1932

Abstract

The transcription factor NRF2 coordinates the expression of a vast array of cytoprotective and metabolic genes in response to various stress inputs to restore cellular homeostasis. Transient activation of NRF2 in healthy tissues has been long recognized as a cellular defense mechanism and is critical to prevent cancer initiation by carcinogens. However, cancer cells frequently hijack the protective capability of NRF2 to sustain the redox balance and meet their metabolic requirements for proliferation. Further, aberrant activation of NRF2 in cancer cells confers resistance to commonly used chemotherapeutic agents and radiotherapy. During the last decade, many research groups have attempted to block NRF2 activity in tumors to counteract the survival and proliferative advantage of cancer cells and reverse resistance to treatment. In this review, we highlight the role of NRF2 in cancer progression and discuss the past and current approaches to disable NRF2 signaling in tumors.

Keyword(s): cancerKEAP1NRF2therapeutics
Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-052220-104025
2022-01-06
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/62/1/annurev-pharmtox-052220-104025.html?itemId=/content/journals/10.1146/annurev-pharmtox-052220-104025&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lee SB, Sellers BN, DeNicola GM. 2018. The regulation of NRF2 by nutrient-responsive signaling and its role in anabolic cancer metabolism. Antioxid. Redox Signal. 29:1774–91
    [Google Scholar]
  2. 2. 
    Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. 2003. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23:7198–209
    [Google Scholar]
  3. 3. 
    Pajares M, Cuadrado A, Rojo AI. 2017. Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biol 11:543–53
    [Google Scholar]
  4. 4. 
    Hayes JD, Chowdhry S, Dinkova-Kostova AT, Sutherland C 2015. Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochem. Soc. Trans. 43:611–20
    [Google Scholar]
  5. 5. 
    Hayes JD, Dinkova-Kostova AT. 2014. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39:199–218
    [Google Scholar]
  6. 6. 
    Kerins MJ, Ooi A. 2018. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid. Redox Signal. 29:1756–73
    [Google Scholar]
  7. 7. 
    Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML et al. 2016. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 12:1902–16
    [Google Scholar]
  8. 8. 
    Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC et al. 2010. Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin. Cancer Res. 16:3743–53
    [Google Scholar]
  9. 9. 
    Goeman F, De Nicola F, Scalera S, Sperati F, Gallo E et al. 2019. Mutations in the KEAP1-NFE2L2 pathway define a molecular subset of rapidly progressing lung adenocarcinoma. J. Thorac. Oncol. 14:1924–34
    [Google Scholar]
  10. 10. 
    Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. 2006. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol. Cell. Biol. 26:2887–900
    [Google Scholar]
  11. 11. 
    Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. 2004. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24:10941–53
    [Google Scholar]
  12. 12. 
    Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K et al. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86
    [Google Scholar]
  13. 13. 
    Dayalan Naidu S, Dinkova-Kostova AT 2020. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biol 10:200105
    [Google Scholar]
  14. 14. 
    Dinkova-Kostova AT, Kostov RV, Canning P. 2017. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Arch. Biochem. Biophys. 617:84–93
    [Google Scholar]
  15. 15. 
    Bollong MJ, Lee G, Coukos JS, Yun H, Zambaldo C et al. 2018. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature 562:600–4
    [Google Scholar]
  16. 16. 
    Adam J, Hatipoglu E, O'Flaherty L, Ternette N, Sahgal N et al. 2011. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20:524–37
    [Google Scholar]
  17. 17. 
    Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N et al. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. PNAS 99:11908–13
    [Google Scholar]
  18. 18. 
    Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K et al. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:313–22
    [Google Scholar]
  19. 19. 
    Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. 2011. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol. Cell 44:279–89
    [Google Scholar]
  20. 20. 
    Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S et al. 2012. TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37:223–34
    [Google Scholar]
  21. 21. 
    Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J et al. 2013. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51:618–31
    [Google Scholar]
  22. 22. 
    Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S et al. 2011. p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell 44:134–46
    [Google Scholar]
  23. 23. 
    Endo H, Owada S, Inagaki Y, Shida Y, Tatemichi M. 2018. Glucose starvation induces LKB1-AMPK-mediated MMP-9 expression in cancer cells. Sci. Rep. 8:10122
    [Google Scholar]
  24. 24. 
    Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA et al. 2010. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285:22576–91
    [Google Scholar]
  25. 25. 
    Chen W, Sun Z, Wang XJ, Jiang T, Huang Z et al. 2009. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol. Cell 34:663–73
    [Google Scholar]
  26. 26. 
    Bloom DA, Jaiswal AK. 2003. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J. Biol. Chem. 278:44675–82
    [Google Scholar]
  27. 27. 
    Joo MS, Kim WD, Lee KY, Kim JH, Koo JH, Kim SG. 2016. AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol. Cell. Biol. 36:1931–42
    [Google Scholar]
  28. 28. 
    Sanghvi VR, Leibold J, Mina M, Mohan P, Berishaj M et al. 2019. The oncogenic action of NRF2 depends on de-glycation by fructosamine-3-kinase. Cell 178:807–19.e21
    [Google Scholar]
  29. 29. 
    Cuadrado A. 2015. Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP. Free Radic. Biol. Med. 88:147–57
    [Google Scholar]
  30. 30. 
    Wu T, Zhao F, Gao B, Tan C, Yagishita N et al. 2014. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev 28:708–22
    [Google Scholar]
  31. 31. 
    Lo JY, Spatola BN, Curran SP. 2017. WDR23 regulates NRF2 independently of KEAP1. PLOS Genet 13:e1006762
    [Google Scholar]
  32. 32. 
    Kerins MJ, Ooi A. 2018. A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci. Rep. 8:12846
    [Google Scholar]
  33. 33. 
    Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A et al. 2018. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173:321–37.e10
    [Google Scholar]
  34. 34. 
    Goldstein LD, Lee J, Gnad F, Klijn C, Schaub A et al. 2016. Recurrent loss of NFE2L2 exon 2 is a mechanism for Nrf2 pathway activation in human cancers. Cell Rep 16:2605–17
    [Google Scholar]
  35. 35. 
    Singh A, Misra V, Thimmulappa RK, Lee H, Ames S et al. 2006. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLOS Med 3:e420
    [Google Scholar]
  36. 36. 
    Cancer Genome Atlas Res. Netw 2012. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489:519–25
    [Google Scholar]
  37. 37. 
    Cloer EW, Goldfarb D, Schrank TP, Weissman BE, Major MB. 2019. NRF2 activation in cancer: from DNA to protein. Cancer Res 79:889–98
    [Google Scholar]
  38. 38. 
    DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C et al. 2011. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–9
    [Google Scholar]
  39. 39. 
    Rojo AI, Rada P, Mendiola M, Ortega-Molina A, Wojdyla K et al. 2014. The PTEN/NRF2 axis promotes human carcinogenesis. Antioxid. Redox Signal. 21:2498–514
    [Google Scholar]
  40. 40. 
    Kinch L, Grishin NV, Brugarolas J. 2011. Succination of Keap1 and activation of Nrf2-dependent antioxidant pathways in FH-deficient papillary renal cell carcinoma type 2. Cancer Cell 20:418–20
    [Google Scholar]
  41. 41. 
    Purohit V, Wang L, Yang H, Li J, Ney GM et al. 2021. ATDC binds to KEAP1 to drive NRF2-mediated tumorigenesis and chemoresistance in pancreatic cancer. Genes Dev 35:218–33
    [Google Scholar]
  42. 42. 
