1932

Abstract

Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state–mediated intramolecular singlet fission in oligomers and polymers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121235
2015-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121235.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121235&mimeType=html&fmt=ahah

Literature Cited

  1. Hanna MC, Nozik AJ. 1.  2006. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100:074510 [Google Scholar]
  2. Lee J, Jadhav P, Baldo MA. 2.  2009. High efficiency organic multilayer photodetectors based on singlet exciton fission. Appl. Phys. Lett. 95:033301 [Google Scholar]
  3. Rao A, Wilson MWB, Hodgkiss JM, Albert-Seifried S, Bässler H, Friend RH. 3.  2010. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132:12698–703 [Google Scholar]
  4. Burdett JJ, Müller AM, Gosztola D, Bardeen CJ, Muller AM. 4.  2010. Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133:144506 [Google Scholar]
  5. Johnson JC, Nozik AJ, Michl J. 5.  2010. High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 132:16302–3 [Google Scholar]
  6. Smith MB, Michl J. 6.  2010. Singlet fission. Chem. Rev. 110:6891–936 [Google Scholar]
  7. Smith MB, Michl J. 7.  2013. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64:361–86 [Google Scholar]
  8. Bardeen CJ. 8.  2014. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65:127–48 [Google Scholar]
  9. Piland GB, Burdett JJ, Dillon RJ, Bardeen CJ. 9.  2014. Singlet fission: from coherences to kinetics. J. Phys. Chem. Lett. 5:2312–19 [Google Scholar]
  10. Zhu X-Y. 10.  2013. Exceeding the limit in solar energy conversion with multiple excitons. Acc. Chem. Res. 46:1239–41 [Google Scholar]
  11. Johnson JC, Nozik AJ, Michl J. 11.  2013. The role of chromophore coupling in singlet fission. Acc. Chem. Res. 46:1290–99 [Google Scholar]
  12. Chan W-L, Berkelbach TC, Provorse MR, Monahan NR, Tritsch JR. 12.  et al. 2013. The quantum coherent mechanism for singlet fission: experiment and theory. Acc. Chem. Res. 46:1321–29 [Google Scholar]
  13. Burdett JJ, Bardeen CJ. 13.  2013. The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc. Chem. Res. 46:1312–20 [Google Scholar]
  14. Zimmerman PM, Musgrave CB, Head-Gordon M. 14.  2013. A correlated electron view of singlet fission. Acc. Chem. Res. 46:1339–47 [Google Scholar]
  15. Wilson MWB, Rao A, Ehrler B, Friend RH. 15.  2013. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46:1330–38 [Google Scholar]
  16. Lee J, Jadhav P, Reusswig PD, Yost SR, Thompson NJ. 16.  et al. 2013. Singlet exciton fission photovoltaics. Acc. Chem. Res. 46:1300–11 [Google Scholar]
  17. Mirjani F, Renaud N, Gorczak N, Grozema FC. 17.  2014. Theoretical investigation of singlet fission in molecular dimers: the role of charge transfer states and quantum interference. J. Phys. Chem. C 118:14192–99 [Google Scholar]
  18. Berkelbach TC, Hybertsen MS, Reichman DR. 18.  2013. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of superexchange. J. Chem. Phys. 138:114103 [Google Scholar]
  19. Beljonne D, Yamagata H, Brédas JL, Spano FC, Olivier Y. 19.  2013. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 110:226402 [Google Scholar]
  20. Berkelbach TC, Hybertsen MS, Reichman DR. 20.  2014. Microscopic theory of singlet exciton fission. III. Crystalline pentacene. J. Chem. Phys. 141:074705 [Google Scholar]
  21. Zeng T, Hoffmann R, Ananth N. 21.  2014. The low-lying electronic states of pentacene and their roles in singlet fission. J. Am. Chem. Soc. 136:5755–64 [Google Scholar]
