1932

Abstract

Ions transiting biomembranes might pass readily from water through ion-specific membrane proteins if these protein channels provide environments similar to the aqueous solution hydration environment. Indeed, bulk aqueous solution is an important reference condition for the ion permeation process. Assessment of this hydration mimicry concept depends on understanding the hydration structure and free energies of metal ions in water in order to provide a comparison for the membrane channel environment. To refine these considerations, we review local hydration structures of ions in bulk water and the molecular quasi-chemical theory that provides hydration free energies. In doing so, we note some current views of ion binding to membrane channels and suggest new physical chemical calculations and experiments that might further clarify the hydration mimicry concept.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-012320-015457
2020-04-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-012320-015457.html?itemId=/content/journals/10.1146/annurev-physchem-012320-015457&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hille B 2001. Ionic Channels of Excitable Membranes Sunderland, MA: Sinauer. 3rd ed.
  2. 2. 
    Wulff H, Zhorov BS 2008. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem. Rev. 108:1744–73
    [Google Scholar]
  3. 3. 
    Zhao Y, Huang J, Yuan X, Peng B, Liu Wet al. 2015. Toxins targeting the Kv1.3 channel: potential immunomodulators for autoimmune diseases. Toxins 7:1749–64
    [Google Scholar]
  4. 4. 
    Pardo LA, Stühmer W 2014. The roles of K+ channels in cancer. Nat. Rev. Cancer 14:39–48
    [Google Scholar]
  5. 5. 
    Banerjee A, Lee A, Campbell E, MacKinnon R 2013. Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. eLife 2:e00594
    [Google Scholar]
  6. 6. 
    Morales-Lázaro SL, Hernández-García E, Serrano-Flores B, Rosenbaum T 2015. Organic toxins as tools to understand ion channel mechanisms and structure. Curr. Top. Med. Chem. 15:581–603
    [Google Scholar]
  7. 7. 
    Cygan R, Brinker C, Nyman M, Leung K, Rempe SB 2008. A molecular basis for advanced materials in water treatment. MRS Bull. 33:42–47
    [Google Scholar]
  8. 8. 
    Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD 2017. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356:eaab0530
    [Google Scholar]
  9. 9. 
    Tang CY, Zhao Y, Wang R, Hélix-Nielsen C, Fane AG 2012. Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308:34–40
    [Google Scholar]
  10. 10. 
    Hélix-Nielsen C 2018. Biomimetic membranes as a technology platform: challenges and opportunities. Membranes 8:e44
    [Google Scholar]
  11. 11. 
    Fu Y, Jiang YB, Dunphy D, Xiong H, Coker E et al. 2018. Ultra-thin enzymatic liquid membrane for CO2 separation and capture. Nat. Commun. 9:990
    [Google Scholar]
  12. 12. 
    Doyle D, Morais-Cabral J, Pfuetzner RA, Kuo A, Gulbis JM et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77
    [Google Scholar]
  13. 13. 
    Zhou Y, Morais-Cabral J, Kaufman A, MacKinnon R 2001. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414:43–48
    [Google Scholar]
  14. 14. 
    MacKinnon R 2003. Minireview: Potassium channels. FEBS Lett. 555:62–65
    [Google Scholar]
  15. 15. 
    MacKinnon R 2004. Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angew. Chem. Int. Ed. 43:4265–77
    [Google Scholar]
  16. 16. 
    Asthagiri D, Pratt LR, Paulaitis ME 2006. Role of fluctuations in a snug-fit mechanism of KcsA channel selectivity. J. Chem. Phys. 125:24701
    [Google Scholar]
  17. 17. 
    Jiang Y, MacKinnon R 2000. The barium site in a potassium channel by X-ray crystallography. J. Gen. Phys. 115:269–72
    [Google Scholar]
  18. 18. 
    Lam YL, Zeng W, Sauer D, Jiang Y 2014. The conserved potassium channel filter can have distinct ion binding profiles: structural analysis of rubidium, cesium, and barium binding in NaK2K. J. Gen. Phys. 144:181–92
    [Google Scholar]
  19. 19. 
    Piasta KN, Theobald DL, Miller C 2011. Potassium-selective block of barium permeation through single KcsA channels. J. Gen. Phys. 138:421–36
    [Google Scholar]
  20. 20. 