    Meng C, Zhan J, Chen D, Shao G, Zhang H et al. 2021. The deubiquitinase USP11 regulates cell proliferation and ferroptotic cell death via stabilization of NRF2 USP11 deubiquitinates and stabilizes NRF2. Oncogene 40:1706–20
    [Google Scholar]
  43. 43. 
    Ichimura Y, Komatsu M. 2018. Activation of p62/SQSTM1-Keap1-nuclear factor erythroid 2-related factor 2 pathway in cancer. Front. Oncol. 8:210
    [Google Scholar]
  44. 44. 
    Zhou S, Ye W, Shao Q, Zhang M, Liang J. 2013. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit. Rev. Oncol. Hematol. 88:706–15
    [Google Scholar]
  45. 45. 
    Shibata T, Kokubu A, Saito S, Narisawa-Saito M, Sasaki H et al. 2011. NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia 13:864–73
    [Google Scholar]
  46. 46. 
    Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F et al. 2008. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29:1235–43
    [Google Scholar]
  47. 47. 
    DeBlasi JM, DeNicola GM. 2020. Dissecting the crosstalk between NRF2 signaling and metabolic processes in cancer. Cancers 12:3023
    [Google Scholar]
  48. 48. 
    Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T et al. 2012. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:66–79
    [Google Scholar]
  49. 49. 
    DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z et al. 2015. NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat. Genet. 47:1475–81
    [Google Scholar]
  50. 50. 
    Towers CG, Fitzwalter BE, Regan D, Goodspeed A, Morgan MJ et al. 2019. Cancer cells upregulate NRF2 signaling to adapt to autophagy inhibition. Dev. Cell 50:690–703.e6
    [Google Scholar]
  51. 51. 
    Kim TH, Hur EG, Kang SJ, Kim JA, Thapa D et al. 2011. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1α. Cancer Res 71:2260–75
    [Google Scholar]
  52. 52. 
    Rojo de la Vega M, Chapman E, Zhang DD 2018. NRF2 and the hallmarks of cancer. Cancer Cell 34:21–43
    [Google Scholar]
  53. 53. 
    Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H et al. 2008. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res 68:7975–84
    [Google Scholar]
  54. 54. 
    Chan K, Lu R, Chang JC, Kan YW 1996. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. PNAS 93:13943–48
    [Google Scholar]
  55. 55. 
    Nakamura BN, Lawson G, Chan JY, Banuelos J, Cortes MM et al. 2010. Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner. Free Radic. Biol. Med. 49:1368–79
    [Google Scholar]
  56. 56. 
    Ma Q, Battelli L, Hubbs AF. 2006. Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2. Am. J. Pathol. 168:1960–74
    [Google Scholar]
  57. 57. 
    Slocum SL, Kensler TW. 2011. Nrf2: control of sensitivity to carcinogens. Arch. Toxicol. 85:273–84
    [Google Scholar]
  58. 58. 
    Satoh H, Moriguchi T, Taguchi K, Takai J, Maher JM et al. 2010. Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung. Carcinogenesis 31:1833–43
    [Google Scholar]
  59. 59. 
    Satoh H, Moriguchi T, Saigusa D, Baird L, Yu L et al. 2016. NRF2 intensifies host defense systems to prevent lung carcinogenesis, but after tumor initiation accelerates malignant cell growth. Cancer Res 76:3088–96
    [Google Scholar]
  60. 60. 
    Hayashi M, Kuga A, Suzuki M, Panda H, Kitamura H et al. 2020. Microenvironmental activation of Nrf2 restricts the progression of Nrf2-activated malignant tumors. Cancer Res 80:3331–44
    [Google Scholar]
  61. 61. 
    Saha S, Buttari B, Panieri E, Profumo E, Saso L. 2020. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25:5474
    [Google Scholar]
  62. 62. 
    Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP et al. 2019. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat. Rev. Drug Discov. 18:295–317
    [Google Scholar]
  63. 63. 
    McMahon M, Itoh K, Yamamoto M, Hayes JD. 2003. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 278:21592–600
    [Google Scholar]
  64. 64. 
