1932

Abstract

Abstract

Intrinsically disordered proteins (IDPs) are now widely recognized as playing critical roles in a broad range of cellular functions as well as being implicated in diverse diseases. Their lack of stable secondary structure and tertiary interactions, coupled with their sensitivity to measurement conditions, stymies many traditional structural biology approaches. Single-molecule Förster resonance energy transfer (smFRET) is now widely used to characterize the physicochemical properties of these proteins in isolation and is being increasingly applied to more complex assemblies and experimental environments. This review provides an overview of confocal diffusion-based smFRET as an experimental tool, including descriptions of instrumentation, data analysis, and protein labeling. Recent papers are discussed that illustrate the unique capability of smFRET to provide insight into aggregation-prone IDPs, protein–protein interactions involving IDPs, and IDPs in complex experimental milieus.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-012420-104917
2020-04-20
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-012420-104917.html?itemId=/content/journals/10.1146/annurev-physchem-012420-104917&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC 1958. A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181:4610662–66
    [Google Scholar]
  2. 2. 
    Shi Y. 2014. A glimpse of structural biology through X-ray crystallography. Cell 159:5995–1014
    [Google Scholar]
  3. 3. 
    Mitra AK. 2019. Visualization of biological macromolecules at near-atomic resolution: cryo-electron microscopy comes of age. Acta Crystallogr. F Struct. Biol. Commun. 75:Part 13–11
    [Google Scholar]
  4. 4. 
    Fernandez-Leiro R, Scheres SHW. 2016. Unravelling biological macromolecules with cryo-electron microscopy. Nature 537:7620339–46
    [Google Scholar]
  5. 5. 
    Mattei S, Glass B, Hagen WJH, Kräusslich H-G, Briggs JAG 2016. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 354:63181434–37
    [Google Scholar]
  6. 6. 
    Rapisarda C, Cherrak Y, Kooger R, Schmidt V, Pellarin R et al. 2019. In situ and high-resolution cryo-EM structure of a bacterial type VI secretion system membrane complex. EMBO J 38:10e100886
    [Google Scholar]
  7. 7. 
    Crick F. 1970. Central dogma of molecular biology. Nature 227:5258561–63
    [Google Scholar]
  8. 8. 
    van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW et al. 2014. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114:136589–631
    [Google Scholar]
  9. 9. 
    Dyson HJ, Wright PE. 2005. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6:3197–208
    [Google Scholar]
  10. 10. 
    Forman-Kay JD, Mittag T. 2013. From sequence and forces to structure, function, and evolution of intrinsically disordered proteins. Structure 21:91492–99
    [Google Scholar]
  11. 11. 
    Oldfield CJ, Dunker AK. 2014. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 83:553–84
    [Google Scholar]
  12. 12. 
    Uversky VN, Oldfield CJ, Dunker AK 2008. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37:215–46
    [Google Scholar]
  13. 13. 
    Sugase K, Dyson HJ, Wright PE 2007. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–25
    [Google Scholar]
  14. 14. 
    Arai M, Sugase K, Dyson HJ, Wright PE 2015. Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. PNAS 112:319614–19
    [Google Scholar]
  15. 15. 
    Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R et al. 2015. Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519:7541106–9
    [Google Scholar]
  16. 16. 
    Tompa P, Fuxreiter M. 2008. Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem. Sci. 33:12–8
    [Google Scholar]
  17. 17. 
    Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO et al. 2018. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:769461–66
    [Google Scholar]
  18. 18. 
    Tuttle LM, Pacheco D, Warfield L, Luo J, Ranish J et al. 2018. Gcn4-mediator specificity is mediated by a large and dynamic fuzzy protein-protein complex. Cell Rep 22:123251–64
    [Google Scholar]
  19. 19. 
    Shoemaker BA, Portman JJ, Wolynes PG 2000. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. PNAS 97:168868–73
    [Google Scholar]
  20. 20. 
    Wright PE, Dyson HJ. 2015. Intrinsically disordered proteins in cellular signaling and regulation. Nat. Rev. Mol. Cell Biol. 16:118–29
    [Google Scholar]
  21. 21. 