    Guo R, Zeng W, Cui H, Chen L, Ye S 2014. Ionic interactions of Ba2+ blockades in the MthK K+ channel. J. Gen. Phys. 144:193–200
    [Google Scholar]
  21. 21. 
    Rempe SB, Rogers DM, Jiang YB, Yang S, Leung Ket al. 2010. Computational and experimental platform for understanding and optimizing water flux and salt rejection in nanoporous membranes Rep. SAND2010-6735, Sandia Natl. Lab., Albuquerque, NM
  22. 22. 
    Rempe SB, Brinker CJ, Rogers DM, Jiang YB, Yang S 2016. Biomimetic membranes and methods of making biomimetic membranes US Patent 9,486,742
  23. 23. 
    Pohorille A, Pratt LR 2012. Is water the universal solvent for life. Orig. Life Evol. Biosph. 42:405–9
    [Google Scholar]
  24. 24. 
    Rempe SB, Pratt LR, Hummer G, Kress JD, Martin RL, Redondo A 2000. The hydration number of Li+ in liquid water. J. Am. Chem. Soc. 122:966–67
    [Google Scholar]
  25. 25. 
    Pratt LR, Rempe SB 1999. Quasi-chemical theory and implicit solvent models for simulations. AIP Conf. Proc. 492:172–201
    [Google Scholar]
  26. 26. 
    Varma S, Rempe SB 2006. Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem. 124:192–99
    [Google Scholar]
  27. 27. 
    Mason PE, Ansell S, Neilson G, Rempe SB 2015. Neutron scattering studies of the hydration structure of Li+. J. Phys. Chem. B 119:2003–9
    [Google Scholar]
  28. 28. 
    Varma S, Rempe SB 2007. Tuning ion coordination architectures to enable selective partitioning. Biophys. J. 93:1093–99
    [Google Scholar]
  29. 29. 
    Stevens MJ, Rempe SB 2016. Ion-specific effects in carboxylate binding sites. J. Phys. Chem. B 120:12519–30
    [Google Scholar]
  30. 30. 
    Chaudhari MI, Rempe SB 2018. Strontium and barium in aqueous solution and a potassium channel binding site. J. Chem. Phys. 148:222831
    [Google Scholar]
  31. 31. 
    Lockless S, Zhou M, MacKinnon R 2007. Structural and thermodynamic properties of selective ion binding in a K+ channel. PLOS Biol. 5:e121
    [Google Scholar]
  32. 32. 
    Payandeh J, Pfoh R, Pai EF 2013. The structure and regulation of magnesium selective ion channels. Biochim. Biophys. Acta Biomembr. 1828:2778–92
    [Google Scholar]
  33. 33. 
    Takeda H, Hattori M, Nishizawa T, Yamashita K, Shah STAet al. 2014. Structural basis for ion selectivity revealed by high-resolution crystal structure of Mg2+ channel MgtE. Nat. Commun. 5:5374
    [Google Scholar]
  34. 34. 
    Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM et al. 2014. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61
    [Google Scholar]
  35. 35. 
    Cuello LG, Cortes DM, Perozo E 2017. The gating cycle of a K+ channel at atomic resolution. eLife 6:e28032
    [Google Scholar]
  36. 36. 
    Kshatri AS, Gonzalez-Hernandez AJ, Giraldez T 2018. Functional validation of Ca2+-binding residues from the crystal structure of the BK ion channel. Biochim. Biophys. Acta Biomembr. 1860:943–52
    [Google Scholar]
  37. 37. 
    Tilegenova C, Cortes DM, Jahovic N, Hardy E, Hariharan P et al. 2019. Structure, function, and ion-binding properties of a K+ channel stabilized in the 2,4-ion–bound configuration. PNAS 116:16829–34
    [Google Scholar]
  38. 38. 
    Miller C 1982. Coupling of water and ion fluxes in a K+-selective channel of sarcoplasmic reticulum. Biophys. J. 38:227–30
    [Google Scholar]
  39. 39. 
    Alcayaga C, Cecchi X, Alvarez O, Latorre R 1989. Streaming potential measurements in Ca2+-activated K+ channels from skeletal and smooth muscle: coupling of ion and water fluxes. Biophys. J. 55:367–71
    [Google Scholar]
  40. 40. 