    Ren D, Villeneuve NF, Jiang T, Wu T, Lau A et al. 2011. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. PNAS 108:1433–38
    [Google Scholar]
  65. 65. 
    Du Y, Villeneuve NF, Wang XJ, Sun Z, Chen W et al. 2008. Oridonin confers protection against arsenic-induced toxicity through activation of the Nrf2-mediated defensive response. Environ. Health Perspect. 116:1154–61
    [Google Scholar]
  66. 66. 
    Olayanju A, Copple IM, Bryan HK, Edge GT, Sison RL et al. 2015. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity—implications for therapeutic targeting of Nrf2. Free Radic. Biol. Med. 78:202–12
    [Google Scholar]
  67. 67. 
    Tao S, Wang S, Moghaddam SJ, Ooi A, Chapman E et al. 2014. Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res 74:7430–41
    [Google Scholar]
  68. 68. 
    Vartanian S, Ma TP, Lee J, Haverty PM, Kirkpatrick DS et al. 2016. Application of mass spectrometry profiling to establish brusatol as an inhibitor of global protein synthesis. Mol. Cell Proteom. 15:1220–31
    [Google Scholar]
  69. 69. 
    Tsuchida K, Tsujita T, Hayashi M, Ojima A, Keleku-Lukwete N et al. 2017. Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic. Biol. Med. 103:236–47
    [Google Scholar]
  70. 70. 
    Cuendet M, Pezzuto JM. 2004. Antitumor activity of bruceantin: an old drug with new promise. J. Nat. Prod. 67:269–72
    [Google Scholar]
  71. 71. 
    Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM et al. 2016. Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem. Biol. 11:3214–25
    [Google Scholar]
  72. 72. 
    Bollong MJ, Yun H, Sherwood L, Woods AK, Lairson LL, Schultz PG. 2015. A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chem. Biol. 10:2193–98
    [Google Scholar]
  73. 73. 
    Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N et al. 2011. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J. Nutr. Biochem. 22:426–40
    [Google Scholar]
  74. 74. 
    Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M et al. 2013. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32:4825–35
    [Google Scholar]
  75. 75. 
    Fouzder C, Mukhuty A, Mukherjee S, Malick C, Kundu R. 2021. Trigonelline inhibits Nrf2 via EGFR signalling pathway and augments efficacy of Cisplatin and Etoposide in NSCLC cells. Toxicol. In Vitro 70:105038
    [Google Scholar]
  76. 76. 
    Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K et al. 2011. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193:275–84
    [Google Scholar]
  77. 77. 
    Umemura A, He F, Taniguchi K, Nakagawa H, Yamachika S et al. 2016. p62, upregulated during preneoplasia, induces hepatocellular carcinogenesis by maintaining survival of stressed HCC-initiating cells. Cancer Cell 29:935–48
    [Google Scholar]
  78. 78. 
    Saito T, Ichimura Y, Taguchi K, Suzuki T, Mizushima T et al. 2016. p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat. Commun. 7:12030
    [Google Scholar]
  79. 79. 
    Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A, Hayes JD. 2013. Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 32:3765–81
    [Google Scholar]
  80. 80. 
    Abazeed ME, Adams DJ, Hurov KE, Tamayo P, Creighton CJ et al. 2013. Integrative radiogenomic profiling of squamous cell lung cancer. Cancer Res 73:6289–98
    [Google Scholar]
  81. 81. 
    Best SA, De Souza DP, Kersbergen A, Policheni AN, Dayalan S et al. 2018. Synergy between the KEAP1/NRF2 and PI3K pathways drives non-small-cell lung cancer with an altered immune microenvironment. Cell Metab 27:935–43.e4
    [Google Scholar]
  82. 82. 
    Boosani CS, Agrawal DK. 2013. PTEN modulators: a patent review. Expert Opin. Ther. Pat. 23:569–80
    [Google Scholar]
  83. 83. 