    Müller-Späth S, Soranno A, Hirschfeld V, Hofmann H, Rüegger S et al. 2010. Charge interactions can dominate the dimensions of intrinsically disordered proteins. PNAS 107:3314609–14 Erratum. 2013. PNAS 110:16693
    [Google Scholar]
  22. 22. 
    Fuxreiter M, Simon I, Friedrich P, Tompa P 2004. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J. Mol. Biol. 338:51015–26
    [Google Scholar]
  23. 23. 
    Das RK, Pappu RV. 2013. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. PNAS 110:3313392–97
    [Google Scholar]
  24. 24. 
    Jensen MR, Zweckstetter M, Huang J, Blackledge M 2014. Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy. Chem. Rev. 114:6632–60
    [Google Scholar]
  25. 25. 
    Theillet F-X, Binolfi A, Bekei B, Martorana A, Rose HM et al. 2016. Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:758845–50
    [Google Scholar]
  26. 26. 
    Wall KP, Hough LE. 2018. In-cell NMR within budding yeast reveals cytoplasmic masking of hydrophobic residues of FG repeats. Biophys. J. 115:91690–95
    [Google Scholar]
  27. 27. 
    Deniz AA, Dahan M, Grunwell JR, Ha T, Faulhaber AE et al. 1999. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations. PNAS 96:3670–75
    [Google Scholar]
  28. 28. 
    Jia Y, Talaga DS, Lau WL, Lu HSM, DeGrado WF, Hochstrasser RM 1999. Folding dynamics of single GCN-4 peptides by fluorescence resonant energy transfer confocal microscopy. Chem. Phys. 247:169–83
    [Google Scholar]
  29. 29. 
    Talaga DS, Lau WL, Roder H, Tang J, Jia Y et al. 2000. Dynamics and folding of single two-stranded coiled-coil peptides studied by fluorescent energy transfer confocal microscopy. PNAS 97:2413021–26
    [Google Scholar]
  30. 30. 
    Schuler B, Lipman EA, Eaton WA 2002. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:6908743–47
    [Google Scholar]
  31. 31. 
    Lipman EA, Schuler B, Bakajin O, Eaton WA 2003. Single-molecule measurement of protein folding kinetics. Science 301:56371233–35
    [Google Scholar]
  32. 32. 
    Hofmann H, Soranno A, Borgia A, Gast K, Nettels D, Schuler B 2012. Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. PNAS 109:4016155–60
    [Google Scholar]
  33. 33. 
    Soranno A, Zosel F, Hofmann H 2018. Internal friction in an intrinsically disordered protein—comparing Rouse-like models with experiments. J. Chem. Phys. 148:12123326
    [Google Scholar]
  34. 34. 
    Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC-H, Eckmann CR et al. 2015. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. PNAS 112:237189–94
    [Google Scholar]
  35. 35. 
    Metskas LA, Rhoades E. 2015. Conformation and dynamics of the troponin I C-terminal domain: combining single-molecule and computational approaches for a disordered protein region. J. Am. Chem. Soc. 137:3711962–69
    [Google Scholar]
  36. 36. 
    Sustarsic M, Kapanidis AN. 2015. Taking the ruler to the jungle: single-molecule FRET for understanding biomolecular structure and dynamics in live cells. Curr. Opin. Struct. Biol. 34:52–59
    [Google Scholar]
  37. 37. 
    Förster T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 437:1–255–75
    [Google Scholar]
  38. 38. 
    Stryer L, Haugland RP. 1967. Energy transfer: a spectroscopic ruler. PNAS 58:2719–26
    [Google Scholar]
  39. 39. 
    Lakowicz J. 2006. Principles of Fluorescence Spectroscopy Cham, Switz: Springer, 3rd ed..
  40. 40. 
    Roy R, Hohng S, Ha T 2008. A practical guide to single-molecule FRET. Nat. Methods 5:6507–16
    [Google Scholar]
  41. 41. 
    Chen H, Rhoades E. 2008. Fluorescence characterization of denatured proteins. Curr. Opin. Struct. Biol. 18:4516–24
    [Google Scholar]
  42. 42. 