    Iwamoto M, Oiki S 2011. Counting ion and water molecules in a streaming file through the open-filter structure of the K channel. J. Neurosci. 31:12180–88
    [Google Scholar]
  41. 41. 
    Armstrong C 2015. Packaging life: the origin of ion-selective channels. Biophys. J. 109:173–77
    [Google Scholar]
  42. 42. 
    Roux B 2005. Ion conduction and selectivity in K+ channels. Annu. Rev. Biophys. Biomol. Struct. 34:153–71
    [Google Scholar]
  43. 43. 
    Valiyaveetil F, Leonetti M, Muir TW, MacKinnon R 2006. Ion selectivity in a semisynthetic K+ channel locked in the conductive conformation. Science 314:1004–7
    [Google Scholar]
  44. 44. 
    Varma S, Sabo D, Rempe SB 2008. K+/Na+ selectivity in K channels and valinomycin: over-coordination versus cavity-size constraints. J. Mol. Biol. 376:13–22
    [Google Scholar]
  45. 45. 
    Sabo D, Jiao D, Varma S, Pratt LR, Rempe SB 2013. Case study of Rb+(aq), quasi-chemical theory of ion hydration, and the no split occupancies rule. Annu. Rep. C Phys. Chem. 109:266–78
    [Google Scholar]
  46. 46. 
    Muralidharan A, Pratt LR, Chaudhari MI, Rempe SB 2018. Quasi-chemical theory with cluster sampling from ab initio molecular dynamics: fluoride (F) anion hydration. J. Phys. Chem. A 122:9806–12
    [Google Scholar]
  47. 47. 
    Fulton JL, Heald SM, Badyal YS, Simonson JM 2003. Understanding the effects of concentration on the solvation structure of Ca2+ in aqueous solution. I: The perspective on local structure from EXAFS and XANES. J. Phys. Chem. A 107:4688–96
    [Google Scholar]
  48. 48. 
    Galib M, Baer MD, Skinner LB, Mundy CJ, Huthwelker T et al. 2017. Revisiting the hydration structure of aqueous Na+. J. Chem. Phys. 146:84504
    [Google Scholar]
  49. 49. 
    Glezakou VA, Chen Y, Fulton JL, Schenter GK, Dang LX 2006. Electronic structure, statistical mechanical simulations, and EXAFS spectroscopy of aqueous potassium. Theor. Chem. Acc. 115:86–99
    [Google Scholar]
  50. 50. 
    Kirchner B, di Dio PJ, Hutter J 2012. Real-world predictions from ab initio molecular dynamics simulations. Top. Curr. Chem. 307:109–53
    [Google Scholar]
  51. 51. 
    Lyubartsev AP, Laasonen K, Laaksonen A 2001. Hydration of Li+ ion: an ab initio molecular dynamics simulation. J. Chem. Phys. 114:3120–26
    [Google Scholar]
  52. 52. 
    Heuft JM, Meijer EJ 2005. Density functional theory based molecular-dynamics study of aqueous fluoride solvation. J. Chem. Phys. 122:94501
    [Google Scholar]
  53. 53. 
    Whitfield TW, Varma S, Harder E, Lamoureux G, Rempe SB, Roux B 2007. Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models. J. Chem. Theor. Comp. 3:2068–82
    [Google Scholar]
  54. 54. 
    Bankura A, Santra B, DiStasio RA Jr., Swartz CW, Klein ML, Wu X 2015. A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory. Mol. Phys. 113:2842–54
    [Google Scholar]
  55. 55. 
    Leśniewski M, Śmiechowski M 2018. Inside the water wheel: intrinsic differences between hydrated tetraphenylphosphonium and tetraphenylborate ions. J. Chem. Phys. 149:171101
    [Google Scholar]
  56. 56. 
    Sharma B, Chandra A 2018. Nature of hydration shells of a polyoxy-anion with a large cationic centre: the case of iodate ion in water. J. Comput. Chem. 39:1226–35
    [Google Scholar]
  57. 57. 
