Nucleation is a ubiquitous phenomenon in many physical, chemical, and biological processes. In this review, we describe recent progress on the theoretical study of nucleation in polymeric fluids and soft matter, including binary mixtures (polymer blends, polymers in poor solvents, compressible polymer–small molecule mixtures), block copolymer melts, and lipid membranes. We discuss the methodological development for studying nucleation as well as novel insights and new physics obtained in the study of the nucleation behavior in these systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kulmala M, Riipinen I, Sipilä M, Manninen HE, Petäjä T. 1.  et al. 2007. Toward direct measurement of atmospheric nucleation. Science 318:89–92 [Google Scholar]
  2. Lee RE, Costanzo JP. 2.  1998. Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Annu. Rev. Physiol. 60:55–72 [Google Scholar]
  3. Welch MD, Mullins RD. 3.  2002. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18:247–88 [Google Scholar]
  4. Laaksonen A, Talanquer V, Oxtoby DW. 4.  1995. Nucleation: measurements, theory, and atmospheric applications. Annu. Rev. Phys. Chem. 46:489–524 [Google Scholar]
  5. Auer S, Frenkel D. 5.  2004. Quantitative prediction of crystal-nucleation rates for spherical colloids: a computational approach. Annu. Rev. Phys. Chem. 55:333–61 [Google Scholar]
  6. Oxtoby DW. 6.  1998. Nucleation of first-order phase transitions. Acc. Chem. Res. 31:91–97 [Google Scholar]
  7. Dimitrov D, Jain RK. 7.  1984. Membrane stability. Biochim. Biophys. Acta 779:437–68 [Google Scholar]
  8. Litster JD. 8.  1975. Stability of lipid bilayers and red blood-cell membranes. Phys. Lett. A 53:193–94 [Google Scholar]
  9. Taupin C, Dvolaitzky M, Sauterey C. 9.  1975. Osmotic-pressure induced pores in phospholipid vesicles. Biochemistry 14:4771–75 [Google Scholar]
  10. Landau LD, Lifshitz EM. 10.  1980. Statistical Physics, Part 1 New York: Pergamon:, 3rd ed.. [Google Scholar]
  11. Auer S, Frenkel D. 11.  2005. Numerical simulation of crystal nucleation in colloids. Adv. Polym. Sci. 55:333–61 [Google Scholar]
  12. Durbin SD, Feher G. 12.  1996. Protein crystallization. Annu. Rev. Phys. Chem. 47:171–204 [Google Scholar]
  13. Bartell LS. 13.  1998. Structure and transformation: large molecular clusters as models of condensed matter. Annu. Rev. Phys. Chem. 49:43–72 [Google Scholar]
  14. Vekilov PG. 14.  2005. Two-step mechanism for the nucleation of crystals from solution. J. Cryst. Growth 275:65–76 [Google Scholar]
  15. Oxtoby DW. 15.  2002. Density functional methods in the statistical mechanics of materials. Annu. Rev. Mater. Res. 32:39–52 [Google Scholar]
  16. E W, Vanden-Eijnden E. 16.  2010. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61:391–420 [Google Scholar]
  17. Fredrickson GH. 17.  2006. The Equilibrium Theory of Inhomogeneous Polymers New York: Oxford Univ. Press [Google Scholar]
  18. Binder K, Müller M, Virnau P, MacDowell LG. 18.  2005. Polymer + solvent systems: phase diagrams, interface free energies, and nucleation. Adv. Polym. Sci. 173:1–110 [Google Scholar]
  19. Sear RP. 19.  2007. Nucleation: theory and applications to protein solutions and colloidal suspensions. J. Phys. Condens. Matter 19:033101 [Google Scholar]
  20. E W, Ren W, Vanden-Eijnden E. 20.  2007. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys. 126:164103 [Google Scholar]
  21. E W, Ren W, Vanden-Eijnden E. 21.  2002. String method for the study of rare events. Phys. Rev. B 66:052301 [Google Scholar]
  22. Evans R. 22.  1979. Nature of the liquid-vapor interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28:143–200 [Google Scholar]