    Eggeling C, Fries JR, Brand L, Günther R, Seidel CA 1998. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. PNAS 95:41556–61
    [Google Scholar]
  43. 43. 
    Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S 2004. Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. PNAS 101:248936–41
    [Google Scholar]
  44. 44. 
    Müller BK, Zaychikov E, Bräuchle C, Lamb DC 2005. Pulsed interleaved excitation. Biophys. J. 89:53508–22
    [Google Scholar]
  45. 45. 
    Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CAM 2010. Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514
    [Google Scholar]
  46. 46. 
    Holmstrom ED, Holla A, Zheng W, Nettels D, Best RB, Schuler B 2018. Accurate transfer efficiencies, distance distributions, and ensembles of unfolded and intrinsically disordered proteins from single-molecule FRET. Methods Enzymol 611:287–325
    [Google Scholar]
  47. 47. 
    Kim Y, Ho SO, Gassman NR, Korlann Y, Landorf EV et al. 2008. Efficient site-specific labeling of proteins via cysteines. Bioconjug. Chem. 19:3786–91
    [Google Scholar]
  48. 48. 
    Haney CM, Wissner RF, Petersson EJ 2015. Multiply labeling proteins for studies of folding and stability. Curr. Opin. Chem. Biol. 28:123–30
    [Google Scholar]
  49. 49. 
    Wissner RF, Batjargal S, Fadzen CM, Petersson EJ 2013. Labeling proteins with fluorophore/thioamide Förster resonant energy transfer pairs by combining unnatural amino acid mutagenesis and native chemical ligation. J. Am. Chem. Soc. 135:176529–40
    [Google Scholar]
  50. 50. 
    Kenausis GL, Vörös J, Elbert DL, Huang N, Hofer R et al. 2000. Poly(l-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces:attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J. Phys. Chem. B 104:143298–309
    [Google Scholar]
  51. 51. 
    Chandradoss SD, Haagsma AC, Lee YK, Hwang J-H, Nam J-M, Joo C 2014. Surface passivation for single-molecule protein studies. J. Vis. Exp. 86:e50549
    [Google Scholar]
  52. 52. 
    Hua B, Han KY, Zhou R, Kim H, Shi X et al. 2014. An improved surface passivation method for single-molecule studies. Nat. Methods 11:121233–36
    [Google Scholar]
  53. 53. 
    Melo AM, Elbaum-Garfinkle S, Rhoades E 2017. Insights into tau function and dysfunction through single-molecule fluorescence. Methods Cell Biol 141:27–44
    [Google Scholar]
  54. 54. 
    Espinoza-Sanchez S, Metskas LA, Chou SZ, Rhoades E, Pollard TD 2018. Conformational changes in Arp2/3 complex induced by ATP, WASp-VCA, and actin filaments. PNAS 115:37E8642–51
    [Google Scholar]
  55. 55. 
    Ingargiola A, Lerner E, Chung S, Weiss S, Michalet X 2016. FRETBursts: an open source toolkit for analysis of freely-diffusing single-molecule FRET. PLOS ONE 11:8e0160716
    [Google Scholar]
  56. 56. 
    Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J et al. 2005. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88:42939–53
    [Google Scholar]
  57. 57. 
    Hellenkamp B, Schmid S, Doroshenko O, Opanasyuk O, Kühnemuth R et al. 2018. Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat. Methods 15:9669–76
    [Google Scholar]
  58. 58. 
    Schröder GF, Grubmüller H. 2003. Maximum likelihood trajectories from single molecule fluorescence resonance energy transfer experiments. J. Chem. Phys. 119:189920–24
    [Google Scholar]
  59. 59. 
    Murphy RR, Danezis G, Horrocks MH, Jackson SE, Klenerman D 2014. Bayesian inference of accurate population sizes and FRET efficiencies from single diffusing biomolecules. Anal. Chem. 86:178603–12
    [Google Scholar]
  60. 60. 
    Bonomi M, Pellarin R, Kim SJ, Russel D, Sundin BA et al. 2014. Determining protein complex structures based on a Bayesian model of in vivo Förster resonance energy transfer (FRET) data. Mol. Cell. Proteom. 13:112812–23
    [Google Scholar]
  61. 61. 
