Burgeoning interest in supracolloidal assembly has reached the point at which the field can seek so-called intelligent design rather than solely rely on evolution. Emphasizing Janus and triblock particles, this review presents a progress report on formulating design rules for the assembly of interesting structures. We discuss how to design building blocks, bearing in mind that patchy particles embody not just geometric shape but also chemical shape, that chemical shape determines particle–particle interactions, and that the assembly process can be designed to proceed in hierarchical stages. Remarks are included about the potential of kinetic and nonequilibrium control, as well as the potential for the augmented use of soft building blocks. Whereas the reverse design problem, in which arbitrarily selected structures can be designed from the bottom up, still stands as a grand challenge, the field has reached the point of understanding necessary, although not always sufficient, conditions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Lehn JM. 1.  1993. Supramolecular chemistry. Science 260:1762–63 [Google Scholar]
  2. Chen XX, Dam MA, Ono K, Mal A, Shen HB. 2.  et al. 2002. A thermally re-mendable cross-linked polymeric material. Science 295:1698–702 [Google Scholar]
  3. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR. 3.  et al. 2002. Autonomic healing of polymer composites. Nature 409:794–97 [Google Scholar]
  4. Lima MD, Li N, de Andrade MJ, Fang SL, Oh J. 4.  et al. 2012. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338:928–32 [Google Scholar]
  5. Stoyanov H, Kollosche M, Risse S, Wache R, Kofod G. 5.  2013. Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv. Mater. 25:578–83 [Google Scholar]
  6. Kushner AM, Guan ZB. 6.  2011. Modular design in natural and biomimetic soft materials. Angew. Chem. Int. Ed. Engl. 50:9026–57 [Google Scholar]
  7. Colvin VL. 7.  2001. From opals to optics: colloidal photonic crystals. MRS Bull. 26:637–41 [Google Scholar]
  8. Wang T, Sha RJ, Dreyfus R, Leunissen ME, Maass C. 8.  et al. 2011. Self-replication of information-bearing nanoscale patterns. Nature 478:225–28 [Google Scholar]
  9. Yethiraj A, van Blaaderen A. 9.  2003. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature 421:513–17 [Google Scholar]
  10. Stober W, Fink A, Bohn E. 10.  1968. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26:62–69 [Google Scholar]
  11. Mandal T, Dasgupta C, Maiti PK. 11.  2013. Engineering gold nanoparticle interaction by PAMAM dendrimer. J. Phys. Chem. C 117:13627–36 [Google Scholar]
  12. Hiltner PA, Papir YS, Krieger IM. 12.  1971. Diffraction of light by nonaqueous ordered suspensions. J. Phys. Chem. 75:1881–86 [Google Scholar]
  13. Hiltner PA, Krieger IM. 13.  1969. Diffraction of light by ordered suspensions. J. Phys. Chem. 73:2386–89 [Google Scholar]
  14. Jones JB, Segnit ER, Sanders JV. 14.  1964. Structure of opal. Nature 204:990–91 [Google Scholar]
  15. Masuda Y, Itoh T, Itoh M, Koumoto K. 15.  2004. Self-assembly patterning of colloidal crystals constructed from opal structure or NaCl structure. Langmuir 20:5588–92 [Google Scholar]
  16. Pavarini E, Andreani LC, Soci C, Galli M, Marabelli F, Comoretto D. 16.  2005. Band structure and optical properties of opal photonic crystals. Phys. Rev. B 72:045102 [Google Scholar]