    Zhou L, Xu J, Xu L, Wu X 2019. Importance of van der Waals effects on the hydration of metal ions from the Hofmeister series. J. Chem. Phys. 150:124505
    [Google Scholar]
  58. 58. 
    Karmakar A 2019. Ab initio molecular dynamics simulation of supercritical aqueous ionic solutions: spectral diffusion of water in the vicinity of Br and I ions. J. Mol. Liq. 279:306–16
    [Google Scholar]
  59. 59. 
    Martinek T, Duboué-Dijon E, Timr Š, Mason PE, Baxová K et al. 2018. Calcium ions in aqueous solutions: accurate force field description aided by ab initio molecular dynamics and neutron scattering. J. Chem. Phys. 148:222813
    [Google Scholar]
  60. 60. 
    Rempe SB, Asthagiri D, Pratt LR 2004. Inner shell definition and absolute hydration free energy of K+(aq) on the basis of quasi-chemical theory and ab initio molecular dynamics. Phys. Chem. Chem. Phys. 6:1966–69
    [Google Scholar]
  61. 61. 
    Chaudhari MI, Soniat M, Rempe SB 2015. Octa-coordination and the aqueous Ba2+ ion. J. Phys. Chem. B 119:8746–53
    [Google Scholar]
  62. 62. 
    Chaudhari MI, Pratt LR, Rempe SB 2018. Utility of chemical computations in predicting solution free energies of metal ions. Mol. Simul. 44:110–16
    [Google Scholar]
  63. 63. 
    Varma S, Rempe SB 2010. Multibody effects in ion binding and selectivity. Biophys. J. 99:3394–401
    [Google Scholar]
  64. 64. 
    Rossi M, Tkatchenko A, Rempe SB, Varma S 2013. Role of methyl-induced polarization in ion binding. PNAS 110:12978–83
    [Google Scholar]
  65. 65. 
    Muralidharan A, Pratt LR, Chaudhari MI, Rempe SB 2019. Quasi-chemical theory for anion hydration and specific ion effects: Cl(Aq) versus F(Aq). Chem. Phys. Lett. 4:100037
    [Google Scholar]
  66. 66. 
    Peschke M, Blades AT, Kebarle P 1998. Hydration energies and entropies for Mg2+, Ca2+, Sr2+, and Ba2+ from gas-phase ion–water molecule equilibria determinations. J. Phys. Chem. A 102:9978–85
    [Google Scholar]
  67. 67. 
    Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH et al. 1998. The proton's absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J. Phys. Chem. A 102:7787–94
    [Google Scholar]
  68. 68. 
    Chaudhari MI, Rempe SB, Pratt LR 2017. Quasi-chemical theory of F(aq): the “no split occupancies rule” revisited. J. Chem. Phys. 147:161728
    [Google Scholar]
  69. 69. 
    Robertson WH, Johnson MA 2003. Molecular aspects of halide ion hydration: the cluster approach. Annu. Rev. Phys. Chem. 54:173–213
    [Google Scholar]
  70. 70. 
    Morais-Cabral J, Zhou Y, MacKinnon R 2001. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414:37–42
    [Google Scholar]
  71. 71. 
    Gouaux E, MacKinnon R 2005. Principles of selective ion transport in channels and pumps. Science 310:1461–65
    [Google Scholar]
  72. 72. 
    Beckstein O, Biggin PC, Bond P, Bright JN, Domene C et al. 2003. Ion channel gating: insights via molecular simulations. FEBS Lett. 555:85–90
    [Google Scholar]
  73. 73. 
    Catterall WA 2011. Voltage-gated calcium channels. Cold Spring Harb. Perspect. Biol. 3:a003947
    [Google Scholar]
  74. 74. 
    Kratochvil HT, Carr JK, Matulef K, Li H, Maj M et al. 2016. Instantaneous ion configurations in the K+ configurations in the K+ ion channel selectivity filter revealed by 2D IR spectroscopy. Science 353:1040–44
    [Google Scholar]
  75. 75. 
    Last NB, Sun S, Pham MC, Miller C 2017. Molecular determinants of permeation in a fluoride-specific ion channel. eLife 6:e31259
    [Google Scholar]
  76. 76. 