    Torres T, Levitus M. 2007. Measuring conformational dynamics: a new FCS-FRET approach. J. Phys. Chem. B 111:257392–400
    [Google Scholar]
  62. 62. 
    Felekyan S, Sanabria H, Kalinin S, Kühnemuth R, Seidel CAM 2013. Analyzing Förster resonance energy transfer with fluctuation algorithms. Methods Enzymol 519:39–85
    [Google Scholar]
  63. 63. 
    Schuler B. 2018. Perspective: chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET. J. Chem. Phys. 149:1010901
    [Google Scholar]
  64. 64. 
    LeBlanc SJ, Kulkarni P, Weninger KR 2018. Single molecule FRET: a powerful tool to study intrinsically disordered proteins. Biomolecules 8:4140
    [Google Scholar]
  65. 65. 
    Sarkar J, Myong S. 2018. Single-molecule and ensemble methods to probe initial stages of RNP granule assembly. Methods Mol. Biol. 1814:325–38
    [Google Scholar]
  66. 66. 
    Rhoades E, Gussakovsky E, Haran G 2003. Watching proteins fold one molecule at a time. PNAS 100:63197–202
    [Google Scholar]
  67. 67. 
    Rhoades E, Cohen M, Schuler B, Haran G 2004. Two-state folding observed in individual protein molecules. J. Am. Chem. Soc. 126:4514686–87
    [Google Scholar]
  68. 68. 
    Sturzenegger F, Zosel F, Holmstrom ED, Buholzer KJ, Makarov DE et al. 2018. Transition path times of coupled folding and binding reveal the formation of an encounter complex. Nat. Commun. 9:14708
    [Google Scholar]
  69. 69. 
    Ferreon ACM, Gambin Y, Lemke EA, Deniz AA 2009. Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence. PNAS 106:145645–50
    [Google Scholar]
  70. 70. 
    Schuler B, Lipman EA, Steinbach PJ, Kumke M, Eaton WA 2005. Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence. PNAS 102:82754–59
    [Google Scholar]
  71. 71. 
    Trexler AJ, Rhoades E. 2009. α-Synuclein binds large unilamellar vesicles as an extended helix. Biochemistry 48:112304–6
    [Google Scholar]
  72. 72. 
    Zerze GH, Best RB, Mittal J 2014. Modest influence of FRET chromophores on the properties of unfolded proteins. Biophys. J. 107:71654–60
    [Google Scholar]
  73. 73. 
    Luitz MP, Barth A, Crevenna AH, Bomblies R, Lamb DC, Zacharias M 2017. Covalent dye attachment influences the dynamics and conformational properties of flexible peptides. PLOS ONE 12:5e0177139
    [Google Scholar]
  74. 74. 
    Riback JA, Bowman MA, Zmyslowski AM, Plaxco KW, Clark PL, Sosnick TR 2019. Commonly used FRET fluorophores promote collapse of an otherwise disordered protein. PNAS 116:188889–94
    [Google Scholar]
  75. 75. 
    Kalinin S, Peulen T, Sindbert S, Rothwell PJ, Berger S et al. 2012. A toolkit and benchmark study for FRET-restrained high-precision structural modeling. Nat. Methods 9:121218–25
    [Google Scholar]
  76. 76. 
    Metskas LA. 2016. Conformation and dynamics of the troponin I C-terminal domain: combining single-molecule experiments and simulations to bridge timescales PhD Diss., Yale Univ New Haven, CT:
  77. 77. 
    Grinvald A, Haas E, Steinberg IZ 1972. Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay. PNAS 69:82273–77
    [Google Scholar]
  78. 78. 
    O'Brien EP, Morrison G, Brooks BR, Thirumalai D 2009. How accurate are polymer models in the analysis of Förster resonance energy transfer experiments on proteins. J. Chem. Phys. 130:12124903
    [Google Scholar]
  79. 79. 