  23. Wu JZ, Li ZD. 23.  2007. Density-functional theory for complex fluids. Annu. Rev. Phys. Chem. 58:85–112 [Google Scholar]
  24. Xu XF, Cao DP, Wu JZ. 24.  2010. Density functional theory for predicting polymeric forces against surface fouling. Soft Matter 6:4631–46 [Google Scholar]
  25. Wood SM, Wang Z-G. 25.  2002. Nucleation in binary polymer blends: a self-consistent field study. J. Chem. Phys. 116:2289–300 [Google Scholar]
  26. Bolhuis PG, Chandler D, Dellago C, Geissler PL. 26.  2002. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53:291–318 [Google Scholar]
  27. Oxtoby DW, Evans R. 27.  1988. Nonclassical nucleation theory for the gas-liquid transition. J. Chem. Phys. 89:7521–30 [Google Scholar]
  28. Cahn JW, Hilliard JE. 28.  1959. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31:688–99 [Google Scholar]
  29. Talanquer V, Oxtoby DW. 29.  1994. Dynamical density functional theory of gas-liquid nucleation. J. Chem. Phys. 100:5190–200 [Google Scholar]
  30. Lutsko JF. 30.  2010. Recent developments in classical density functional theory. Adv. Chem. Phys. 144:1–91 [Google Scholar]
  31. Lutsko JF. 31.  2008. Theoretical description of the nucleation of vapor bubbles in a superheated fluid. Europhys. Lett. 83:46007 [Google Scholar]
  32. E W. 32.  2010. Rare events, transition pathways and reaction rates http://web.math.princeton.edu/string/ [Google Scholar]
  33. Wales D. 33.  2003. Energy Landscapes Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  34. Xu XF, Cristancho DE, Costeux S, Wang Z-G. 34.  2013. Discontinuous bubble nucleation due to a metastable condensation transition in polymer-CO2 mixtures. J. Phys. Chem. Lett. 4:1639–43 [Google Scholar]
  35. Swope WC, Andersen HC. 35.  1990. 106-Particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. Phys. Rev. B 41:7042–54 [Google Scholar]
  36. Matsumoto M, Saito S, Ohmine I. 36.  2002. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416:409–13 [Google Scholar]
  37. Torrie GM, Valleau JP. 37.  1974. Monte Carlo free energy estimates using non-Boltzmann sampling: application to subcritical Lennard-Jones fluid. Chem. Phys. Lett. 28:578–81 [Google Scholar]
  38. Ni R, Belli S, van Roij R, Dijkstra M. 38.  2010. Glassy dynamics, spinodal fluctuations, and the kinetic limit of nucleation in suspensions of colloidal hard rods. Phys. Rev. Lett. 105:088302 [Google Scholar]
  39. Schilling T, Frenkel D. 39.  2004. Self-poisoning of crystal nuclei in hard-rod liquids. Phys. Rev. Lett. 92:085505 [Google Scholar]
  40. Ni R, Smallenburg F, Filion L, Dijkstra M. 40.  2011. Crystal nucleation in binary hard-sphere mixtures: the effect of order parameter on the cluster composition. Mol. Phys. 109:1213–27 [Google Scholar]
  41. Kusaka I, Oxtoby DW. 41.  1999. Identifying physical clusters in vapor phase nucleation. J. Chem. Phys. 110:5249–61 [Google Scholar]
  42. Kusaka I, Oxtoby DW. 42.  1999. Identifying physical clusters in bubble nucleation. J. Chem. Phys. 111:1104–8 [Google Scholar]
  43. Kusaka I, Wang Z-G, Seinfeld JH. 43.  1998. Direct evaluation of the equilibrium distribution of physical clusters by a grand canonical Monte Carlo simulation. J. Chem. Phys. 108:3416–23 [Google Scholar]
  44. Kusaka I. 44.  2009. Accelerating simulation of metastable decay. J. Chem. Phys. 131:034112 [Google Scholar]
  45. ten Wolde PR, Frenkel D. 45.  1998. Numerical study of gas-liquid nucleation in partially miscible binary mixtures. J. Chem. Phys. 109:9919–27 [Google Scholar]
  46. Radhakrishnan R, Trout BL. 46.  2002. A new approach for studying nucleation phenomena using molecular simulations: application to CO2 hydrate clathrates. J. Chem. Phys. 117:1786–96 [Google Scholar]