  17. Yethiraj A, Thijssen JHJ, Wouterse A, van Blaaderen A. 17.  2004. Large-area electric-field-induced colloidal single crystals for photonic applications. Adv. Mater. 16:596–600 [Google Scholar]
  18. van Blaaderen A, Velikov KP, Hoogenboom JP, Vossen DLJ, Yethiraj A. 18.  et al. 2001. Manipulating colloidal crystallization for photonic applications: from self-organization to do-it-yourself organization. Photonic Crystals and Light Localization in the 21st Century CM Soukoulis 239–51 New York: Springer [Google Scholar]
  19. Klasin AM, Fialkowski M, Paszewski M, Smoukov S, Bishop KJM. 19.  et al. 2006. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312:420–24 [Google Scholar]
  20. Oh M, Mirkin CA. 20.  2005. Chemically tailorable colloidal particles from infinite coordination polymers. Nature 438:651–54 [Google Scholar]
  21. Yu C, Zhang J, Granick S. 21.  2014. Selective Janus particle assembly at tipping points of thermally-switched wetting. Angew. Chem. Int. Ed. Engl. 53:4364–37 [Google Scholar]
  22. Gray GW, Harrison KJ, Nash JA. 22.  1973. New family of nematic liquid crystals for displays. Electron. Lett. 9:130–31 [Google Scholar]
  23. Madsen LA, Dingemans TJ, Nakata M, Samulski ET. 23.  2004. Thermotropic biaxial nematic liquid crystals. Phys. Rev. Lett. 92:145505 [Google Scholar]
  24. de Gennes PG. 24.  1992. Soft matter (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 31:842–45 [Google Scholar]
  25. Casagrande C, Fabre P, Raphaël E, Veyssié M. 25.  1989. “Janus beads”: realization and behaviour at water/oil interfaces. Europhys. Lett. 9:251–55 [Google Scholar]
  26. He ZP, Kretzschmar I. 26.  2013. Template-assisted GLAD: approach to single and multipatch patchy particles with controlled patch shape. Langmuir 29:15755–61 [Google Scholar]
  27. Pawar AB, Kretzschmar I. 27.  2009. Multifunctional patchy particles by glancing angle deposition. Langmuir 25:9057–63 [Google Scholar]
  28. Ling XY, Phang IY, Acikgoz C, Yilmaz MD, Hempenius MA. 28.  et al. 2009. Janus particles with controllable patchiness and their chemical functionalization and supramolecular assembly. Angew. Chem. Int. Ed. Engl. 48:7677–82 [Google Scholar]
  29. Bennaim A. 29.  1991. The role of hydrogen bonds in protein folding and protein association. J. Phys. Chem. 95:1437–44 [Google Scholar]
  30. Hong L, Cacciuto A, Luijten E, Granick S. 30.  2006. Clusters of charged Janus spheres. Nano Lett. 6:2510–14 [Google Scholar]
  31. Perro A, Reculusa S, Ravaine S, Bourgeat-Lami E, Duguet E. 31.  2005. Design and synthesis of Janus micro- and nanoparticles. J. Mater. Chem. 15:3745–60 [Google Scholar]
  32. Walther A, Müller AHE. 32.  2008. Janus particles. Soft Matter 4:663–68 [Google Scholar]
  33. Wurm F, Kilbinger AF. 33.  2009. Polymeric Janus particles. Angew. Chem. Int. Ed. Engl. 48:8412–21 [Google Scholar]
  34. Du J, O'Reilly RK. 34.  2011. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chem. Soc. Rev. 40:2402–16 [Google Scholar]
  35. Kraft DJ, Vlug WS, van Kats CM, van Blaaderen A, Imhof A, Kegel WK. 35.  2009. Self-assembly of colloids with liquid protrusions. J. Am. Chem. Soc. 131:1182–86 [Google Scholar]
  36. Damasceno PF, Engel M, Glotzer SC. 36.  2012. Predictive self-assembly of polyhedra into complex structures. Science 337:453–57 [Google Scholar]