    Shlosman I, Marinelli F, Faraldo-Gómez JD, Mindell JA 2018. The prokaryotic Na+/Ca2+ exchanger NCX_Mj transports Na+ and Ca2+ in a 3:1 stoichiometry. J. Gen. Phys. 150:51–65
    [Google Scholar]
  77. 77. 
    Tong A, Petroff JT, Hsu FF, Schmidpeter PAM, Nimigean CM et al. 2019. Direct binding of phosphatidylglycerol at specific sites modulates desensitization of a pentameric ligand-gated ion channel. eLife 8:e50766
    [Google Scholar]
  78. 78. 
    Oster C, Hendricks K, Kopec W, Chevelkov V, Shi C et al. 2019. The conduction pathway of potassium channels is water free under physiological conditions. Sci. Adv. 5:eaaw6756
    [Google Scholar]
  79. 79. 
    Hodgkin AL, Keynes RD 1955. The potassium permeability of a giant nerve fibre. J. Physiol. 128:61–88
    [Google Scholar]
  80. 80. 
    Sather WA, McCleskey EW 2003. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 65:133–59
    [Google Scholar]
  81. 81. 
    Dang TX, McCleskey EW 1998. Ion channel selectivity through stepwise changes in binding affinity. J. Gen. Physiol. 111:185–93
    [Google Scholar]
  82. 82. 
    Ohtomo N, Arakawa K 1980. Neutron diffraction study of aqueous ionic solutions. II. Aqueous solutions of sodium chloride and potassium chloride. Bull. Chem. Soc. Jpn. 53:1789–94
    [Google Scholar]
  83. 83. 
    Mason PE, Sullivan D, Neilson G, Ramos S 2001. Neutron and X-ray scattering studies of hydration in aqueous solutions. Philos. Trans. R. Soc. A 359:1575–91
    [Google Scholar]
  84. 84. 
    Soper AK, Weckström K 2006. Ion solvation and water structure in potassium halide aqueous solutions. Biophys. Chem. 124:180–91
    [Google Scholar]
  85. 85. 
    Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK 2007. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J. Phys. Chem. B 111:13570–77
    [Google Scholar]
  86. 86. 
    Eisenman G, Horn R 1983. The role of kinetic and equilibrium processes in ion permeation through channels. J. Membr. Biol. 76:197–225
    [Google Scholar]
  87. 87. 
    Collins KD 1997. Density-dependent strength of hydration and biological structure. Biophys. J. 72:65–76
    [Google Scholar]
  88. 88. 
    Varma S, Rogers DM, Pratt LR, Rempe SB 2011. Design principles for K+ selectivity in membrane transport. J. Gen. Phys. 137:479–88
    [Google Scholar]
  89. 89. 
    Armstrong CM, Taylor SR 1980. Interaction of barium ions with potassium channels in squid giant axons. Biophys. J. 30:473–88
    [Google Scholar]
  90. 90. 
    Armstrong CM, Swenson RP, Taylor SR 1982. Block of squid axon K-channels by internally and externally applied barium ions. J. Gen. Phys. 80:663–82
    [Google Scholar]
  91. 91. 
    Neupert-Laves K, Dobler M 1975. The crystal structure of a K+ complex of valinomycin. Helv. Chim. Acta 58:432–42
    [Google Scholar]
  92. 92. 
    Bhate MP, Wylie BJ, Tian L, McDermott AE 2010. Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J. Mol. Biol. 401:155–66
    [Google Scholar]
  93. 93. 
    Noskov SY, Bernèche S, Roux B 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–34
    [Google Scholar]
  94. 94. 
    Rogers DM, Jiao D, Pratt L, Rempe SB 2012. Structural models and molecular thermodynamics of hydration of ions and small molecules. Annu. Rep. Comput. Chem. 8:71–127
    [Google Scholar]
  95. 95. 
    Verkhratsky A, Parpura V 2014. Calcium signalling and calcium channels evolution and general principles. Eur. J. Pharm. 739:1–3
    [Google Scholar]
  96. 96. 
    Carafoli E 1987. Intracellular calcium homeostasis. Annu. Rev. Biochem. 56:395–433
    [Google Scholar]
  97. 97. 
    Romani AMP 2011. Cellular magnesium homeostasis. Arch. Biochem. Biophys. 512:1–23
    [Google Scholar]
  98. 98. 