  47. Radhakrishnan R, Trout BL. 47.  2003. Nucleation of hexagonal ice (Ih) in liquid water. J. Am. Chem. Soc. 125:7743–47 [Google Scholar]
  48. Radhakrishnan R, Trout BL. 48.  2003. Nucleation of crystalline phases of water in homogeneous and inhomogeneous environments. Phys. Rev. Lett. 90:158301 [Google Scholar]
  49. Allen RJ, Valerian C, ten Wolde PR. 49.  2009. Forward flux sampling for rare event simulations. J. Phys. Condens. Matter 21:463102 [Google Scholar]
  50. Escobedo FA, Borrero EE, Araque JC. 50.  2009. Transition path sampling and forward flux sampling: applications to biological systems. J. Phys. Condens. Matter 21:333101 [Google Scholar]
  51. Bohner MU, Kästner J. 51.  2012. An algorithm to find minimum free-energy paths using umbrella integration. J. Chem. Phys. 137:034105 [Google Scholar]
  52. Miller TF, Vanden-Eijnden E, Chandler D. 52.  2007. Solvent coarse-graining and the string method applied to the hydrophobic collapse of a hydrated chain. Proc. Natl. Acad. Sci. USA 104:14559–64 [Google Scholar]
  53. Wang R, Wang Z-G. 53.  2012. Theory of polymers in poor solvent: phase equilibrium and nucleation behavior. Macromolecules 45:6266–71 [Google Scholar]
  54. Rubinstein M, Colby RH. 54.  2003. Polymer Physics New York: Oxford Univ. Press [Google Scholar]
  55. Ginzburg VL. 55.  1960. Some remarks on second order phase transitions and the microscopic theory of ferroelectrics. Sov. Phys. Solid State 2:1824–36 [Google Scholar]
  56. Levanyuk AP. 56.  1959. Contribution to the theory of light scattering near the 2nd order phase-transition points. Sov. Phys. JETP USSR 9:571–76 [Google Scholar]
  57. de Gennes PG. 57.  1977. Qualitative features of polymer demixtion. J. Phys. Lett. 38:441–43 [Google Scholar]
  58. Binder K. 58.  1984. Nucleation barriers, spinodals, and the Ginzburg criterion. Phys. Rev. A 29:341–49 [Google Scholar]
  59. Cahn JW. 59.  1961. On spinodal decomposition. Acta Metall. 9:795–801 [Google Scholar]
  60. Cook HE. 60.  1970. Brownian motion in spinodal decomposition. Acta Metall. 18:297–306 [Google Scholar]
  61. Lefebvre AA, Lee JH, Balsara NP, Hammouda B. 61.  2002. Critical length and time scales during the initial stages of nucleation in polymer blends. J. Chem. Phys. 116:4777–81 [Google Scholar]
  62. Wang Z-G. 62.  2002. Concentration fluctuation in binary polymer blends: χ parameter, spinodal and Ginzburg criterion. J. Chem. Phys 117:481–500 [Google Scholar]
  63. Balsara NP, Rappl TJ, Lefebvre AA. 63.  2004. Does conventional nucleation occur during phase separation in polymer blends?. J. Polym. Sci. B 42:1793–809 [Google Scholar]
  64. de Gennes PG. 64.  1990. Introduction to Polymer Dynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  65. Grosberg AY, Kuznetsov DV. 65.  1992. Quantitative theory of the globule-to-coil transition. 1. Link density distribution in a globule and its radius of gyration. Macromolecules 25:1970–79 [Google Scholar]
  66. Grosberg AY, Kuznetsov DV. 66.  1992. Quantitative theory of the globule-to-coil transition. 2. Density-density correlation in a globule and the hydrodynamic radius of a macromolecule. Macromolecules 25:1980–90 [Google Scholar]
  67. Grosberg AY, Kuznetsov DV. 67.  1992. Quantitative theory of the globule-to-coil transition. 3. Globule-globule interaction and polymer solution binodal and spinodal curves in the globular range. Macromolecules 25:1991–95 [Google Scholar]
  68. Lee ST, Ramesh NS. 68.  2004. Polymeric Foams: Mechanisms and Materials Boca Raton, FL: CRC [Google Scholar]