  22. Petelenz P, Slawik M, Yokoi K, Zgierski MZ. 22.  1996. Theoretical calculation of the electroabsorption spectra of polyacene crystals. J. Chem. Phys. 105:4427–40 [Google Scholar]
  23. Sebastian L, Weiser G, Peter G, Bässler H. 23.  1983. Charge-transfer transitions in crystalline anthracene and their role in photoconductivity. Chem. Phys. 75:103–14 [Google Scholar]
  24. Sebastian L, Weiser G, Bässler H. 24.  1981. Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption. Chem. Phys. 61:125–35 [Google Scholar]
  25. Hennessy MH, Soos ZG, Pascal RA, Girlando A. 25.  1999. Vibronic structure of PTCDA stacks: the exciton–phonon-charge-transfer dimer. Chem. Phys. 245:199–212 [Google Scholar]
  26. Knupfer M, Schwieger T, Peisert H, Fink J. 26.  2004. Mixing of Frenkel and charge transfer excitons in quasi-one-dimensional copper phthalocyanine molecular crystals. Phys. Rev. B 69:165210 [Google Scholar]
  27. Yamagata H, Norton J, Hontz E, Olivier Y, Beljonne D. 27.  et al. 2011. The nature of singlet excitons in oligoacene molecular crystals. J. Chem. Phys. 134:204703 [Google Scholar]
  28. Schuster R, Knupfer M, Berger H. 28.  2007. Exciton band structure of pentacene molecular solids: breakdown of the Frenkel exciton model. Phys. Rev. Lett. 98:037402 [Google Scholar]
  29. Roth F, Schuster R, König A, Knupfer M, Berger H. 29.  2012. Momentum dependence of the excitons in pentacene. J. Chem. Phys. 136:204708 [Google Scholar]
  30. Pac B, Petelenz P. 30.  2014. Lowest singlet exciton in pentacene: modern calculations versus classic experiments. ChemPhysChem 15:2801–9 [Google Scholar]
  31. Cudazzo P, Gatti M, Rubio A. 31.  2012. Excitons in molecular crystals from first-principles many-body perturbation theory: picene versus pentacene. Phys. Rev. B 86:195307 [Google Scholar]
  32. Petelenz P, Pac B. 32.  2013. Is dipole moment a valid descriptor of excited state's charge-transfer character?. J. Am. Chem. Soc. 135:17379–86 [Google Scholar]
  33. Sharifzadeh S, Darancet P, Kronik L, Neaton JB. 33.  2013. Low-energy charge-transfer excitons in organic solids from first-principles: the case of pentacene. J. Phys. Chem. Lett. 4:2197–201 [Google Scholar]
  34. Cudazzo P, Gatti M, Rubio A, Sottile F. 34.  2013. Frenkel versus charge-transfer exciton dispersion in molecular crystals. Phys. Rev. B 88:195152 [Google Scholar]
  35. Zimmerman PM, Bell F, Casanova D, Head-Gordon M. 35.  2011. Mechanism for singlet fission in pentacene and tetracene: from single exciton to two triplets. J. Am. Chem. Soc. 133:19944–52 [Google Scholar]
  36. Greyson EC, Vura-Weis J, Michl J, Ratner MA. 36.  2010. Maximizing singlet fission in organic dimers: theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. B 114:14168–77 [Google Scholar]
  37. Teichen PE, Eaves JD. 37.  2012. A microscopic model of singlet fission. J. Phys. Chem. B 116:11473–81 [Google Scholar]
  38. Yost SR, Lee J, Wilson MWB, Wu T, McMahon DP. 38.  et al. 2014. A transferable model for singlet-fission kinetics. Nat. Chem. 6:492–97 [Google Scholar]
  39. Akimov AV, Prezhdo OV. 39.  2014. Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface. J. Am. Chem. Soc. 136:1599–1608 [Google Scholar]
  40. Ahn T-S, Müller AM, Al-Kaysi RO, Spano FC, Norton JE. 40.  et al. 2008. Experimental and theoretical study of temperature dependent exciton delocalization and relaxation in anthracene thin films. J. Chem. Phys. 128:054505 [Google Scholar]
  41. Lim S-H, Bjorklund T, Spano F, Bardeen C. 41.  2004. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92:107402 [Google Scholar]
