1932

Abstract

Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103659
2014-04-01
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103659.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103659&mimeType=html&fmt=ahah

Literature Cited

  1. Aharonovich I, Castelletto S, Simpson DA, Su CH, Greentree AD, Prawer S. 1.  2011. Diamond-based single-photon emitters. Rep. Prog. Phys. 74:076501 [Google Scholar]
  2. Barnard AS. 2.  2009. Diamond standard in diagnostics: Nanodiamond biolabels make their mark. Analyst 134:1751–64 [Google Scholar]
  3. Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C. 3.  1997. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–14Demonstrates the first experiment showing ODMR detection on a single NV center. [Google Scholar]
  4. Jelezko F, Wrachtrup J. 4.  2006. Single defect centres in diamond: a review. Phys. Stat. Solidus A 203:3207–25 [Google Scholar]
  5. Zvyagin AV, Manson NB. 5.  2012. Optical and spin properties of nitrogen-vacancy color centers in diamond crystals, nanodiamonds, and proximity to surfaces. Ultrananocrystalline Diamond OA Shenderova, DM Gruen 327–54 Amsterdam: Elsevier, 2nd ed.. [Google Scholar]
  6. Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LC. 6.  2013. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528:1–45 [Google Scholar]
  7. Mochalin VN, Shenderova O, Ho D, Gogotsi Y. 7.  2012. The properties and applications of nanodiamonds. Nat. Nanotechnol. 7:11–23 [Google Scholar]
  8. Balmer RS, Brandon JR, Clewes SL, Dhillon HK, Dodson JM. 8.  et al. 2009. Chemical vapour deposition synthetic diamond: materials technology and applications. J. Phys. Condens. Matter 21:364221 [Google Scholar]
  9. Xing Y, Dai LM. 9.  2009. Nanodiamonds for nanomedicine. Nanomedicine 4:207–18 [Google Scholar]
  10. Dahl JE, Liu SG, Carlson RMK. 10.  2003. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299:96–99 [Google Scholar]
  11. Amans D, Chenus AC, Ledoux G, Dujardin C, Reynaud C. 11.  et al. 2009. Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18:177–80 [Google Scholar]
  12. Morita Y, Takimoto T, Yamanaka H, Kumekawa K, Morino S. 12.  et al. 2008. A facile and scalable process for size-controllable separation of nanodiamond particles as small as 4 nm. Small 4:2154–57 [Google Scholar]
  13. Tisler J, Balasubramanian G, Naydenov B, Kolesov R, Grotz B. 13.  et al. 2009. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3:1959–65Presents comprehensive fluorescence and spin measurements on <10-nm-sized nanodiamonds. [Google Scholar]
  14. Boudou JP, Curmi PA, Jelezko F, Wrachtrup J, Aubert P. 14.  et al. 2009. High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20:235602 [Google Scholar]
  15. Hausmann BJ, Khan M, Zhang Y, Babinec TM, Martinick K. 15.  et al. 2010. Fabrication of diamond nanowires for quantum information processing applications. Diam. Relat. Mater. 19:621–29 [Google Scholar]
  16. Havlik J, Petrakova V, Rehor I, Petrak V, Gulka M. 16.  et al. 2013. Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5:3208–11 [Google Scholar]
  17. Wort CJ, Balmer RS. 17.  2008. Diamond as an electronic material. Mater. Today 11:22–28 [Google Scholar]
  18. Lee S, Widmann M, Rendler T, Doherty MW, Babinec TM. 18.  et al. 2013. Readout and control of a single nuclear spin with a metastable electron spin ancilla. Nat. Nanotechnol. 8:487–92 [Google Scholar]
  19. Smith BR, Inglis DW, Sandnes B, Rabeau JR, Zvyagin AV. 19.  et al. 2009. Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. Small 5:1649–53 [Google Scholar]
  20. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. 20.  2008. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5:763–75 [Google Scholar]