  69. van Konynenburg PH, Scott RL. 69.  1980. Critical lines and phase equilibria in binary van der Waals mixtures. Philos. Trans. R. Soc. Lond. A 298:495–540 [Google Scholar]
  70. Xu XF, Cristancho DE, Costeux S, Wang Z-G. 70.  2012. Density-functional theory for polymer-carbon dioxide mixtures: a perturbed-chain SAFT approach. J. Chem. Phys. 137:054902 [Google Scholar]
  71. Virnau P, Müller M, MacDowell LG, Binder K. 71.  2004. Phase separation kinetics in compressible polymer solutions: computer simulation of the early stages. New J. Phys. 6:7 [Google Scholar]
  72. Müller M, MacDowell LG, Virnau P, Binder K. 72.  2002. Interface properties and bubble nucleation in compressible mixtures containing polymers. J. Chem. Phys. 117:5480–96 [Google Scholar]
  73. Ruiz JAR, Pedros M, Tallon JM, Dumon M. 73.  2011. Micro and nano cellular amorphous polymers (PMMA, PS) in supercritical CO2 assisted by nanostructured CO2-philic block copolymers: one step foaming process. J. Supercrit. Fluids 58:168–76 [Google Scholar]
  74. ten Wolde PR, Frenkel D. 74.  1997. Enhancement of protein crystal nucleation by critical density fluctuations. Science 277:1975–78 [Google Scholar]
  75. Talanquer V, Oxtoby DW. 75.  1998. Crystal nucleation in the presence of a metastable critical point. J. Chem. Phys. 109:223–27 [Google Scholar]
  76. Galkin O, Vekilov PG. 76.  2000. Control of protein crystal nucleation around the metastable liquid-liquid phase boundary. Proc. Natl. Acad. Sci. USA 97:6277–81 [Google Scholar]
  77. Tavassoli Z, Sear RP. 77.  2002. Homogeneous nucleation near a second phase transition and Ostwald's step rule. J. Chem. Phys. 116:5066–72 [Google Scholar]
  78. Leibler L. 78.  1980. Theory of microphase separation in block copolymers. Macromolecules 13:1602–17 [Google Scholar]
  79. Matsen MW, Schick M. 79.  1994. Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett. 72:2660–63 [Google Scholar]
  80. Matsen MW. 80.  2002. The standard Gaussian model for block copolymer melts. J. Phys. Condens. Matter 14:R21–47 [Google Scholar]
  81. Wickham RA, Shi AC, Wang Z-G. 81.  2003. Nucleation of stable cylinders from a metastable lamellar phase in a diblock copolymer melt. J. Chem. Phys. 118:10293–305 [Google Scholar]
  82. Tyler CA, Morse DC. 82.  2005. Orthorhombic Fddd network in triblock and diblock copolymer melts. Phys. Rev. Lett. 94:208302 [Google Scholar]
  83. Takenaka M, Wakada T, Akasaka S, Nishitsuji S, Saijo K. 83.  et al. 2007. Orthorhombic Fddd network in diblock copolymer melts. Macromolecules 40:4399–402 [Google Scholar]
  84. Fredrickson GH, Helfand E. 84.  1987. Fluctuation effects in the theory of microphase separation in block copolymers. J. Chem. Phys. 87:697–705 [Google Scholar]
  85. Qi SY, Wang Z-G. 85.  1997. Kinetics of phase transitions in weakly segregated block copolymers: pseudostable and transient states. Phys. Rev. E 55:1682–97 [Google Scholar]
  86. Schulz MF, Bates FS, Almdal K, Mortensen K. 86.  1994. Epitaxial relationship for hexagonal-to-cubic phase transition in a block copolymer mixture. Phys. Rev. Lett. 73:86–89 [Google Scholar]
  87. Koppi KA, Tirrell M, Bates FS, Almodal K, Mortensen K. 87.  1994. Epitaxial growth and shearing of the body centered cubic phase in diblock copolymer melts. J. Rheol. 38:999–1027 [Google Scholar]
  88. Yeung C, Shi AC, Noolandi J, Desai RC. 88.  1996. Anisotropic fluctuations in ordered copolymer phases. Macromol. Theory Simul. 5:291–98 [Google Scholar]
  89. Laradji M, Shi AC, Noolandi J, Desai RC. 89.  1997. Stability of ordered phases in diblock copolymer melts. Marcromolecules 30:3242–55 [Google Scholar]
