EY, Tassone F, Tan MM, Hagerman RJ, Schneider A. 2019. Cognitive and behavioral improvement in adults with fragile X syndrome treated with metformin—two cases. Mol. Genet. Genom. Med. 7:e00745
    [Google Scholar]
  67. 67. 
    Protic D, Kaluzhny P, Tassone F, Hagerman R 2019. Prepubertal metformin treatment in fragile X syndrome alleviated macroorchidism: a case study. Adv. Clin. Transl. Res. 3:100021
    [Google Scholar]
  68. 68. 
    Osterweil EK, Chuang SC, Chubykin AA, Sidorov M, Bianchi R et al. 2013. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 77:243–50
    [Google Scholar]
  69. 69. 
    Muscas M, Louros SR, Osterweil EK. 2019. Lovastatin, not simvastatin, corrects core phenotypes in the fragile X mouse model. eNeuro 6:ENEURO.0097-19.2019
    [Google Scholar]
  70. 70. 
    Çaku A, Pellerin D, Bouvier P, Riou E, Corbin F 2014. Effect of lovastatin on behavior in children and adults with fragile X syndrome: an open-label study. Am. J. Med. Genet. A 164A:2834–42
    [Google Scholar]
  71. 71. 
    McDuffie A, Oakes A, Machalicek W, Ma M, Bullard L et al. 2016. Early language intervention using distance video-teleconferencing: a pilot study of young boys with fragile X syndrome and their mothers. Am. J. Speech Lang. Pathol. 25:46–66
    [Google Scholar]
  72. 72. 
    Thurman AJ, Potter LA, Kim K, Tassone F, Banasik A et al. 2020. Controlled trial of lovastatin combined with an open-label treatment of a parent-implemented language intervention in youth with fragile X syndrome. J. Neurodev. Disord. 12:12
    [Google Scholar]
  73. 73. 
    Heulens I, D'Hulst C, Van Dam D, De Deyn PP, Kooy RF 2012. Pharmacological treatment of fragile X syndrome with GABAergic drugs in a knockout mouse model. Behav. Brain Res. 229:244–49
    [Google Scholar]
  74. 74. 
    Pacey LK, Heximer SP, Hampson DR. 2009. Increased GABAB receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Mol. Pharmacol. 76:18–24
    [Google Scholar]
  75. 75. 
    Henderson C, Wijetunge L, Kinoshita MN, Shumway M, Hammond RS et al. 2012. Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci. Transl. Med. 4:152ra28
    [Google Scholar]
  76. 76. 
    Qin M, Huang T, Kader M, Krych L, Xia Z et al. 2015. R-baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome. Int. J. Neuropsychopharmacol. 18:pyv034
    [Google Scholar]
  77. 77. 
    Berry-Kravis E, Hagerman R, Visootsak J, Budimirovic D, Kaufmann WE et al. 2017. Arbaclofen in fragile X syndrome: results of phase 3 trials. J. Neurodev. Disord. 9:3
    [Google Scholar]
  78. 78. 
    Braat S, D'Hulst C, Heulens I, De Rubeis S, Mientjes E et al. 2015. The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle 14:2985–95
    [Google Scholar]
  79. 79. 
    Ligsay A, Van Dijck A, Nguyen DV, Lozano R, Chen Y et al. 2017. A randomized double-blind, placebo-controlled trial of ganaxolone in children and adolescents with fragile X syndrome. J. Neurodev. Disord. 9:26
    [Google Scholar]
  80. 80. 
    Cogram P, Deacon RMJ, Warner-Schmidt JL, von Schimmelmann MJ, Abrahams BS, During MJ 2019. Gaboxadol normalizes behavioral abnormalities in a mouse model of fragile X syndrome. Front. Behav. Neurosci. 13:141
    [Google Scholar]
  81. 81. 
    Kalk NJ, Lingford-Hughes AR. 2014. The clinical pharmacology of acamprosate. Br. J. Clin. Pharmacol. 77:315–23
    [Google Scholar]
  82. 82. 
    Erickson CA, Wink LK, Ray B, Early MC, Stiegelmeyer E et al. 2013. Impact of acamprosate on behavior and brain-derived neurotrophic factor: an open-label study in youth with fragile X syndrome. Psychopharmacology 228:75–84
    [Google Scholar]
  83. 83. 