    Armstrong CM, Palti Y 1991. Potassium channel block by internal calcium and strontium. J. Gen. Phys. 97:627–38
    [Google Scholar]
  99. 99. 
    Elinder F, Madeja M, Arhem P 1996. Surface charges of K channels. Effects of strontium on five cloned channels expressed in Xenopus oocytes. J. Gen. Phys. 108:325–32
    [Google Scholar]
  100. 100. 
    Sugihara I 1998. Activation and two modes of blockade by strontium of Ca2+-activated K+ channels in goldfish saccular-hair cells. J. Gen. Physiol. 111:363–79
    [Google Scholar]
  101. 101. 
    Soh H, Park CS 2002. Localization of divalent cation-binding site in the pore of a small conductance Ca2+-activated K+ channel and its role in determining current–voltage relationship. Biophys. J. 83:2528–38
    [Google Scholar]
  102. 102. 
    Asthagiri D, Dixit P, Merchant S, Paulaitis M, Pratt L et al. 2010. Ion selectivity from local configurations of ligands in solutions and ion channels. Chem. Phys. Lett. 485:1–7
    [Google Scholar]
  103. 103. 
    Rogers DM, Rempe SB 2011. Probing the thermodynamics of competitive ion binding using minimum energy structures. J. Phys. Chem. B 115:9116–29
    [Google Scholar]
  104. 104. 
    Asthagiri D, Pratt LR, Paulaitis ME, Rempe SB 2004. Hydration structure and free energy of biomolecularly specific aqueous dications, including Zn2+ and first transition row metals. J. Am. Chem. Soc. 126:1285–89
    [Google Scholar]
  105. 105. 
    Asthagiri D, Pratt LR, Ashbaugh HS 2003. Absolute hydration free energies of ions, ion–water clusters, and quasichemical theory. J. Chem. Phys. 119:2702–8
    [Google Scholar]
  106. 106. 
    Jiao D, Rempe SB 2012. Combined density functional theory (DFT) and continuum calculations of pKa in carbonic anhydrase. Biochemistry 51:5979–89
    [Google Scholar]
  107. 107. 
    Dudev T, Lim C 2013. Importance of metal hydration on the selectivity of Mg2+ versus Ca2+ in magnesium ion channels. J. Am. Chem. Soc. 135:17200–8
    [Google Scholar]
  108. 108. 
    Beck TL, Paulaitis ME, Pratt LR 2006. The Potential Distribution Theorem and Models of Molecular Solutions Cambridge, UK: Cambridge Univ. Press
  109. 109. 
    Shah J, Asthagiri D, Pratt L, Paulaitis M 2007. Balancing local order and long-ranged interactions in the molecular theory of liquid water. J. Chem. Phys. 127:144508
    [Google Scholar]
  110. 110. 
    Kebarle P 1977. Ion thermochemistry and solvation from gas phase ion equilibria. Annu. Rev. Phys. Chem. 28:445–76
    [Google Scholar]
  111. 111. 
    Keesee RG, Castleman AW Jr 1980. Gas-phase studies of hydration complexes of Cl and I and comparison to electrostatic calculations in the gas phase. Chem. Phys. Lett. 74:139–42
    [Google Scholar]
  112. 112. 
    Keesee RG, Lee N, Castleman AW Jr 1980. Properties of clusters in the gas phase. V. Complexes of neutral molecules onto negative ions. J. Chem. Phys. 73:2195–202
    [Google Scholar]
  113. 113. 
    Castleman AW Jr., Keesee RG 1986. Ionic clusters. Chem. Rev. 86:589–618
    [Google Scholar]
  114. 114. 
    Castleman AW Jr., Keesee RG 1988. Gas-phase clusters: spanning the states of matter. Science 241:36–42
    [Google Scholar]
  115. 115. 
    Tomasi J, Mennucci B, Cammi R 2005. Quantum mechanical continuum solvation models. Chem. Rev. 105:2999–3093
    [Google Scholar]
  116. 116. 
    Pethica BA 2007. Are electrostatic potentials between regions of different chemical composition measurable? The Gibbs–Guggenheim principle reconsidered, extended and its consequences revisited. Phys. Chem. Chem. Phys. 9:6253–62
    [Google Scholar]
  117. 117. 