  37. Kim SH, Hollingsworth AD, Sacanna S, Chang SJ, Lee G. 37.  et al. 2012. Synthesis and assembly of colloidal particles with sticky dimples. J. Am. Chem. Soc. 134:16115–18 [Google Scholar]
  38. Sacanna S, Korpics M, Rodriguez K, Colon-Melendez L, Kim SH. 38.  et al. 2013. Shaping colloids for self-assembly. Nat. Commun. 4:1688 [Google Scholar]
  39. Sacanna S, Pine DJ, Yi G-R. 39.  2013. Engineering shape: the novel geometries of colloidal self-assembly. Soft Matter 9:8096–106 [Google Scholar]
  40. Sindoro M, Yanai N, Jee AY, Granick S. 40.  2014. Colloidal-sized metal-organic frameworks: synthesis and applications. Acc. Chem. Res. 47:459–69 [Google Scholar]
  41. van Anders G, Ahmed NK, Smith R, Engel M, Glotzer SC. 41.  2014. Entropically patchy particles: engineering valence through shape entropy. ACS Nano 8:931–40 [Google Scholar]
  42. Biancaniello P, Kim A, Crocker J. 42.  2005. Colloidal interactions and self-assembly using DNA hybridization. Phys. Rev. Lett. 94:058302 [Google Scholar]
  43. Leunissen ME, Christova CG, Hynninen AP, Royall CP, Campbell AI. 43.  et al. 2005. Ionic colloidal crystals of oppositely charged particles. Nature 437:235–40 [Google Scholar]
  44. Meng G, Arkus N, Brenner MP, Manoharan VN. 44.  2010. The free-energy landscape of clusters of attractive hard spheres. Science 327:560–63 [Google Scholar]
  45. Sacanna S, Irvine WT, Chaikin PM, Pine DJ. 45.  2010. Lock and key colloids. Nature 464:575–78 [Google Scholar]
  46. Kraft DJ, Ni R, Smallenburg F, Hermes M, Yoon K. 46.  et al. 2012. Surface roughness directed self-assembly of patchy particles into colloidal micelles. Proc. Natl. Acad. Sci. USA 109:10787–92 [Google Scholar]
  47. Wang Y, Wang Y, Zheng X, Yi GR, Sacanna S. 47.  et al. 2014. Three-dimensional lock and key colloids. J. Am. Chem. Soc. 136:6866–69 [Google Scholar]
  48. Chen Q, Bae SC, Granick S. 48.  2011. Directed self-assembly of a colloidal kagome lattice. Nature 469:381–84 [Google Scholar]
  49. Chen Q, Diesel E, Whitmer JK, Bae SC, Luijten E, Granick S. 49.  2011. Triblock colloids for directed self-assembly. J. Am. Chem. Soc. 133:7725–27 [Google Scholar]
  50. Chen Q, Whitmer JK, Jiang S, Bae SC, Luijten E, Granick S. 50.  2011. Supracolloidal reaction kinetics of Janus spheres. Science 331:199–202 [Google Scholar]
  51. Onoe H, Matsumoto K, Shimoyama I. 51.  2007. Three-dimensional sequential self-assembly of microscale objects. Small 3:1383–89 [Google Scholar]
  52. Tkachenko AV. 52.  2011. Theory of programmable hierarchic self-assembly. Phys. Rev. Lett. 106:255501 [Google Scholar]
  53. Chen Q, Bae SC, Granick S. 53.  2012. Staged self-assembly of colloidal metastructures. J. Am. Chem. Soc. 134:11080–83 [Google Scholar]
  54. Velev OD, Bhatt KH. 54.  2006. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2:738–50 [Google Scholar]
  55. Sacanna S, Rossi L, Pine DJ. 55.  2012. Magnetic click colloidal assembly. J. Am. Chem. Soc. 134:6112–15 [Google Scholar]
  56. Yan J, Bloom M, Bae SC, Luijten E, Granick S. 56.  2012. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491:578–81 [Google Scholar]
  57. Demirors AF, Pillai PP, Kowalczyk B, Grzybowski BA. 57.  2013. Colloidal assembly directed by virtual magnetic moulds. Nature 503:99–103 [Google Scholar]
  58. Pauling L. 58.  1931. The nature of the chemical bond. II. The one-electron bond and the three-electron bond. J. Am. Chem. Soc. 53:3225–37 [Google Scholar]
