1932

Abstract

The field of cold molecules has become an important source of new insight in fundamental chemistry and molecular physics. High-resolution spectroscopy benefits from translationally and internally cold molecules by increased interaction times and reduced spectral congestion. Completely new effects in scattering dynamics become accessible with cold and controlled molecules. Many of these experiments use molecular beams as a starting point for the generation of molecular samples. This review gives an overview of methods to produce beams of cold molecules, starting from supersonic expansions or effusive sources, and provides examples of applications in spectroscopy and molecular dynamics studies.

[Erratum, Closure]

An erratum has been published for this article:
Cold and Controlled Molecular Beams: Production and Applications
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121307
2015-04-01
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121307.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121307&mimeType=html&fmt=ahah

Literature Cited

  1. Krems RV. 1.  2005. Molecules near absolute zero and external field control of atomic and molecular dynamics. Int. Rev. Phys. Chem. 24:99–118 [Google Scholar]
  2. Krems RV, Friedrich B, Stwalley WC. 2.  2009. Cold Molecules: Theory, Experiment, Applications Boca Raton, FL: CRC [Google Scholar]
  3. Carr LD, DeMille D, Krems RV, Ye J. 3.  2009. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11:055049 [Google Scholar]
  4. Schnell M, Meijer G. 4.  2009. Cold molecules: preparation, applications, and challenges. Angew. Chem. Int. Ed. Engl. 48:6010–31 [Google Scholar]
  5. van de Meerakker S, Bethlem HL, Vanhaecke N, Meijer G. 5.  2012. Manipulation and control of molecular beams. Chem. Rev. 112:4828–78 [Google Scholar]
  6. Jin D, Ye J. 6.  2012. Chem. Rev. 1129, Spec. Issue Washington, DC: Am. Chem. Soc. [Google Scholar]
  7. Stuhl BK, Hummon MT, Ye J. 7.  2014. Cold state-selected molecular collisions and reactions. Annu. Rev. Phys. Chem. 65:501–18 [Google Scholar]
  8. Lemeshko M, Krems RV, Doyle JM, Kais S. 8.  2013. Manipulation of molecules with electromagnetic fields. Mol. Phys. 111:1648–82 [Google Scholar]
  9. Baron J, Campbell WC, DeMille D, Doyle JM, Gabrielse G. 9.  et al. 2014. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343:269–72 [Google Scholar]
  10. Tarbutt MR, Sauer BE, Hudson JJ, Hinds EA. 10.  2013. Design for a fountain of YbF molecules to measure the electron's electric dipole moment. New J. Phys. 15:053034 [Google Scholar]
  11. Bethlem HL, Kajita M, Sartakov B, Meijer G, Ubachs W. 11.  2008. Prospects for precision measurements on ammonia molecules in a fountain. Eur. Phys. J 163:55–69 [Google Scholar]
  12. Bethlem HL, Ubachs W. 12.  2009. Testing the time-invariance of fundamental constants using microwave spectroscopy on cold diatomic radicals. Faraday Discuss. 142:25–36 [Google Scholar]
  13. Chefdeville S, Kalugina Y, van de Meerakker SYT, Naulin C, Lique F, Costes M. 13.  2013. Observation of partial wave resonances in low-energy O2-H2 inelastic collisions. Science 341:1094–96 [Google Scholar]
  14. Chefdeville S, Stoecklin T, Bergeat A, Hickson KM, Naulin C, Costes M. 14.  2012. Appearance of low energy resonances in CO-para-H2 inelastic collisions. Phys. Rev. Lett. 109:23201 [Google Scholar]
  15. Lavert-Ofir E, Shagam Y, Henson AB, Gersten S, Kłos J. 15.  et al. 2014. Observation of the isotope effect in sub-kelvin reactions. Nat. Chem. 6:332–35 [Google Scholar]
  16. Henson AB, Gersten S, Shagam Y, Narevicius J, Narevicius E. 16.  2012. Observation of resonances in Penning ionization reactions at sub-kelvin temperatures in merged beams. Science 338:234–38 [Google Scholar]
  17. Gilijamse JJ, Hoekstra S, van de Meerakker SYT, Groenenboom GC, Meijer G. 17.  2006. Near-threshold inelastic collisions using molecular beams with a tunable velocity. Science 313:1617–20 [Google Scholar]