  21. Schirhagl R, Chang KK, Loretz M, Degen CL. 21.  2013. A practical guide for preparing fluorescent nano-diamonds. Submitted manuscript
  22. Hui YY, Cheng CL, Chang HC. 22.  2010. Nanodiamonds for optical bioimaging. J. Phys. D 43:374021 [Google Scholar]
  23. Pezzagna S, Naydenov B, Jelezko F, Wrachtrup J, Meijer J. 23.  2010. Creation efficiency of nitrogen-vacancy centres in diamond. New J. Phys. 12:065017 [Google Scholar]
  24. Ohno K, Heremans FJ, Bassett LC, Myers BA, Toyli DM. 24.  et al. 2012. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101:082413 [Google Scholar]
  25. Ohashi K, Rosskopf T, Watanabe H, Loretz M, Tao Y. 25.  et al. 2013. Negatively charged nitrogen-vacancy centers in a 5-nm-thin 12C diamond film. Nano Lett. 13:4733–38 [Google Scholar]
  26. Ofori-Okai BK, Pezzagna S, Chang K, Loretz M, Schirhagl R. 26.  et al. 2012. Spin properties of very shallow nitrogen vacancy defects in diamond. Phys. Rev. B 86:081406 [Google Scholar]
  27. Krueger A, Liang Y, Jarre G, Stegk J. 27.  2006. Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16:2322–28 [Google Scholar]
  28. Hauf MV, Grotz B, Naydenov B, Dankerl M, Pezzagna S. 28.  et al. 2011. Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys. Rev. B 83:081304 [Google Scholar]
  29. Krueger A, Lang D. 29.  2012. Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Funct. Mater. 22:890–906 [Google Scholar]
  30. Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T. 30.  2002. Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy. Chem. Phys. Lett. 351:105–8 [Google Scholar]
  31. Krueger A, Stegk J, Liang YJ, Lu L, Jarre G. 31.  2008. Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir 24:4200–4 [Google Scholar]
  32. Krueger A, Boedeker T. 32.  2008. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam. Relat. Mater. 17:1367–70 [Google Scholar]
  33. Liu Y, Gu ZN, Margrave JL, Khabashesku VN. 33.  2004. Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem. Mater. 16:3924–30 [Google Scholar]
  34. Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC. 34.  2010. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 10:3692–99 [Google Scholar]
  35. Liu KK, Chen F, Chen PY, Lee TJF, Cheng CL. 35.  et al. 2008. Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology 19:205102 [Google Scholar]
  36. Fu CC, Lee HY, Chen K, Lim TS, Wu HY. 36.  et al. 2007. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 104:727–32Provides one of the first applications of nanodiamonds as fluorescent biomarkers. [Google Scholar]
  37. McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT. 37.  et al. 2011. Quantum measurement and orientation tracking of fluorescent nanodiamonds. Nat. Nanotechnol. 6:358–63 [Google Scholar]
  38. Faklaris O, Garrot D, Joshi V, Druon F, Boudou JP. 38.  et al. 2008. Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4:2236–39 [Google Scholar]
  39. Chao JI, Perevedentseva E, Chung PH, Liu KK, Cheng CY. 39.  et al. 2007. Nanometer-sized diamond particle as a probe for biolabeling. Biophys. J. 93:2199–208 [Google Scholar]
  40. Mkandawire M, Pohl A, Gubarevich T, Lapina V, Appelhans D. 40.  et al. 2009. Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells. J. Biophotonics 2:596–606 [Google Scholar]
  41. Gali A, Fyta M, Kaxiras E. 41.  2008. Ab initio supercell calculations on nitrogen-vacancy center in diamond. Phys. Rev. B 77:155206 [Google Scholar]
  42. Smeltzer B, Childress L, Gali A. 42.  2011. 13C hyperfine interactions in the nitrogen-vacancy centre in diamond. New J. Phys. 13:025021 [Google Scholar]
  43. Manson N, Harrison J, Sellars M. 43.  2006. Nitrogen-vacancy center in diamond: model of the electronic structure. Phys. Rev. B 74:104303 [Google Scholar]