    Veiga da-Cunha M, Jacquemin P, Delpierre G, Godfraind C, Theate I et al. 2006. Increased protein glycation in fructosamine 3-kinase-deficient mice. Biochem. J. 399:257–64
    [Google Scholar]
  84. 84. 
    Tamir TY, Bowman BM, Agajanian MJ, Goldfarb D, Schrank TP et al. 2020. Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. J. Cell Sci. 133:14jcs241356
    [Google Scholar]
  85. 85. 
    Tamir TY, Drewry DH, Wells C, Major MB, Axtman AD. 2020. PKIS deep dive yields a chemical starting point for dark kinases and a cell active BRSK2 inhibitor. Sci. Rep. 10:15826
    [Google Scholar]
  86. 86. 
    Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K et al. 2002. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J. Biol. Chem. 277:44765–71
    [Google Scholar]
  87. 87. 
    Ji X, Qian J, Rahman SMJ, Siska PJ, Zou Y et al. 2018. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene 37:5007–19
    [Google Scholar]
  88. 88. 
    Li Y, Yan H, Xu X, Liu H, Wu C, Zhao L. 2020. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol. Lett. 19:323–33
    [Google Scholar]
  89. 89. 
    Shibata Y, Yasui H, Higashikawa K, Miyamoto N, Kuge Y. 2019. Erastin, a ferroptosis-inducing agent, sensitized cancer cells to X-ray irradiation via glutathione starvation in vitro and in vivo. PLOS ONE 14:e0225931
    [Google Scholar]
  90. 90. 
    Sato M, Kusumi R, Hamashima S, Kobayashi S, Sasaki S et al. 2018. The ferroptosis inducer erastin irreversibly inhibits system xc- and synergizes with cisplatin to increase cisplatin's cytotoxicity in cancer cells. Sci. Rep. 8:968
    [Google Scholar]
  91. 91. 
    Guo W, Zhao Y, Zhang Z, Tan N, Zhao F et al. 2011. Disruption of xCT inhibits cell growth via the ROS/autophagy pathway in hepatocellular carcinoma. Cancer Lett 312:55–61
    [Google Scholar]
  92. 92. 
    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM et al. 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–72
    [Google Scholar]
  93. 93. 
    Hu K, Li K, Lv J, Feng J, Chen J et al. 2020. Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J. Clin. Investig. 130:1752–66
    [Google Scholar]
  94. 94. 
    Gout PW, Buckley AR, Simms CR, Bruchovsky N. 2001. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the xc cystine transporter: a new action for an old drug. Leukemia 15:1633–40
    [Google Scholar]
  95. 95. 
    Cramer SL, Saha A, Liu J, Tadi S, Tiziani S et al. 2017. Systemic depletion of l-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 23:120–27
    [Google Scholar]
  96. 96. 
    Kang YP, Mockabee-Macias A, Jiang C, Falzone A, Prieto-Farigua N et al. 2021. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab 33:174–89.e7
    [Google Scholar]
  97. 97. 
    Sun X, Ou Z, Chen R, Niu X, Chen D et al. 2016. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–84
    [Google Scholar]
  98. 98. 
    Kang YP, Torrente L, Falzone A, Elkins CM, Liu M et al. 2019. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer. eLife 8:e45572
    [Google Scholar]
  99. 99. 
    Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX et al. 2017. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23:1362–68
    [Google Scholar]
  100. 100. 
    Sayin VI, LeBoeuf SE, Singh SX, Davidson SM, Biancur D et al. 2017. Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer. eLife 6:e28083
    [Google Scholar]
  101. 101. 
    Schulte ML, Khodadadi AB, Cuthbertson ML, Smith JA, Manning HC. 2016. 2-Amino-4-bis(aryloxybenzyl)aminobutanoic acids: a novel scaffold for inhibition of ASCT2-mediated glutamine transport. Bioorg. Med. Chem. Lett. 26:1044–47
    [Google Scholar]
  102. 102. 