    Nath A, Sammalkorpi M, DeWitt DC, Trexler AJ, Elbaum-Garfinkle S et al. 2012. The conformational ensembles of α-synuclein and tau: combining single-molecule FRET and simulations. Biophys. J. 103:91940–49
    [Google Scholar]
  80. 80. 
    Song J, Gomes G-N, Gradinaru CC, Chan HS 2015. An adequate account of excluded volume is necessary to infer compactness and asphericity of disordered proteins by Förster resonance energy transfer. J. Phys. Chem. B 119:4915191–202
    [Google Scholar]
  81. 81. 
    Zheng W, Zerze GH, Borgia A, Mittal J, Schuler B, Best RB 2018. Inferring properties of disordered chains from FRET transfer efficiencies. J. Chem. Phys. 148:12123329
    [Google Scholar]
  82. 82. 
    Voelz VA, Jäger M, Yao S, Chen Y, Zhu L et al. 2012. Slow unfolded-state structuring in acyl-CoA binding protein folding revealed by simulation and experiment. J. Am. Chem. Soc. 134:3012565–77
    [Google Scholar]
  83. 83. 
    Lamboy JA, Kim H, Dembinski H, Ha T, Komives EA 2013. Single-molecule FRET reveals the native-state dynamics of the IκBα ankyrin repeat domain. J. Mol. Biol. 425:142578–90
    [Google Scholar]
  84. 84. 
    Melo AM, Coraor J, Alpha-Cobb G, Elbaum-Garfinkle S, Nath A, Rhoades E 2016. A functional role for intrinsic disorder in the tau-tubulin complex. PNAS 113:5014336–41
    [Google Scholar]
  85. 85. 
    Hohng S, Joo C, Ha T 2004. Single-molecule three-color FRET. Biophys. J. 87:21328–37
    [Google Scholar]
  86. 86. 
    Lee S, Lee J, Hohng S 2010. Single-molecule three-color FRET with both negligible spectral overlap and long observation time. PLOS ONE 5:8e12270
    [Google Scholar]
  87. 87. 
    Lee TC, Moran CR, Cistrone PA, Dawson PE, Deniz AA 2018. Site-specific three-color labeling of α-synuclein via conjugation to uniquely reactive cysteines during assembly by native chemical ligation. Cell Chem. Biol. 25:6797–801.e4
    [Google Scholar]
  88. 88. 
    Chung HS, Meng F, Kim J-Y, McHale K, Gopich IV, Louis JM 2017. Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET. PNAS 114:33E6812–21
    [Google Scholar]
  89. 89. 
    Yoo J, Louis JM, Gopich IV, Chung HS 2018. Three-color single-molecule FRET and fluorescence lifetime analysis of fast protein folding. J. Phys. Chem. B 122:4911702–20
    [Google Scholar]
  90. 90. 
    Nir E, Michalet X, Hamadani KM, Laurence TA, Neuhauser D et al. 2006. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J. Phys. Chem. B 110:4422103–24
    [Google Scholar]
  91. 91. 
    Aznauryan M, Delgado L, Soranno A, Nettels D, Huang J-R et al. 2016. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. PNAS 113:37E5389–98
    [Google Scholar]
  92. 92. 
    Dimura M, Peulen TO, Hanke CA, Prakash A, Gohlke H, Seidel CA 2016. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 40:163–85
    [Google Scholar]
  93. 93. 
    Peran I, Holehouse AS, Carrico IS, Pappu RV, Bilsel O, Raleigh DP 2019. Unfolded states under folding conditions accommodate sequence-specific conformational preferences with random coil-like dimensions. PNAS 116:2512301–10
    [Google Scholar]
  94. 94. 
    Best RB, Zheng W, Mittal J 2014. Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association. J. Chem. Theory Comput. 10:115113–24
    [Google Scholar]
  95. 95. 
    Piana S, Donchev AG, Robustelli P, Shaw DE 2015. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B 119:165113–23
    [Google Scholar]
  96. 96. 
    Best RB. 2017. Computational and theoretical advances in studies of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 42:147–54
    [Google Scholar]
  97. 97. 
    Robustelli P, Piana S, Shaw DE 2018. Developing a molecular dynamics force field for both folded and disordered protein states. PNAS 115:21E4758–66
    [Google Scholar]
  98. 98. 