  90. Qi SY, Wang Z-G. 90.  1997. On the nature of the perforated layer phase in undiluted diblock copolymers. Macromolecules 30:4491–97 [Google Scholar]
  91. Qi SY, Wang Z-G. 91.  1998. Weakly segregated block copolymers: anisotropic fluctuations and kinetics of order-order and order-disorder transitions. Polymer 39:4639–48 [Google Scholar]
  92. Matsen MW. 92.  2001. Cylinder ↔ sphere expitaxial transitions in block copolymer melts. J. Chem. Phys. 114:8165–73 [Google Scholar]
  93. Nonomura M, Yamada K, Ohta T. 93.  2003. Formation and stability of double gyroid in microphase-separated diblock copolymers. J. Phys. Condens. Matter 15:L423–30 [Google Scholar]
  94. Hajduk DA, Takenouchi H, Hillmyer MA, Bates FS, Vigild ME, Almdal K. 94.  1997. Stability of the perforated layer (PL) phase in diblock copolymer melts. Macromolecules 30:3788–95 [Google Scholar]
  95. Fredrickson GH, Binder K. 95.  1989. Kinetics of metastable states in block copolymer melts. J. Chem. Phys. 91:7265–75 [Google Scholar]
  96. Hohenberg PC, Swift JB. 96.  1995. Metastability in fluctuation-driven first-order transitions: nucleation of lamellar phases. Phys. Rev. E 52:1828–45 [Google Scholar]
  97. Herring C. 97.  1951. Some theorems of the free energies of crystal surfaces. Phys. Rev. 82:87–93 [Google Scholar]
  98. Rottman C, Wortis M. 98.  1984. Statistical mechanics of equilibrium crystal shapes: interfacial phase, diagrams and phase transitions. Phys. Rep. 103:59–79 [Google Scholar]
  99. Nonomura M, Ohta T. 99.  2001. Growth of mesophases in morphological transitions. J. Phys. Soc. Jpn. 70:927–30 [Google Scholar]
  100. Cheng XY, Lin L, E W, Zhang PW, Shi AC. 100.  2010. Nucleation of ordered phases in block copolymers. Phys. Rev. Lett. 104:148301 [Google Scholar]
  101. Matsen MW, Bates FS. 101.  1996. Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29:1091–98 [Google Scholar]
  102. Matsen MW, Bates FS. 102.  1997. Block copolymer microstructures in the intermediate-segregation regime. J. Chem. Phys. 106:2436–48 [Google Scholar]
  103. Semenov AN. 103.  1989. Microphase separation in diblock copolymer melts: ordering of micelles. Macromolecules 22:2849–51 [Google Scholar]
  104. Adams JL, Quiram DJ, Graessley WW, Register RA, Marchand GR. 104.  1996. Ordering dynamics of compositionally asymmetric styrene isoprene block copolymers. Macromolecules 29:2929–38 [Google Scholar]
  105. Schwab M, Stühn B. 105.  1996. Thermotropic transition from a state of liquid order to a macrolattice in asymmetric diblock copolymers. Phys. Rev. Lett. 76:924–27 [Google Scholar]
  106. Schwab M, Stühn B. 106.  1997. Asymmetric diblock copolymers: phase behaviour and kinetics of structure formation. Colloid Polym. Sci. 275:341–51 [Google Scholar]
  107. Sakamoto N, Hashimoto T, Han CD, Kim D, Vaidya NY. 107.  1997. Order-order and order-disorder transitions in a polystyrene-block-polyisoprene-block-polystyrene copolymer. Macromolecules 30:1621–32 [Google Scholar]
  108. Sakamoto N, Hashimoto T. 108.  1998. Ordering dynamics of cylindrical and spherical microdomains in polystyrene-block-polyisoprene-block-polystyrene. 1. SAXS and TEM observations for the grain formation. Macromolecules 31:8493–502 [Google Scholar]
  109. Han CD, Vaidya NY, Kim D, Shin G, Yamaguchi D, Hashimoto T. 109.  2000. Lattice disordering/ordering and demicellization/micellization transitions in highly asymmetric polystyrene-block-polyisoprene copolymers. Macromolecules 33:3767–80 [Google Scholar]
  110. Kim JK, Lee HH, Sakurai S, Aida S, Masamoto J. 110.  et al. 1999. Lattice disordering and domain dissolution transitions in polystyrene-block-poly(ethylene-co-but-1-ene)-block-polystyrene triblock copolymer having a highly asymmetric composition. Macromolecules 32:6707–17 [Google Scholar]