    Schulte ML, Fu A, Zhao P, Li J, Geng L et al. 2018. Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 24:194–202
    [Google Scholar]
  103. 103. 
    Binkley MS, Jeon YJ, Nesselbush M, Moding EJ, Nabet BY et al. 2020. KEAP1/NFE2L2 mutations predict lung cancer radiation resistance that can be targeted by glutaminase inhibition. Cancer Discov 10:1826–41
    [Google Scholar]
  104. 104. 
    Heiss EH, Schachner D, Zimmermann K, Dirsch VM. 2013. Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biol 1:359–65
    [Google Scholar]
  105. 105. 
    Best SA, Ding S, Kersbergen A, Kersbergen A, Dong X et al. 2019. Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma. Nat. Commun. 10:14190
    [Google Scholar]
  106. 106. 
    Hong W, Cai P, Xu C, Cao D, Yu W et al. 2018. Inhibition of glucose-6-phosphate dehydrogenase reverses cisplatin resistance in lung cancer cells via the redox system. Front. Pharmacol. 9:43
    [Google Scholar]
  107. 107. 
    Ghergurovich JM, Garcia-Canaveras JC, Wang J, Schmidt E, Zhang Z et al. 2020. A small molecule G6PD inhibitor reveals immune dependence on pentose phosphate pathway. Nat. Chem. Biol. 16:731–39
    [Google Scholar]
  108. 108. 
    Dinkova-Kostova AT, Talalay P 2000. Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radic. Biol. Med. 29:231–40
    [Google Scholar]
  109. 109. 
    Siegel D, Yan C, Ross D 2012. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem. Pharmacol. 83:1033–40
    [Google Scholar]
  110. 110. 
    Yang Y, Zhou X, Xu M, Piao J, Zhang Y et al. 2017. β-Lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers. Sci. Rep. 7:2681
    [Google Scholar]
  111. 111. 
    Yang Y, Zhang Y, Wu Q, Cui X, Lin Z et al. 2014. Clinical implications of high NQO1 expression in breast cancers. J. Exp. Clin. Cancer Res. 33:14
    [Google Scholar]
  112. 112. 
    Ma Y, Kong J, Yan G, Ren X, Jin D et al. 2014. NQO1 overexpression is associated with poor prognosis in squamous cell carcinoma of the uterine cervix. BMC Cancer 14:414
    [Google Scholar]
  113. 113. 
    Siegel D, Franklin WA, Ross D 1998. Immunohistochemical detection of NAD(P)H:quinone oxidoreductase in human lung and lung tumors. Clin. Cancer Res. 4:2065–70
    [Google Scholar]
  114. 114. 
    Awadallah NS, Dehn D, Shah RJ, Russell Nash S, Chen YK et al. 2008. NQO1 expression in pancreatic cancer and its potential use as a biomarker. Appl. Immunohistochem. Mol. Morphol. 16:24–31
    [Google Scholar]
  115. 115. 
    Siegel D, Ross D. 2000. Immunodetection of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic. Biol. Med. 29:246–53
    [Google Scholar]
  116. 116. 
    Li Z, Zhang Y, Jin T, Men J, Lin Z et al. 2015. NQO1 protein expression predicts poor prognosis of non-small cell lung cancers. BMC Cancer 15:207
    [Google Scholar]
  117. 117. 
    Beg MS, Huang X, Silvers MA, Gerber DE, Bolluyt J et al. 2017. Using a novel NQO1 bioactivatable drug, beta-lapachone (ARQ761), to enhance chemotherapeutic effects by metabolic modulation in pancreatic cancer. J. Surg. Oncol. 116:83–88
    [Google Scholar]
  118. 118. 