    Tompa P. 2009. Structural disorder in amyloid fibrils: its implication in dynamic interactions of proteins. FEBS J 276:195406–15
    [Google Scholar]
  99. 99. 
    Trexler AJ, Rhoades E. 2010. Single molecule characterization of α-synuclein in aggregation-prone states. Biophys. J. 99:93048–55
    [Google Scholar]
  100. 100. 
    Nath A, Miranker AD, Rhoades E 2011. A membrane-bound antiparallel dimer of rat islet amyloid polypeptide. Angew. Chem. Int. Ed. 50:4610859–62
    [Google Scholar]
  101. 101. 
    Elbaum-Garfinkle S, Rhoades E. 2012. Identification of an aggregation-prone structure of tau. J. Am. Chem. Soc. 134:4016607–13
    [Google Scholar]
  102. 102. 
    Meng F, Bellaiche MMJ, Kim J-Y, Zerze GH, Best RB, Chung HS 2018. Highly disordered amyloid-β monomer probed by single-molecule FRET and MD simulation. Biophys. J. 114:4870–84
    [Google Scholar]
  103. 103. 
    Wickramasinghe SP, Lempart J, Merens HE, Murphy J, Huetteman P et al. 2019. Polyphosphate initiates tau aggregation through intra- and intermolecular scaffolding. Biophys. J. 117:4717–28
    [Google Scholar]
  104. 104. 
    Lo CH, Lim CK-W, Ding Z, Wickramasinghe SP, Braun AR et al. 2019. Targeting the ensemble of heterogeneous tau oligomers in cells: a novel small molecule screening platform for tauopathies. Alzheimer's Dement 15:111489–502
    [Google Scholar]
  105. 105. 
    Veldhuis G, Segers-Nolten I, Ferlemann E, Subramaniam V 2009. Single-molecule FRET reveals structural heterogeneity of SDS-bound α-synuclein. ChemBioChem 10:3436–39
    [Google Scholar]
  106. 106. 
    Ferreon ACM, Moran CR, Ferreon JC, Deniz AA 2010. Alteration of the α-synuclein folding landscape by a mutation related to Parkinson's disease. Angew. Chem. Int. Ed. 49:203469–72
    [Google Scholar]
  107. 107. 
    Sevcsik E, Trexler AJ, Dunn JM, Rhoades E 2011. Allostery in a disordered protein: oxidative modifications to α-synuclein act distally to regulate membrane binding. J. Am. Chem. Soc. 133:187152–58
    [Google Scholar]
  108. 108. 
    Moosa MM, Ferreon ACM, Deniz AA 2015. Forced folding of a disordered protein accesses an alternative folding landscape. ChemPhysChem 16:190–94
    [Google Scholar]
  109. 109. 
    Wälti MA, Steiner J, Meng F, Chung HS, Louis JM et al. 2018. Probing the mechanism of inhibition of amyloid-β(1–42)–induced neurotoxicity by the chaperonin GroEL. PNAS 115:51E11924–32
    [Google Scholar]
  110. 110. 
    Banerjee PR, Moosa MM, Deniz AA 2016. Two-dimensional crowding uncovers a hidden conformation of α-synuclein. Angew. Chem. Int. Ed. 55:4112789–92
    [Google Scholar]
  111. 111. 
    Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY et al. 2012. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149:51048–59
    [Google Scholar]
  112. 112. 
    Horrocks MH, Tosatto L, Dear AJ, Garcia GA, Iljina M et al. 2015. Fast flow microfluidics and single-molecule fluorescence for the rapid characterization of α-synuclein oligomers. Anal. Chem. 87:178818–26
    [Google Scholar]
  113. 113. 
    Chen SW, Drakulic S, Deas E, Ouberai M, Aprile FA et al. 2015. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. PNAS 112:16E1994–2003
    [Google Scholar]
  114. 114. 
    Shammas SL, Garcia GA, Kumar S, Kjaergaard M, Horrocks MH et al. 2015. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. Nat. Commun. 6:7025
    [Google Scholar]
  115. 115. 