    Erickson CA, Ray B, Maloney B, Wink LK, Bowers K et al. 2014. Impact of acamprosate on plasma amyloid-β precursor protein in youth: a pilot analysis in fragile X syndrome-associated and idiopathic autism spectrum disorder suggests a pharmacodynamic protein marker. J. Psychiatr. Res. 59:220–28
    [Google Scholar]
  84. 84. 
    Devinsky O, Marsh E, Friedman D, Thiele E, Laux L et al. 2016. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol 15:270–78
    [Google Scholar]
  85. 85. 
    Lattanzi S, Brigo F, Trinka E, Zaccara G, Cagnetti C et al. 2018. Efficacy and safety of cannabidiol in epilepsy: a systematic review and meta-analysis. Drugs 78:1791–804
    [Google Scholar]
  86. 86. 
    Bergamaschi MM, Queiroz RH, Chagas MH, de Oliveira DC, De Martinis BS et al. 2011. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naïve social phobia patients. Neuropsychopharmacology 36:1219–26
    [Google Scholar]
  87. 87. 
    Almeida V, Levin R, Peres FF, Niigaki ST, Calzavara MB et al. 2013. Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test. Prog. Neuropsychopharmacol. Biol. Psychiatry 41:30–35
    [Google Scholar]
  88. 88. 
    Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID. 2020. Cannabidiol as a therapeutic target: evidence of its neuroprotective and neuromodulatory function in Parkinson's disease. Front. Pharmacol. 11:595635
    [Google Scholar]
  89. 89. 
    Scuderi C, Steardo L, Esposito G. 2014. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement. Phytother. Res. 28:1007–13
    [Google Scholar]
  90. 90. 
    Tartaglia N, Bonn-Miller M, Hagerman R. 2019. Treatment of fragile X syndrome with cannabidiol: a case series study and brief review of the literature. Cannabis Cannabinoid Res 4:3–9
    [Google Scholar]
  91. 91. 
    Heussler H, Cohen J, Silove N, Tich N, Bonn-Miller MO et al. 2019. A phase 1/2, open-label assessment of the safety, tolerability, and efficacy of transdermal cannabidiol (ZYN002) for the treatment of pediatric fragile X syndrome. J. Neurodev. Disord. 11:16
    [Google Scholar]
  92. 92. 
    Lu XC, Chen RW, Yao C, Wei H, Yang X et al. 2009. NNZ-2566, a glypromate analog, improves functional recovery and attenuates apoptosis and inflammation in a rat model of penetrating ballistic-type brain injury. J. Neurotrauma 26:141–54
    [Google Scholar]
  93. 93. 
    Guan J, Thomas GB, Lin H, Mathai S, Bachelor DC et al. 2004. Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate (GPE) following intravenous infusion in hypoxic-ischemic adult rats. Neuropharmacology 47:892–903
    [Google Scholar]
  94. 94. 
    Deacon RM, Glass L, Snape M, Hurley MJ, Altimiras FJ et al. 2015. NNZ-2566, a novel analog of (1–3) IGF-1, as a potential therapeutic agent for fragile X syndrome. Neuromolecular. Med. 17:71–82
    [Google Scholar]
  95. 95. 
    Berry-Kravis E, Horrigan JP, Tartaglia N, Hagerman R, Kolevzon A et al. 2020. A double-blind, randomized, placebo-controlled clinical study of trofinetide in the treatment of fragile X syndrome. Pediatr. Neurol. 110:30–41
    [Google Scholar]
  96. 96. 
    Glaze DG, Neul JL, Kaufmann WE, Berry-Kravis E, Condon S et al. 2019. Double-blind, randomized, placebo-controlled study of trofinetide in pediatric Rett syndrome. Neurology 92:e1912–e25
    [Google Scholar]
  97. 97. 
    Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR et al. 2009. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet. 46:94–102
    [Google Scholar]
  98. 98. 
    Siller SS, Broadie K. 2011. Neural circuit architecture defects in a Drosophila model of fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis. Model. Mech. 4:673–85
    [Google Scholar]
  99. 99. 
    Leigh MJ, Nguyen DV, Mu Y, Winarni TI, Schneider A et al. 2013. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J. Dev. Behav. Pediatr. 34:147–55
    [Google Scholar]
  100. 100. 
    Schneider A, Leigh MJ, Adams P, Nanakul R, Chechi T et al. 2013. Electrocortical changes associated with minocycline treatment in fragile X syndrome. J. Psychopharmacol. 27:956–63
    [Google Scholar]
  101. 101. 