    Bey EA, Bentle MS, Reinicke KE, Dong Y, Yang CR et al. 2007. An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by β-lapachone. PNAS 104:11832–37
    [Google Scholar]
  119. 119. 
    Blanco E, Bey EA, Khemtong C, Yang SG, Setti-Guthi J et al. 2010. β-Lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res 70:3896–904
    [Google Scholar]
  120. 120. 
    Gerber DE, Beg MS, Fattah F, Frankel AL, Fatunde O et al. 2018. Phase 1 study of ARQ 761, a β-lapachone analogue that promotes NQO1-mediated programmed cancer cell necrosis. Br. J. Cancer 119:928–36
    [Google Scholar]
  121. 121. 
    Huang X, Dong Y, Bey EA, Kilgore JA, Bair JS et al. 2012. An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Cancer Res 72:3038–47
    [Google Scholar]
  122. 122. 
    Huang X, Motea EA, Moore ZR, Yao J, Dong Y et al. 2016. Leveraging an NQO1 bioactivatable drug for tumor-selective use of poly(ADP-ribose) polymerase inhibitors. Cancer Cell 30:940–52
    [Google Scholar]
  123. 123. 
    Torrente L, Prieto-Farigua N, Falzone A, Elkins CM, Boothman DA et al. 2020. Inhibition of TXNRD or SOD1 overcomes NRF2-mediated resistance to β-lapachone. Redox Biol 30:101440
    [Google Scholar]
  124. 124. 
    Guo W, Reigan P, Siegel D, Ross D 2008. Enzymatic reduction and glutathione conjugation of benzoquinone ansamycin heat shock protein 90 inhibitors: relevance for toxicity and mechanism of action. Drug Metab. Dispos. 36:2050–57
    [Google Scholar]
  125. 125. 
    Guo W, Reigan P, Siegel D, Zirrolli J, Gustafson D, Ross D 2005. Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition. Cancer Res 65:10006–15
    [Google Scholar]
  126. 126. 
    Kasai S, Arakawa N, Okubo A, Shigeeda W, Yasuhira S et al. 2016. NAD(P)H:Quinone oxidoreductase-1 expression sensitizes malignant melanoma cells to the HSP90 inhibitor 17-AAG. PLOS ONE 11:e0153181
    [Google Scholar]
  127. 127. 
    Baird L, Suzuki T, Takahashi Y, Hishinuma E, Saigusa D, Yamamoto M. 2020. Geldanamycin-derived HSP90 inhibitors are synthetic lethal with NRF2. Mol. Cell. Biol. 40:e00377-20
    [Google Scholar]
  128. 128. 
    Baird L, Yamamoto M. 2021. NRF2-dependent bioactivation of mitomycin C as a novel strategy to target KEAP1-NRF2 pathway activation in human cancer. Mol. Cell. Biol. 41:e00473-20
    [Google Scholar]
  129. 129. 
    Namani A, Matiur Rahaman M, Chen M, Tang X 2018. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer. BMC Cancer 18:46
    [Google Scholar]
  130. 130. 
    Guise CP, Wang AT, Theil A, Bridewell DJ, Wilson WR, Patterson AV. 2007. Identification of human reductases that activate the dinitrobenzamide mustard prodrug PR-104A: a role for NADPH:cytochrome P450 oxidoreductase under hypoxia. Biochem. Pharmacol. 74:810–20
    [Google Scholar]
  131. 131. 
    Guise CP, Abbattista MR, Singleton RS, Holford SD, Connolly J et al. 2010. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res 70:1573–84
    [Google Scholar]
  132. 132. 
    Erzinger MM, Bovet C, Hecht KM, Senger S, Winiker P et al. 2016. Sulforaphane preconditioning sensitizes human colon cancer cells towards the bioreductive anticancer prodrug PR-104A. PLOS ONE 11:e0150219
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-052220-104025
Loading
/content/journals/10.1146/annurev-pharmtox-052220-104025
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error