  59. Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L. 59.  et al. 2012. Colloids with valence and specific directional bonding. Nature 491:51–55 [Google Scholar]
  60. Chen Q, Yan J, Zhang J, Bae SC, Granick S. 60.  2012. Janus and multiblock colloidal particles. Langmuir 28:13555–61 [Google Scholar]
  61. Jiang S, Granick S. 61.  2009. A simple method to produce trivalent colloidal particles. Langmuir 25:8915–18 [Google Scholar]
  62. Vissers T, Preisler Z, Smallenburg F, Dijkstra M, Sciortino F. 62.  2013. Predicting crystals of Janus colloids. J. Chem. Phys. 138:164505 [Google Scholar]
  63. Romano F, Sciortino F. 63.  2012. Patterning symmetry in the rational design of colloidal crystals. Nat. Commun. 3:975 [Google Scholar]
  64. Feng L, Dreyfus R, Sha R, Seeman NC, Chaikin PM. 64.  2013. DNA patchy particles. Adv. Mater. 25:2779–83 [Google Scholar]
  65. Kraft DJ, Groenewold J, Kegel WK. 65.  2009. Colloidal molecules with well-controlled bond angles. Soft Matter 5:3823–26 [Google Scholar]
  66. Yanai N, Granick S. 66.  2012. Directional self-assembly of a colloidal metal-organic framework. Angew. Chem. Int. Ed. Engl. 51:5638–41 [Google Scholar]
  67. Onsager L. 67.  1949. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci. 51:627–59 [Google Scholar]
  68. Kuijk A, Byelov DV, Petukhov AV, van Blaaderen A, Imhof A. 68.  2012. Phase behavior of colloidal silica rods. Faraday Discuss. 159:181–99 [Google Scholar]
  69. Shah AA, Schultz B, Kohlstedt KL, Glotzer SC, Solomon MJ. 69.  2013. Synthesis, assembly, and image analysis of spheroidal patchy particles. Langmuir 29:4688–96 [Google Scholar]
  70. Mukhija D, Solomon MJ. 70.  2011. Nematic order in suspensions of colloidal rods by application of a centrifugal field. Soft Matter 7:540–45 [Google Scholar]
  71. Dugyala VR, Daware SV, Basavaraj MG. 71.  2013. Shape anisotropic colloids: synthesis, packing behavior, evaporation driven assembly, and their application in emulsion stabilization. Soft Matter 9:6711–25 [Google Scholar]
  72. Ye XC, Millan JA, Engel M, Chen J, Diroll BT. 72.  et al. 2013. Shape alloys of nanorods and nanospheres from self-assembly. Nano Lett. 13:4980–88 [Google Scholar]
  73. Nguyen TD, Jankowski E, Glotzer SC. 73.  2011. Self-assembly and reconfigurability of shape-shifting particles. ACS Nano 5:8892–903 [Google Scholar]
  74. Keys AS, Iacovella CR, Glotzer SC. 74.  2011. Characterizing structure through shape matching and applications to self-assembly. Annu. Rev. Condens. Matter Phys. 2:263–85 [Google Scholar]
  75. Mao XM, Chen Q, Granick S. 75.  2013. Entropy favours open colloidal lattices. Nat. Mater. 12:217–22 [Google Scholar]
  76. Henzie J, Grünwald M, Widmer-Cooper A, Geissler PL, Yang P. 76.  2012. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater. 11:131–37 [Google Scholar]
  77. Zerrouki D, Baudry J, Pine D, Chaikin P, Bibette J. 77.  2008. Chiral colloidal clusters. Nature 455:380–82 [Google Scholar]
  78. Helgeson ME, Chapin SC, Doyle PS. 78.  2011. Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr. Opin. Colloid Interface Sci. 16:106–17 [Google Scholar]
  79. Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM. 79.  2005. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc. 127:10096–100 [Google Scholar]