  44. Beveratos A, Brouri R, Gacoin T, Poizat JP, Grangier P. 44.  2001. Nonclassical radiation from diamond nanocrystals. Phys. Rev. A 64:061802 [Google Scholar]
  45. Robledo L, Bernien H, van der Sar T, Hanson R. 45.  2011. Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond. New J. Phys. 13:025013 [Google Scholar]
  46. Jarmola A, Acosta VM, Jensen K, Chemerisov S, Budker D. 46.  2012. Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. Phys. Rev. Lett. 108:197601 [Google Scholar]
  47. Köhler J. 47.  1999. Magnetic resonance of a single molecular spin. Phys. Rep. 310:261–339 [Google Scholar]
  48. Degen CL. 48.  2008. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92:243111Provides the original proposal of scanning magnetic sensing with a single NV center. [Google Scholar]
  49. Taylor JM, Cappellaro P, Childress L, Jiang L, Budker D. 49.  et al. 2008. High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4:810–16 [Google Scholar]
  50. Budker D, Romalis M. 50.  2007. Optical magnetometry. Nat. Phys. 3:227–34 [Google Scholar]
  51. De Zanche N, Barmet C, Nordmeyer-Massner JA, Pruessmann KP. 51.  2008. NMR probes for measuring magnetic fields and field dynamics in MR systems. Magn. Reson. Med. 60:176–86 [Google Scholar]
  52. Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J. 52.  et al. 2008. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–51Along with Ref. 74, presents the first experimental demonstration of magnetic sensing with a single NV center. [Google Scholar]
  53. Grinolds MS, Hong S, Maletinsky P, Luan L, Lukin MD. 53.  et al. 2013. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9:215–19Demonstrates scanning magnetometry of a single electron spin from a 50-nm distance. [Google Scholar]
  54. Mamin HJ, Kim M, Sherwood MH, Rettner CT, Ohno K. 54.  et al. 2013. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339:557–60Along with Ref. 55, provides an experimental demonstration of nanoscale NMR with a single NV center. [Google Scholar]
  55. Staudacher T, Shi F, Pezzagna S, Meijer J, Du J. 55.  et al. 2013. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample. Science 339:561–63 [Google Scholar]
  56. van Oort E, Glasbeek M. 56.  1990. Electric-field-induced modulation of spin echoes of N-V centers in diamond. Chem. Phys. Lett. 168:529–32Demonstrates electric field sensitivity of the NV center. [Google Scholar]
  57. Dolde F, Fedder H, Doherty MW, Noebauer T, Rempp F. 57.  et al. 2011. Electric-field sensing using single diamond spins. Nat. Phys. 7:459–63 [Google Scholar]
  58. Epstein RJ, Mendoza FM, Kato YK, Awschalom DD. 58.  2005. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat. Phys. 1:94–98 [Google Scholar]
  59. Acosta VM, Bauch E, Ledbetter MP, Waxman A, Bouchard LS, Budker D. 59.  2010. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104:070801Demonstrates temperature sensitivity of the NV center. [Google Scholar]
  60. Chen XD, Dong CH, Sun FW, Zou CL, Cui JM. 60.  et al. 2011. Temperature dependent energy level shifts of nitrogen-vacancy centers in diamond. Appl. Phys. Lett. 99:161903 [Google Scholar]
  61. Toyli DM, de las Casas CF, Christle DJ, Dobrovitski VV, Awschalom DD. 61.  2013. Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. USA 110:8417–21 [Google Scholar]
  62. Kucsko G, Maurer PC, Yao NY, Kubo M, Noh HJ. 62.  et al. 2013. Nanometer scale quantum thermometry in a living cell. Nature 500:54–58 [Google Scholar]
  63. Neumann P, Jakobi I, Dolde F, Burk C, Reuter R. 63.  et al. 2013. High-precision nanoscale temperature sensing using single defects in diamond. Nano Lett. 13:2738–42 [Google Scholar]