    Kundel F, De S, Flagmeier P, Horrocks MH, Kjaergaard M et al. 2018. Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high affinity. ACS Chem. Biol. 13:3636–46
    [Google Scholar]
  116. 116. 
    Iljina M, Dear AJ, Garcia GA, De S, Tosatto L et al. 2018. Quantifying co-oligomer formation by α-synuclein. ACS Nano 12:1110855–66
    [Google Scholar]
  117. 117. 
    Yang J, Dear AJ, Michaels TCT, Dobson CM, Knowles TPJ et al. 2018. Direct observation of oligomerization by single molecule fluorescence reveals a multistep aggregation mechanism for the yeast prion protein Ure2. J. Am. Chem. Soc. 140:72493–503
    [Google Scholar]
  118. 118. 
    Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME et al. 2006. Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLOS Comput. Biol. 2:8e100
    [Google Scholar]
  119. 119. 
    Fuxreiter M, Tompa P. 2012. Fuzzy complexes: a more stochastic view of protein function. Adv. Exp. Med. Biol. 725:1–14
    [Google Scholar]
  120. 120. 
    Mollica L, Bessa LM, Hanoulle X, Jensen MR, Blackledge M, Schneider R 2016. Binding mechanisms of intrinsically disordered proteins: theory, simulation, and experiment. Front. Mol. Biosci. 3:52
    [Google Scholar]
  121. 121. 
    Tan PS, Aramburu IV, Mercadante D, Tyagi S, Chowdhury A et al. 2018. Two differential binding mechanisms of FG-nucleoporins and nuclear transport receptors. Cell Rep 22:133660–71
    [Google Scholar]
  122. 122. 
    Ferreon ACM, Ferreon JC, Wright PE, Deniz AA 2013. Modulation of allostery by protein intrinsic disorder. Nature 498:7454390–94
    [Google Scholar]
  123. 123. 
    Mooney SM, Qiu R, Kim JJ, Sacho EJ, Rajagopalan K et al. 2014. Cancer/testis antigen PAGE4, a regulator of c-Jun transactivation, is phosphorylated by homeodomain-interacting protein kinase 1, a component of the stress-response pathway. Biochemistry 53:101670–79
    [Google Scholar]
  124. 124. 
    Banerjee PR, Mitrea DM, Kriwacki RW, Deniz AA 2016. Asymmetric modulation of protein order-disorder transitions by phosphorylation and partner binding. Angew. Chem. Int. Ed. 55:51675–79
    [Google Scholar]
  125. 125. 
    Theillet F-X, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M et al. 2014. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem. Rev. 114:136661–714
    [Google Scholar]
  126. 126. 
    Mittal A, Holehouse AS, Cohan MC, Pappu RV 2018. Sequence-to-conformation relationships of disordered regions tethered to folded domains of proteins. J. Mol. Biol. 430:162403–21
    [Google Scholar]
  127. 127. 
    Metskas LA, Rhoades E. 2016. Order-disorder transitions in the cardiac troponin complex. J. Mol. Biol. 428:152965–77
    [Google Scholar]
  128. 128. 
    Soranno A, Koenig I, Borgia MB, Hofmann H, Zosel F et al. 2014. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. PNAS 111:134874–79
    [Google Scholar]
  129. 129. 
    Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR et al. 2016. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5:e13571
    [Google Scholar]
  130. 130. 
    Mitrea DM, Cika JA, Stanley CB, Nourse A, Onuchic PL et al. 2018. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat. Commun. 9:1842
    [Google Scholar]
  131. 131. 
    Sakon JJ, Weninger KR. 2010. Detecting the conformation of individual proteins in live cells. Nat. Methods 7:3203–5
    [Google Scholar]
  132. 132. 
    König I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B et al. 2015. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat. Methods 12:8773–79
    [Google Scholar]
  133. 133. 
    Iljina M, Garcia GA, Horrocks MH, Tosatto L, Choi ML et al. 2016. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. PNAS 113:9E1206–15
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-012420-104917
Loading
/content/journals/10.1146/annurev-physchem-012420-104917
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error