  80. Caspar DLD, Klug A. 80.  1962. Physical principles in construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27:1–24 [Google Scholar]
  81. Hagan MF, Elrad OM, Jack RL. 81.  2011. Mechanisms of kinetic trapping in self-assembly and phase transformation. J. Chem. Phys. 135:104115 [Google Scholar]
  82. Verwey EJW. 82.  1947. Theory of the stability of lyophobic colloids. J. Phys. Colloid Chem. 51:631–36 [Google Scholar]
  83. Barros K, Luijten E. 83.  2014. Dielectric effects in the self-assembly of binary colloidal aggregates. Phys. Rev. Lett. 113:017801 [Google Scholar]
  84. Sinkovits DW, Luijten E. 84.  2012. Nanoparticle-controlled aggregation of colloidal tetrapods. Nano Lett. 12:1743–48 [Google Scholar]
  85. Grünwald M, Geissler PL. 85.  2014. Patterns without patches: hierarchical self-assembly of complex structures from simple building blocks. ACS Nano 8:5891–97 [Google Scholar]
  86. Whitmer JK, Luijten E. 86.  2011. Influence of hydrodynamics on cluster formation in colloid-polymer mixtures. J. Phys. Chem. B 115:7294–300 [Google Scholar]
  87. Shevchenko EV, Talapin DV, Kotov NA, O'Brien S, Murray CB. 87.  2006. Structural diversity in binary nanoparticle superlattices. Nature 439:55–59 [Google Scholar]
  88. Redl FX, Cho KS, Murray CB, O'Brien S. 88.  2003. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423:968–71 [Google Scholar]
  89. Velikov KP, Christova CG, Dullens RP, van Blaaderen A. 89.  2002. Layer-by-layer growth of binary colloidal crystals. Science 296:106–9 [Google Scholar]
  90. Miller MA, Wales DJ. 90.  2005. Novel structural motifs in clusters of dipolar spheres: knots, links, and coils. J. Phys. Chem. B 109:23109–12 [Google Scholar]
  91. Sloane NJA, Hardin RH, Duff TDS, Conway JH. 91.  1995. Minimal-energy clusters of hard spheres. Discrete Comput. Geom. 14:237–59 [Google Scholar]
  92. Stradner A, Sedgwick H, Cardinaux F, Poon WCK, Egelhaaf SU, Schurtenberger P. 92.  2004. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492–95 [Google Scholar]
  93. Gangwal S, Pawar A, Kretzschmar I, Velev OD. 93.  2010. Programmed assembly of metallodielectric patchy particles in external AC electric fields. Soft Matter 6:1413–18 [Google Scholar]
  94. Gangwal S, Cayre OJ, Velev OD. 94.  2008. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. Langmuir 24:13312–20 [Google Scholar]
  95. Ristenpart WD, Aksay IA, Saville DA. 95.  2003. Electrically guided assembly of planar superlattices in binary colloidal suspensions. Phys. Rev. Lett. 90:128303 [Google Scholar]
  96. Hu Y, Glass JL, Griffith AE, Fraden S. 96.  1994. Observation and simulation of electrohydrodynamic instabilities in aqueous colloidal suspensions. J. Chem. Phys. 100:4674–82 [Google Scholar]
  97. Liu B, Besseling TH, Hermes M, Demirors AF, Imhof A, van Blaaderen A. 97.  2014. Switching plastic crystals of colloidal rods with electric fields. Nat. Commun. 5:3092 [Google Scholar]
  98. van Blaaderen A, Dijkstra M, van Roij R, Imhof A, Kamp M. 98.  et al. 2013. Manipulating the self assembly of colloids in electric fields. Eur. Phys. J. Spec. Top. 222:2895–909 [Google Scholar]
  99. Leunissen ME, Vutukuri HR, van Blaaderen A. 99.  2009. Directing colloidal self-assembly with biaxial electric fields. Adv. Mater. 21:3116–20 [Google Scholar]