  64. Doherty MW, Struzhkin VV, Simpson DA, McGuinness LP, Meng Y. 64.  et al. 2013. Electronic properties and metrology of the diamond NV- center under pressure. arXiv:1305.2291
  65. Tamarat P, Gaebel T, Rabeau JR, Khan M, Greentree AD. 65.  et al. 2006. Stark shift control of single optical centers in diamond. Phys. Rev. Lett. 97:083002 [Google Scholar]
  66. Maes J, Iakoubovskii K, Hayne M, Stesmans A, Moshchalkov VV. 66.  2004. Diamond as a magnetic field calibration probe. J. Phys. D 37:1102–6 [Google Scholar]
  67. Maze JR, Gali A, Togan E, Chu Y, Trifonov A. 67.  et al. 2011. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J. Phys. 13:025025 [Google Scholar]
  68. Schoenfeld RS, Harneit W. 68.  2011. Real time magnetic field sensing and imaging using a single spin in diamond. Phys. Rev. Lett. 106:030802 [Google Scholar]
  69. Häberle T, Schmid-Lorch D, Karrai K, Reinhard F, Wrachtrup J. 69.  2013. High-dynamic-range imaging of nanoscale magnetic fields using optimal control of a single qubit. Phys. Rev. Lett. 111:170801
  70. Maertz BJ, Wijnheijmer AP, Fuchs GD, Nowakowski ME, Awschalom DD. 70.  2010. Vector magnetic field microscopy using nitrogen vacancy centers in diamond. Appl. Phys. Lett. 96:092504 [Google Scholar]
  71. Steinert S, Dolde F, Neumann P, Aird A, Naydenov B. 71.  et al. 2010. High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instrum. 81:043705 [Google Scholar]
  72. Acosta VM, Bauch E, Jarmola A, Zipp LJ, Ledbetter MP, Budker D. 72.  2010. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond. Appl. Phys. Lett. 97:174104 [Google Scholar]
  73. Slichter CP. 73.  1990. Principles of Magnetic Resonance New York: Springer, 3rd ed..
  74. Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM. 74.  et al. 2008. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–47Along with Ref. 52, presents the first experimental demonstration of magnetic sensing with a single NV center. [Google Scholar]
  75. De Lange G, Riste D, Dobrovitski VV, Hanson R. 75.  2011. Single-spin magnetometry with multipulse sensing sequences. Phys. Rev. Lett. 106:080802 [Google Scholar]
  76. Steinert S, Ziem F, Hall LT, Zappe A, Schweikert M. 76.  et al. 2013. Magnetic spin imaging under ambient conditions with sub-cellular resolution. Nat. Commun. 4:1607Provides ion concentration measurements with Gd3+, Mn2+, and O2. [Google Scholar]
  77. Loretz M, Rosskopf T, Degen CL. 77.  2013. Radio-frequency magnetometry using a single electron spin. Phys. Rev. Lett. 110:017602 [Google Scholar]
  78. Weinmann HJ, Brasch RC, Press WR, Wesbey GE. 78.  1984. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am. J. Roentgenol. 142:619–24 [Google Scholar]
  79. McGuinness LP, Hall LT, Stacey A, Simpson DA, Hill CD. 79.  et al. 2013. Ambient nanoscale sensing with single spins using quantum decoherence. New J. Phys. 15:073042 [Google Scholar]
  80. Ermakova A, Pramanik G, Cai J, Algara-Siller G, Kaiser U. 80.  et al. 2013. Detection of a few metallo-protein molecules using color centers in nanodiamonds. Nano Lett. 13:3305–9 [Google Scholar]
  81. Toyli DM, Weis CD, Fuchs GD, Schenkel T, Awschalom DD. 81.  2010. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10:3168–72 [Google Scholar]
  82. Le Sage D, Arai K, Glenn DR, Devience SJ, Pham LM. 82.  et al. 2013. Optical magnetic imaging of living cells. Nature 496:486–89 [Google Scholar]
  83. Horowitz VR, Aleman BJ, Christle DJ, Cleland AN, Awschalom DD. 83.  2012. Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds. Proc. Natl. Acad. Sci. USA 109:13493–97 [Google Scholar]
  84. Geiselmann M, Juan ML, Renger J, Say JM, Brown LJ. 84.  et al. 2013. Three-dimensional optical manipulation of a single electron spin. Nat. Nanotechnol. 8:175–79 [Google Scholar]