  111. Wang XH, Dormidontova EE, Lodge TP. 111.  2002. The order-disorder transition and the disordered micelle regime for poly(ethylenepropylene-b-dimethylsiloxane) spheres. Macromolecules 35:9687–97 [Google Scholar]
  112. Kim JK, Han CD. 112.  2010. Phase behavior and phase transition in AB- and ABA-type microphase-separated block copolymers. Adv. Polym. Sci. 231:77–146 [Google Scholar]
  113. Dormidontova EE, Lodge TP. 113.  2001. The order-disorder transition and the disordered micelle regime in sphere-forming block copolymer melts. Macromolecules 34:9143–55 [Google Scholar]
  114. Wang JF, Wang Z-G, Yang YL. 114.  2005. Nature of disordered micelles in sphere-forming block copolymer melts. Macromolecules 38:1979–88 [Google Scholar]
  115. Besseling NAM, Stuart MAC. 115.  1999. Self-consistent field theory for the nucleation of micelles. J. Chem. Phys. 110:5432–36 [Google Scholar]
  116. Talanquer V, Oxtoby DW. 116.  2000. A density-functional approach to nucleation in micellar solutions. J. Chem. Phys. 113:7013–21 [Google Scholar]
  117. Duque D. 117.  2003. Theory of copolymer micellization. J. Chem. Phys. 119:5701–4 [Google Scholar]
  118. Nyrkova IA, Semenov AN. 118.  2005. On the theory of micellization kinetics. Macromol. Theory Simul. 14:569–85 [Google Scholar]
  119. Thiagarajan R, Morse DC. 119.  2011. Micellization kinetics of diblock copolymers in a homopolymer matrix: a self-consistent field study. J. Phys. Condens. Matter 23:284109 [Google Scholar]
  120. Wang JF, Müller M, Wang Z-G. 120.  2009. Nucleation in A/B/AB blends: interplay between microphase assembly and macrophase separation. J. Chem. Phys. 130:154902 [Google Scholar]
  121. Groenewold J, Kegel WK. 121.  2001. Anomalously large equilibrium clusters of colloids. J. Phys. Chem. B 105:11702–9 [Google Scholar]
  122. Hutchens SB, Wang Z-G. 122.  2007. Metastable cluster intermediates in the condensation of charged macromolecule solutions. J. Chem. Phys. 127:084912 [Google Scholar]
  123. Lipowsky R. 123.  1991. The conformation of membranes. Nature 349:475–81 [Google Scholar]
  124. Chernomordik LV, Kozlov MM. 124.  2008. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15:675–83 [Google Scholar]
  125. Müller M, Smirnova YG, Marelli G, Fuhrmans M, Shi A-C. 125.  2012. Transition path from two apposed membranes to a stalk obtained by a combination of particle simulations and string method. Phys. Rev. Lett. 108:228103 [Google Scholar]
  126. Daoulas KC, Müller M. 126.  2013. Exploring thermodynamic stability of the stalk fusion intermediate with three-dimensional self-consistent field theory calculations. Soft Matter 9:4097–102 [Google Scholar]
  127. Kuzmin PI, Zimmerberg J, Chizmadzhev YA, Cohen FS. 127.  2001. A quantitative model for membrane fusion based on low-energy intermediates. Proc. Natl. Acad. Sci. USA 98:7235–40 [Google Scholar]
  128. Smirnova YG, Marrink S-J, Lipowsky R, Knecht V. 128.  2010. Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. J. Am. Chem. Soc. 132:6710–18 [Google Scholar]
  129. Stevens MJ, Hoh JH, Woolf TB. 129.  2003. Insights into the molecular mechanism of membrane fusion from simulation: evidence for the association of splayed tails. Phys. Rev. Lett. 91:188102 [Google Scholar]
  130. Mirjanian D, Dickey AN, Hoh JH, Woolf TB, Stevens MJ. 130.  2010. Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion. J. Phys. Chem. B 114:11061–68 [Google Scholar]
  131. Katsov K, Müller M, Schick M. 131.  2004. Field theoretic study of bilayer membrane fusion: I. Hemifusion mechanism. Biophys. J. 87:3277–90 [Google Scholar]