  100. Smallenburg F, Vutukuri HR, Imhof A, van Blaaderen A, Dijkstra M. 100.  2012. Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic field. J. Phys. Condens. Matter 24:464113 [Google Scholar]
  101. Bricard A, Caussin JB, Desreumaux N, Dauchot O, Bartolo D. 101.  2013. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503:95–98 [Google Scholar]
  102. Kretzschmar I, Song JH. 102.  2011. Surface-anisotropic spherical colloids in geometric and field confinement. Curr. Opin. Colloid Interface Sci. 16:84–95 [Google Scholar]
  103. Osborn JA. 103.  1945. Demagnetizing factors of the general ellipsoid. Phys. Rev. 67:351–57 [Google Scholar]
  104. Yu CQ, Zhang J, Granick S. 104.  2014. Directed colloidal assembly printing with magnets. Nat. Mater. 13:8–9 [Google Scholar]
  105. Smoukov SK, Gangwal S, Marquez M, Velev OD. 105.  2009. Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter 5:1285–92 [Google Scholar]
  106. Wang M, He L, Yin Y. 106.  2013. Magnetic field guided colloidal assembly. Mater. Today 16:110–16 [Google Scholar]
  107. Bizdoaca EL, Spasova M, Farle M, Hilgendorff M, Caruso F. 107.  2002. Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell. J. Magn. Magn. Mater. 240:44–46 [Google Scholar]
  108. Anders S, Toney MF, Thomson T, Thiele JU, Terris BD. 108.  et al. 2003. X-ray studies of magnetic nanoparticle assemblies. J. Appl. Phys. 93:7343–45 [Google Scholar]
  109. Keng PY, Shim I, Korth BD, Douglas JF, Pyun J. 109.  2007. Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles. ACS Nano 1:279–92 [Google Scholar]
  110. Osterman N, Babič D, Poberaj I, Dobnikar J, Ziherl P. 110.  2007. Observation of condensed phases of quasiplanar core-softened colloids. Phys. Rev. Lett. 99:248301 [Google Scholar]
  111. Wang T, Sha R, Dreyfus R, Leunissen ME, Maass C. 111.  et al. 2011. Self-replication of information-bearing nanoscale patterns. Nature 478:225–28 [Google Scholar]
  112. Leunissen ME, Dreyfus R, Sha R, Wang T, Seeman NC. 112.  et al. 2009. Towards self-replicating materials of DNA-functionalized colloids. Soft Matter 5:2422–30 [Google Scholar]
  113. Geerts N, Eiser E. 113.  2010. DNA-functionalized colloids: physical properties and applications. Soft Matter 6:4647–60 [Google Scholar]
  114. Maye MM, Kumara MT, Nykypanchuk D, Sherman WB, Gang O. 114.  2010. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 5:116–20 [Google Scholar]
  115. Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ. 115.  et al. 1996. Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–11 [Google Scholar]
  116. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. 116.  1996. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–9 [Google Scholar]
  117. Leunissen ME, Dreyfus R, Cheong FC, Grier DG, Sha R. 117.  et al. 2009. Switchable self-protected attractions in DNA-functionalized colloids. Nat. Mater. 9:590–95 [Google Scholar]
  118. Rosi NL, Mirkin CA. 118.  2005. Nanostructures in biodiagnostics. Chem. Rev. 105:1547–62 [Google Scholar]
  119. Wu K-T, Feng L, Sha R, Dreyfus R, Grosberg AY. 119.  et al. 2013. Kinetics of DNA-coated sticky particles. Phys. Rev. E 88:022304 [Google Scholar]
  120. Prigodich AE, Lee OS, Daniel WL, Seferos DS, Schatz GC, Mirkin CA. 120.  2010. Tailoring DNA structure to increase target hybridization kinetics on surfaces. J. Am. Chem. Soc. 132:10638–41 [Google Scholar]