  85. Chang K. 85.  2010. Private communication.
  86. Kaufmann S, Simpson DA, Hall LT, Perunicic V, Senn P. 86.  et al. 2013. Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe. Proc. Natl. Acad. Sci. USA 110:10894–98 [Google Scholar]
  87. Plakhotnik T, Gruber D. 87.  2010. Luminescence of nitrogen-vacancy centers in nanodiamonds at temperatures between 300 and 700 K: perspectives on nanothermometry. Phys. Chem. Chem. Phys. 12:9751–56 [Google Scholar]
  88. Chernobrod BM, Berman GP. 88.  2005. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97:014903 [Google Scholar]
  89. Rondin L, Tetienne JP, Spinicelli P, DalSavio C, Karrai K. 89.  et al. 2012. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer. Appl. Phys. Lett. 100:153118 [Google Scholar]
  90. Maletinsky P, Hong S, Grinolds MS, Hausmann B, Lukin MD. 90.  et al. 2012. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 7:320–24 [Google Scholar]
  91. Rondin L, Tetienne JP, Rohart S, Thiaville A, Hingant T. 91.  et al. 2013. Stray-field imaging of magnetic vortices with a single diamond spin. Nat. Commun. 4:2279 [Google Scholar]
  92. Jelezko F. 92.  2013. Private communication.
  93. Poggio M, Degen CL. 93.  2010. Force-detected nuclear magnetic resonance: recent advances and future challenges. Nanotechnology 21:342001 [Google Scholar]
  94. Rosskopf T, Dussaux A, Ohashi K, Loretz M, Schirhagl R. 94.  et al. 2013. On the surface paramagnetism of diamond. arXiv:1311.2036
  95. Hossain FM, Doherty MW, Wilson HF, Hollenberg LCL. 95.  2008. Ab initio electronic and optical properties of the N-V center in diamond. Phys. Rev. Lett. 101:226403 [Google Scholar]
  96. Maier F, Riedel M, Mantel B, Ristein J, Ley L. 96.  2000. Origin of surface conductivity in diamond. Phys. Rev. Lett. 85:3472–75 [Google Scholar]
  97. Bradac C, Gaebel T, Naidoo N, Sellars MJ, Twamley J. 97.  et al. 2010. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5:345–49 [Google Scholar]
  98. Cui S, Hu EL. 98.  2013. Increased negatively charged nitrogen-vacancy centers in fluorinated diamond. Appl. Phys. Lett. 103:051603 [Google Scholar]
  99. Tetienne JP, Hingant T, Rondin L, Cavaills A, Mayer L. 99.  et al. 2013. Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing. Phys. Rev. B 87:235436 [Google Scholar]
  100. Samsonenko ND, Zhmykhov GV, Zon VS, Aksenov VK. 100.  1979. Characteristic features of the electron-paramagnetic resonance of the surface centers of diamond. J. Struct. Chem. 20:951–53 [Google Scholar]
  101. Grinolds M. 101.  2013. Private communication.
  102. Toyli DM, Christle DJ, Alkauskas A, Buckley BB, van de Walle CG, Awschalom DD. 102.  2012. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2:031001 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040513-103659
Loading
/content/journals/10.1146/annurev-physchem-040513-103659
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error