  132. Warner JM, O'Shaughnessy M. 132.  2012. The hemifused state on the pathway to membrane fusion. Phys. Rev. Lett. 108:178101 [Google Scholar]
  133. Katsov K, Müller M, Schick M. 133.  2006. Field theoretic study of bilayer membrane fusion: II. Mechanism of a stalk-hole complex. Biophys. J. 90:915–26 [Google Scholar]
  134. Müller M, Katsov K, Schick M. 134.  2003. A new mechanism of model membrane fusion determined from Monte Carlo simulation. Biophys. J. 85:1611–23 [Google Scholar]
  135. Kasson PM, Kelley NW, Singhal N, Vrljic M, Brunger AT, Pande VS. 135.  2006. Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion. Proc. Natl. Acad. Sci. USA 103:11916–21 [Google Scholar]
  136. Kasson PM, Pande VS. 136.  2007. Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLOS Comput. Biol. 3:2228–38 [Google Scholar]
  137. Kemble GW, Danieli T, White JM. 137.  1994. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76:383–91 [Google Scholar]
  138. Xu YB, Zhang F, Su ZL, McNew JA, Shin YK. 138.  2005. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12:417–22 [Google Scholar]
  139. Huang HW, Chen FY, Lee M-T. 139.  2004. Molecular mechanism of peptide-induced pores in membranes. Phys. Rev. Lett. 92:198304 [Google Scholar]
  140. Sandre O, Moreaux L, Brochard-Wyart F. 140.  1999. Dynamics of transient pores in stretched vesicles. Proc. Natl. Acad. Sci. USA 96:10591–96 [Google Scholar]
  141. Olbrich K, Rawicz W, Needham D, Evans E. 141.  2000. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys. J. 79:321–27 [Google Scholar]
  142. Evans E, Heinrich V, Ludwig F, Rawicz W. 142.  2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85:2342–50 [Google Scholar]
  143. Leontiadou H, Mark AE, Marrink SJ. 143.  2004. Molecular dynamics simulations of hydrophilic pores in bilayers. Biophys. J. 86:2156–64 [Google Scholar]
  144. Tolpekina TV, den Otter WK, Briels WJ. 144.  2004. Simulations of stable pores in membranes: system size dependence and line tension. J. Chem. Phys. 121:8014–20 [Google Scholar]
  145. Tolpekina TV, den Otter WK, Briels WJ. 145.  2004. Nucleation free energy of pore formation in an amphiphilic bilayer studied by molecular dynamics simulations. J. Chem. Phys. 121:12060–66 [Google Scholar]
  146. den Otter WK. 146.  2009. Free energy of stable and metastable pores in lipid membranes under tension. J. Chem. Phys. 131:205101 [Google Scholar]
  147. Müller M, Schick M. 147.  1996. Structure and nucleation of pores in polymeric bilayers: a Monte Carlo simulation. J. Chem. Phys. 105:8282–92 [Google Scholar]
  148. Wang Z-J, Frenkel D. 148.  2005. Pore nucleation in mechanically stretched bilayer membranes. J. Chem. Phys. 123:154701 [Google Scholar]
  149. Boucher P-A, Joós B, Zuckermann MJ, Fournier L. 149.  2007. Pore formation in lipid bilayer under a tension ramp: modeling the distribution of rupture tensions. Biophys. J. 92:4344–55 [Google Scholar]
  150. Talanquer V, Oxtoby DW. 150.  2003. Nucleation of pores in amphiphile bilayers. J. Chem. Phys. 118:872–77 [Google Scholar]
  151. Ting CL, Appelö D, Wang Z-G. 151.  2011. Minimum energy path to membrane pore formation and rupture. Phys. Rev. Lett. 106:168101 [Google Scholar]
  152. Jain S, Bates FS. 152.  2003. On the origins of morphological complexity in block copolymer surfactants. Science 300:460–64 [Google Scholar]
  153. Mok MM, Thiagarajan R, Flores M, Morse DC, Lodge TP. 153.  2012. Apparent critical micelle concentration in block copolymer/ionic liquid solutions: remarkably weak dependence on solvophobic block molecular weight. Macromolecules 45:4818–29 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error