    Dziembowska M, Pretto DI, Janusz A, Kaczmarek L, Leigh MJ et al. 2013. High MMP-9 activity levels in fragile X syndrome are lowered by minocycline. Am. J. Med. Genet. A 161A:1897–903
    [Google Scholar]
  102. 102. 
    Shields RH, Kaat AJ, McKenzie FJ, Drayton A, Sansone SM et al. 2020. Validation of the NIH Toolbox Cognitive Battery in intellectual disability. Neurology 94:e1229–40
    [Google Scholar]
  103. 103. 
    Berry-Kravis EM, Harnett MD, Reines SA, Reese MA, Ethridge LE et al. 2021. Inhibition of phosphodiesterase-4D in adults with fragile X syndrome: a randomized, placebo-controlled, phase 2 clinical trial. Nat. Med. 27:862–70
    [Google Scholar]
  104. 104. 
    Ethridge LE, De Stefano LA, Schmitt LM, Woodruff NE, Brown KL et al. 2019. Auditory EEG biomarkers in fragile X syndrome: clinical relevance. Front. Integr. Neurosci. 13:60
    [Google Scholar]
  105. 105. 
    Klusek J, Moser C, Schmidt J, Abbeduto L, Roberts JE 2020. A novel eye-tracking paradigm for indexing social avoidance-related behavior in fragile X syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 183:5–16
    [Google Scholar]
  106. 106. 
    Hessl D, Harvey D, Sansone S, Crestodina C, Chin J et al. 2019. Effects of mavoglurant on visual attention and pupil reactivity while viewing photographs of faces in fragile X syndrome. PLOS ONE 14:e0209984
    [Google Scholar]
  107. 107. 
    Berry-Kravis E, Doll E, Sterling A, Kover ST, Schroeder SM et al. 2013. Development of an expressive language sampling procedure in fragile X syndrome: a pilot study. J. Dev. Behav. Pediatr. 34:245–51
    [Google Scholar]
  108. 108. 
    Shaffer RC, Schmitt L, John Thurman A, Abbeduto L, Hong M et al. 2020. The relationship between expressive language sampling and clinical measures in fragile X syndrome and typical development. Brain Sci 10:66
    [Google Scholar]
  109. 109. 
    Budimirovic DB, Berry-Kravis E, Erickson CA, Hall SS, Hessl D et al. 2017. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J. Neurodev. Disord. 9:14
    [Google Scholar]
  110. 110. 
    Jasoliya M, Bowling H, Petrasic IC, Durbin-Johnson B, Klann E et al. 2020. Blood-based biomarkers predictive of metformin target engagement in fragile X syndrome. Brain Sci 10:361
    [Google Scholar]
  111. 111. 
    Scott H, Harvey DJ, Li Y, McLennan YA, Johnston CK et al. 2020. Cognitive training deep dive: the impact of child, training behavior and environmental factors within a controlled trial of Cogmed for fragile X syndrome. Brain Sci 10:671
    [Google Scholar]
  112. 112. 
    Chitwood K, Greiss Hess L, Diez-Juan M, Braden M 2020. Academic intervention and therapies for children with FXS. Fragile X Syndrome and Premutation Disorders: New Developments and Treatments R Hagerman, P Hagerman 111–36 London: Mac Keith Press
    [Google Scholar]
  113. 113. 
    Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E 2012. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76:325–37
    [Google Scholar]
  114. 114. 
    Gross C, Nakamoto M, Yao X, Chan CB, Yim SY et al. 2010. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J. Neurosci. 30:10624–38
    [Google Scholar]
  115. 115. 
    Goebel-Goody SM, Wilson-Wallis ED, Royston S, Tagliatela SM, Naegele JR, Lombroso PJ 2012. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model. Genes Brain Behav 11:586–600
    [Google Scholar]
  116. 116. 
    Servais L, Baranello G, Masson R, Mazurkiewicz-Bełdzińska M, Rose K et al. 2020. FIREFISH part 2: efficacy and safety of risdiplam (RG7916) in infants with type 1 spinal muscular atrophy (SMA). Neurology 94:1302
    [Google Scholar]
  117. 117. 
    Baranello G, Bertini E, Chiriboga C, Darras BT, Day JW et al. 2020. Pooled safety data from the risdiplam (RG7916) clinical trial development program. Neurology 94:1267
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052120-090147
Loading
/content/journals/10.1146/annurev-pharmtox-052120-090147
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error