  121. Dreyfus R, Leunissen ME, Sha R, Tkachenko A, Seeman NC. 121.  et al. 2010. Aggregation-disaggregation transition of DNA-coated colloids: experiments and theory. Phys. Rev. E 81:041404 [Google Scholar]
  122. Asakura S, Oosawa F. 122.  1954. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22:1255–56 [Google Scholar]
  123. Alakent B, Camurdan MC, Doruker P. 123.  2005. Hierarchical structure of the energy landscape of proteins revisited by time series analysis. II. Investigation of explicit solvent effects. J. Chem. Phys. 123:144911 [Google Scholar]
  124. Sai H, Tan KW, Hur K, Asenath-Smith E, Hovden R. 124.  et al. 2013. Hierarchical porous polymer scaffolds from block copolymers. Science 341:530–34 [Google Scholar]
  125. Liang HJ, Harries D, Wong GCL. 125.  2005. Polymorphism of DNA-anionic liposome complexes reveals hierarchy of ion-mediated interactions. Proc. Natl. Acad. Sci. USA 102:11173–78 [Google Scholar]
  126. Rauda IE, Buonsanti R, Saldarriaga-Lopez LC, Benjauthrit K, Schelhas LT. 126.  et al. 2012. General method for the synthesis of hierarchical nanocrystal-based mesoporous materials. ACS Nano 6:6386–99 [Google Scholar]
  127. Anglana M, Apiou F, Bensimon A, Debatisse M. 127.  2003. Dynamics of DNA replication in mammalian somatic cells: Nucleotide pool modulates origin choice and interorigin spacing. Cell 114:385–94 [Google Scholar]
  128. Haw MD. 128.  2010. Growth kinetics of colloidal chains and labyrinths. Phys. Rev. E 81:031402 [Google Scholar]
  129. Wang S, Wu N. 129.  2014. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. Langmuir 30:3477–86 [Google Scholar]
  130. Ebbens SJ, Howse JR. 130.  2010. In pursuit of propulsion at the nanoscale. Soft Matter 6:726–38 [Google Scholar]
  131. Schwarz-Linek J, Valeriani C, Cacciuto A, Cates ME, Marenduzzo D. 131.  et al. 2012. Phase separation and rotor self-assembly in active particle suspensions. Proc. Natl. Acad. Sci. USA 109:4052–57 [Google Scholar]
  132. Osterman N, Poberaj I, Dobnikar J, Frenkel D, Ziherl P, Babić D. 132.  2009. Field-induced self-assembly of suspended colloidal membranes. Phys. Rev. Lett. 103:2228301 [Google Scholar]
  133. Sierra-Martin B, Fernandez-Nieves A. 133.  2012. Phase and non-equilibrium behaviour of microgel suspensions as a function of particle stiffness. Soft Matter 8:4141–50 [Google Scholar]
  134. Weaver JVM, Rannard SP, Cooper AI. 134.  2009. Polymer-mediated hierarchical and reversible emulsion droplet assembly. Angew. Chem. Int. Ed. Engl. 48:2131–34 [Google Scholar]
  135. Shillcock JC. 135.  2012. Spontaneous vesicle self-assembly: a mesoscopic view of membrane dynamics. Langmuir 28:541–47 [Google Scholar]
  136. Groschel AH, Walther A, Lobling TI, Schacher FH, Schmalz H, Muller AHE. 136.  2013. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 503:247–51 [Google Scholar]
  137. Koumakis N, Pamvouxoglou A, Poulos AS, Petekidis G. 137.  2012. Direct comparison of the rheology of model hard and soft particle glasses. Soft Matter 8:4271–84 [Google Scholar]
  138. Dagallier C, Cardinaux F, Dietsch H, Scheffold F. 138.  2012. Magnetic orientation of soft particles in a jammed solid. Soft Matter 8:4067–71 [Google Scholar]
  139. Fameau AL, Lam S, Velev OD. 139.  2013. Multi-stimuli responsive foams combining particles and self-assembling fatty acids. Chem. Sci. 4:3874–81 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error