    Landau LD, Lifshitz EM 1960. Course in Theoretical Physics 8 New York: Pergamon
  118. 118. 
    Zhou Y, Stell G, Friedman HL 1988. Note on standard free energy of transfer and partitioning of ionic species between two fluid phases. J. Chem. Phys. 89:3836–39
    [Google Scholar]
  119. 119. 
    Nichols AL, Pratt LR 1984. Salt effects on the surface tensions of dilute electrolyte solutions: the influence of nonzero relative solubility of the salt between the coexisting phases. J. Chem. Phys. 80:6225–33
    [Google Scholar]
  120. 120. 
    Pratt LR 1992. Contact potentials of solution interfaces: phase equilibrium and interfacial electric fields. J. Phys. Chem 96:25–33
    [Google Scholar]
  121. 121. 
    You X, Chaudhari MI, Pratt LR 2014. Comparison of mechanical and thermodynamical evaluations of electrostatic potential differences between electrolyte solutions. Aqua Incognita: Why Ice Floats on Water and Galileo 400 Years On P Lo Nostro, BW Ninham 434–42 Ballarat, Aust.: Connor Court
    [Google Scholar]
  122. 122. 
    Lyklema J 2017. View of interfacial potentials: measuring the immeasurable?. Substantia 1:75–93
    [Google Scholar]
  123. 123. 
    Beck TL 2013. The influence of water interfacial potentials on ion hydration in bulk water and near interfaces. Chem. Phys. Lett. 561/562:1–13
    [Google Scholar]
  124. 124. 
    Pollard TP, Beck TL 2018. Re-examining the tetraphenyl-arsonium/tetraphenyl-borate (TATB) hypothesis for single-ion solvation free energies. J. Chem. Phys. 148:222830
    [Google Scholar]
  125. 125. 
    Doyle C, Shi Y, Beck TL 2019. The importance of the water molecular quadrupole for estimating interfacial potential shifts acting on ions near the liquid-vapor interface. J. Phys. Chem. B 123:3348–58
    [Google Scholar]
  126. 126. 
    Marcus Y 1987. The thermodynamics of solvation of ions. Part 4. Application of the tetraphenylarsonium tetraphenylborate (TATB) extrathermodynamic assumption to the hydration of ions and to properties of hydrated ions. J. Chem. Soc. 83:2985–92
    [Google Scholar]
  127. 127. 
    Schurhammer R, Wipff G 2000. Are the hydrophobic AsPh4+ and BPh4 ions equally solvated? A theoretical investigation in aqueous and nonaqueous solutions using different charge distributions. J. Phys. Chem. A 104:11159–68
    [Google Scholar]
  128. 128. 
    Duignan TT, Baer MD, Mundy CJ 2018. Understanding the scale of the single ion free energy: a critical test of the tetra-phenyl arsonium and tetra-phenyl borate assumption. J. Chem. Phys. 148:222819
    [Google Scholar]
  129. 129. 
    Leung K, Rempe SB, von Lilienfeld OA 2009. Ab initio molecular dynamics calculations of ion hydration free energies. J. Chem. Phys. 130:204507
    [Google Scholar]
  130. 130. 
    Marcus Y 1994. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 51:111–27
    [Google Scholar]
  131. 131. 
    Friedman H, Krishnan C 1973. Thermodynamics of ionic hydration. Water, a Comprehensive Treatise 3 Aqueous Solutions of Simple Electrolytes, ed. F Franks 1–118 Berlin: Springer
    [Google Scholar]
  132. 132. 
    Marcus Y 2015. Ions in Solution and Their Solvation New York: Wiley
  133. 133. 
    Hummer G 2014. Potassium ions line up. Science 346:303
    [Google Scholar]
  134. 134. 
    Kopec W, de Groot BL 2019. Molecular simulations of ion permeation, gating and selectivity in K+ channels. Biophys. J. 116:16a
    [Google Scholar]
  135. 135. 
    Jiao D, King C, Grossfield A, Darden TA, Ren P 2006. Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. J. Phys. Chem. B 110:18553–59
    [Google Scholar]
  136. 136. 