  42. Koch N, Vollmer A, Salzmann I, Nickel B, Weiss H, Rabe J. 42.  2006. Evidence for temperature-dependent electron band dispersion in pentacene. Phys. Rev. Lett. 96:156803 [Google Scholar]
  43. Hatch RC, Huber DL, Höchst H. 43.  2010. Electron-phonon coupling in crystalline pentacene films. Phys. Rev. Lett. 104:047601 [Google Scholar]
  44. Tiago M, Northrup J, Louie S. 44.  2003. Ab initio calculation of the electronic and optical properties of solid pentacene. Phys. Rev. B 67:115212 [Google Scholar]
  45. Walker BJ, Musser AJ, Beljonne D, Friend RH. 45.  2013. Singlet exciton fission in solution. Nat. Chem. 5:1019–24 [Google Scholar]
  46. Kolomeisky AB, Feng X, Krylov AI. 46.  2014. A simple kinetic model for singlet fission: a role of electronic and entropic contributions to macroscopic rates. J. Phys. Chem. C 118:5188–95 [Google Scholar]
  47. Jortner J, Bixon M. 47.  1988. Intramolecular vibrational excitations accompanying solvent-controlled electron transfer reactions. J. Chem. Phys. 88:167–70 [Google Scholar]
  48. Egorova D, Kühl A, Domcke W. 48.  2001. Modeling of ultrafast electron-transfer dynamics: multi-level Redfield theory and validity of approximations. Chem. Phys. 268:105–20 [Google Scholar]
  49. Berkelbach TC, Hybertsen MS, Reichman DR. 49.  2013. Microscopic theory of singlet exciton fission. I. General formulation. J. Chem. Phys. 138:114102 [Google Scholar]
  50. Marciniak H, Pugliesi I, Nickel B, Lochbrunner S. 50.  2009. Ultrafast singlet and triplet dynamics in microcrystalline pentacene films. Phys. Rev. B 79:235318 [Google Scholar]
  51. Thorsmølle V, Averitt R, Demsar J, Smith D, Tretiak S. 51.  et al. 2009. Morphology effectively controls singlet-triplet exciton relaxation and charge transport in organic semiconductors. Phys. Rev. Lett. 102:017401 [Google Scholar]
  52. Wilson MWB, Rao A, Clark J, Kumar RSS, Brida D. 52.  et al. 2011. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133:11830–33 [Google Scholar]
  53. Chan W-L, Ligges M, Jailaubekov A, Kaake L, Miaja-Avila L, Zhu X-Y. 53.  2011. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334:1541–45 [Google Scholar]
  54. Rang Z, Haraldsson A, Kim DM, Ruden PP, Nathan MI. 54.  et al. 2001. Hydrostatic-pressure dependence of the photoconductivity of single-crystal pentacene and tetracene. Appl. Phys. Lett. 79:2731–33 [Google Scholar]
  55. Geacintov N, Pope M, Vogel F. 55.  1969. Effect of magnetic field on the fluorescence of tetracene crystals: exciton fission. Phys. Rev. Lett. 22:593–96 [Google Scholar]
  56. Burdett JJ, Gosztola D, Bardeen CJ. 56.  2011. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. J. Chem. Phys. 135:214508 [Google Scholar]
  57. Chan W-L, Ligges M, Zhu X-Y. 57.  2012. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nat. Chem. 4:840–45 [Google Scholar]
  58. Tayebjee MJY, Clady RGCR, Schmidt TW. 58.  2013. The exciton dynamics in tetracene thin films. Phys. Chem. Chem. Phys. 15:14797–805 [Google Scholar]
  59. Wilson MWB, Rao A, Johnson K, Gélinas S, di Pietro R. 59.  et al. 2013. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 135:16680–88 [Google Scholar]
  60. Burdett JJ, Bardeen CJ. 60.  2012. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134:8597–607 [Google Scholar]
  61. Chan W-L, Tritsch JR, Zhu X-Y. 61.  2012. Harvesting singlet fission for solar energy conversion: one- versus two-electron transfer from the quantum mechanical superposition. J. Am. Chem. Soc. 134:18295–302 [Google Scholar]
  62. Ma L, Zhang K, Kloc C, Sun H, Michel-Beyerle ME, Gurzadyan GG. 62.  2012. Singlet fission in rubrene single crystal: direct observation by femtosecond pump-probe spectroscopy. Phys. Chem. Chem. Phys. 14:8307–12 [Google Scholar]