    Mehandzhiyski AY, Riccardi E, van Erp TS, Trinh TT, Grimes BA 2015. Ab initio molecular dynamics study on the interactions between carboxylate ions and metal ions in water. J. Phys. Chem. B 119:10710–19
    [Google Scholar]
  137. 137. 
    Soniat M, Hartman L, Rick SW 2015. Charge transfer models of zinc and magnesium in water. J. Chem. Theory Comput. 11:1658–67
    [Google Scholar]
  138. 138. 
    Mazur S 1992. Neighborship partition of the radial distribution function for simple liquids. J. Chem. Phys. 97:9276–82
    [Google Scholar]
  139. 139. 
    Zhu P, You X, Pratt L, Papadopoulos K 2011. Generalizations of the Fuoss approximation for ion pairing. J. Chem. Phys. 134:54502
    [Google Scholar]
  140. 140. 
    Dudev T, Cowan JA, Lim C 1999. Competitive binding in magnesium coordination chemistry: water versus ligands of biological interest. J. Am. Chem. Soc. 121:7665–73
    [Google Scholar]
  141. 141. 
    Caminiti R, Licheri G, Piccaluga G, Pinna G 1979. X-ray diffraction study of MgCl2 aqueous solutions. J. Appl. Cryst. 12:34–38
    [Google Scholar]
  142. 142. 
    Harris DJ, Brodholt JP, Sherman DM 2003. Hydration of Sr2+ in hydrothermal solutions from ab initio molecular dynamics. J. Phys. Chem. B 107:9056–58
    [Google Scholar]
  143. 143. 
    Spohr E, Palinkas G, Heinzinger K, Bopp P, Probst MM 2002. Molecular dynamics study of an aqueous strontium chloride solution. J. Phys. Chem. 92:6754–61
    [Google Scholar]
  144. 144. 
    Ohtaki H, Radnai T 1993. Structure and dynamics of hydrated ions. Chem. Rev. 93:1157–204
    [Google Scholar]
  145. 145. 
    Bernal JD, Fowler RH 1933. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1:515–48
    [Google Scholar]
  146. 146. 
    Alam TM, Hart D, Rempe SB 2011. Computing the 7Li NMR chemical shielding of hydrated Li+ using cluster calculations and time-averaged configurations from ab-initio molecular dynamics simulations. Phys. Chem. Chem. Phys. 13:13629–37
    [Google Scholar]
  147. 147. 
    Caminiti R, Licheri G, Piccaluga G, Pinna G 1977. X-ray diffraction study of a “three-ion” aqueous solution. Chem. Phys. Lett. 47:275–78
    [Google Scholar]
  148. 148. 
    Licheri G, Piccaluga G, Pinna G 1975. X-ray diffraction study of CaBr2 aqueous solutions. J. Chem. Phys. 63:4412–14
    [Google Scholar]
  149. 149. 
    Ramos S, Neilson GW, Barnes AC 2003. Anomalous X-ray diffraction studies of Sr2+ hydration in aqueous solution. J. Chem. Phys. 118:5542–46
    [Google Scholar]
  150. 150. 
    Pfund DM, Darab JG, Fulton JL, Ma Y 2002. An XAFS study of strontium ions and krypton in supercritical water. J. Phys. Chem. 98:13102–7
    [Google Scholar]
  151. 151. 
    Ramos S, Barnes AC, Neilson GW, Capitan MJ 2000. Anomalous X-ray diffraction studies of hydration effects in concentrated aqueous electrolyte solutions. Chem. Phys. 258:171–80
    [Google Scholar]
  152. 152. 
    D'Angelo P, Pavel N, Roccatano D, Nolting HF 1996. Multielectron excitations at the L edges of barium in aqueous solution. Phys. Rev. B 54:12129–38
    [Google Scholar]
  153. 153. 
    Linder B, Hoernschemeyer D 1967. Cavity concept in dielectric theory. J. Chem. Phys. 46:784–90
    [Google Scholar]
  154. 154. 
    Wilson MA, Wei C, Bjelkmar P, Wallace BA, Pohorille A 2011. Molecular dynamics simulation of the antiamoebin ion channel: linking structure and conductance. Biophys. J. 100:2394–402
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-012320-015457
Loading
/content/journals/10.1146/annurev-physchem-012320-015457
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error