  63. Miyata K, Tanaka S, Sugimoto T, Watanabe K, Uemura T. 63.  et al. 2014. Coherent phonon dynamics in singlet fission of rubrene single crystal Presented at Int. Conf. Ultrafast Phenom., Okinawa
  64. Kolata K, Breuer T, Witte G, Chatterjee S. 64.  2014. Molecular packing determines singlet exciton fission in organic semiconductors. ACS Nano 8:7377–83 [Google Scholar]
  65. Roberts ST, McAnally RE, Mastron JN, Webber DH, Whited MT. 65.  et al. 2012. Efficient singlet fission discovered in a disordered acene film. J. Am. Chem. Soc. 134:6388–400 [Google Scholar]
  66. Gust D, Moore TA, Moore AL. 66.  2001. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res. 34:40–48 [Google Scholar]
  67. Chen J, Cao Y. 67.  2009. Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc. Chem. Res. 42:1709–18 [Google Scholar]
  68. Busby E, Xia J, Wu Q, Low J, Song R. 68.  et al. 2015. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials. Nat. Mater. 14: In press. doi: http://dx.doi.org/10.1038/NMAT4175 [Google Scholar]
  69. Dell EJ, Campos LM. 69.  2012. The preparation of thiophene-S,S-dioxides and their role in organic electronics. J. Mater. Chem. 22:12945–52 [Google Scholar]
  70. Vardeny ZV. 70.  2014. Novel “singlet fission” in low-bandgap polymers for enhancing efficiency of organic photovoltaic solar cells Presented at DOE Mater. Chem. Princ. Investig. Meet., Gaithersburg, MD
  71. Huynh U, Bassel T, Xu T, Lu L, Zheng T. 71.  et al. 2014. Optical properties of low bandgap copolymer PTB7 for organic photovoltaic applications. Proc. SPIE 9165: Phys. Chem. Interfaces Nanomater. XIII Art. 91650Z Bellingham, WA: SPIE [Google Scholar]
  72. You J, Dou L, Yoshimura K, Kato T, Ohya K. 72.  et al. 2013. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4:1446 [Google Scholar]
  73. Trinh MT, Zhong Y, Schiros T, Chen Q, Jockusch S. 73.  et al. 2015. Intra- to inter-molecular singlet fission. J. Phys. Chem. C 119:1312–19 [Google Scholar]
  74. Schulten K, Karplus M. 74.  1972. On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett. 14:305–9 [Google Scholar]
  75. Tavan P, Schulten K. 75.  1987. Electronic excitations in finite and infinite polyenes. Phys. Rev. B 36:4337–58 [Google Scholar]
  76. Gradinaru CC, Kennis JT, Papagiannakis E, van Stokkum IH, Cogdell RJ. 76.  et al. 2001. An unusual pathway of excitation energy deactivation in carotenoids: singlet-to-triplet conversion on an ultrafast timescale in a photosynthetic antenna. Proc. Natl. Acad. Sci. USA 98:2364–69 [Google Scholar]
  77. Papagiannakis E, Kennis JTM, van Stokkum IHM, Cogdell RJ, van Grondelle R. 77.  2002. An alternative carotenoid-to-bacteriochlorophyll energy transfer pathway in photosynthetic light harvesting. Proc. Natl. Acad. Sci. USA 99:6017–22 [Google Scholar]
  78. Antognazza MR, Lüer L, Polli D, Christensen RL, Schrock RR. 78.  et al. 2010. Ultrafast excited state relaxation in long-chain polyenes. Chem. Phys. 373:115–21 [Google Scholar]
  79. Wang C, Tauber MJ. 79.  2010. High-yield singlet fission in a zeaxanthin aggregate observed by picosecond resonance Raman spectroscopy. J. Am. Chem. Soc. 132:13988–91 [Google Scholar]
  80. Dillon RJ, Piland GB, Bardeen CJ. 80.  2013. Different rates of singlet fission in monoclinic versus orthorhombic crystal forms of diphenylhexatriene. J. Am. Chem. Soc. 135:17278–81 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121235
Loading
/content/journals/10.1146/annurev-physchem-040214-121235
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error