  18. Kirste M, Wang X, Schewe HC, Meijer G, Liu K. 18.  et al. 2012. Quantum-state resolved bimolecular collisions of velocity-controlled OH with NO radicals. Science 338:1060–63 [Google Scholar]
  19. von Zastrow A, Onvlee J, Vogels SN, Groenenboom GC, van der Avoird A, van de Meerakker SYT. 19.  2014. State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar. Nat. Chem. 6:216–21 [Google Scholar]
  20. Brouard M, Vallance C. 20.  2011. Tutorials in Molecular Reaction Dynamics London: R. Soc. Chem. [Google Scholar]
  21. Scoles G. 21.  1988. Atomic and Molecular Beam Methods New York: Oxford Univ. Press [Google Scholar]
  22. Even U, Jortner J, Noy D, Lavie N, Cossart-Magos C. 22.  2000. Cooling of large molecules below 1 K and He clusters formation. J. Chem. Phys. 112:8068–71 [Google Scholar]
  23. Bethlem HL, Berden G, Meijer G. 23.  1999. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83:1558–61 [Google Scholar]
  24. Bethlem HL, Berden G, Crompvoets FMH, Jongma RT, van Roij AJA, Meijer G. 24.  2000. Electrostatic trapping of ammonia molecules. Nature 406:491–94 [Google Scholar]
  25. van de Meerakker SYT, Vanhaecke N, Bethlem HL, Meijer G. 25.  2006. Transverse stability in a Stark decelerator. Phys. Rev. A 73:023401 [Google Scholar]
  26. Bochinski JR, Hudson ER, Lewandowski HJ, Meijer G, Ye J. 26.  2003. Phase space manipulation of cold free radical OH molecules. Phys. Rev. Lett. 91:243001 [Google Scholar]
  27. Tarbutt MR, Bethlem HL, Hudson JJ, Ryabov VL, Ryzhov VA. 27.  2004. Slowing heavy, ground-state molecules using an alternating gradient decelerator. Phys. Rev. Lett. 92:173002 [Google Scholar]
  28. Hudson ER, Ticknor C, Sawyer BC, Taatjes CA, Lewandowski HJ. 28.  et al. 2006. Production of cold formaldehyde molecules for study and control of chemical reaction dynamics with hydroxyl radicals. Phys. Rev. A 73:063404 [Google Scholar]
  29. Sawyer BC, Lev BL, Hudson ER, Stuhl BK, Lara M. 29.  et al. 2007. Magnetoelectrostatic trapping of ground state OH molecules. Phys. Rev. Lett. 98:253002 [Google Scholar]
  30. Tarbutt MR, Hudson JJ, Sauer BC, Hinds EA. 30.  2009. Prospects for measuring the electric dipole moment of the electron using electrically trapped polar molecules. Faraday Discuss. 142:37–56 [Google Scholar]
  31. Tokunaga SK, Dyne JM, Hinds E, Tarbutt MR. 31.  2009. Stark deceleration of lithium hydride molecules. New J. Phys. 11:055038 [Google Scholar]
  32. Meek SA, Conrad H, Meijer G. 32.  2009. Trapping molecules on a chip. Science 324:1699–702 [Google Scholar]
  33. Marian A, Haak H, Geng P, Meijer G. 33.  2010. Slowing polar molecules using a wire Stark decelerator. Eur. Phys. J. D 59:179–81 [Google Scholar]
  34. Osterwalder A, Meek SA, Haak H, Meijer G. 34.  2010. Deceleration of neutral molecules in macroscopic traveling traps. Phys. Rev. A 81:051401 [Google Scholar]
  35. Hogan SD, Motsch M, Merkt F. 35.  2011. Deceleration of supersonic beams using inhomogeneous electric and magnetic fields. Phys. Chem. Chem. Phys. 13:18705–23 [Google Scholar]
  36. Meek SA, Parsons MF, Haak H, Meijer G, Osterwalder A. 36.  2011. A traveling wave decelerator for neutral polar molecules. Rev. Sci. Instrum. 82:093108 [Google Scholar]
  37. Vanhaecke N, Meier U, Andrist M, Meier BH, Merkt F. 37.  2007. Multistage Zeeman deceleration of hydrogen atoms. Phys. Rev. A 75:031402 [Google Scholar]
  38. Narevicius E, Parthey CG, Libson A, Narevicius J, Chavez I. 38.  et al. 2007. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam. New J. Phys. 9:358–66 [Google Scholar]
  39. Hogan SD, Wiederkehr AW, Schmutz H, Merkt F. 39.  2008. Magnetic trapping of hydrogen after multistage Zeeman deceleration. Phys. Rev. Lett. 101:143001 [Google Scholar]
  40. Lavert-Ofir E, Gersten S, Henson AB, Shani I, David L. 40.  et al. 2011. A moving magnetic trap decelerator: a new source of cold atoms and molecules. New J. Phys. 13:103030 [Google Scholar]
  41. Trimeche A, Bera M, Cromières JP, Robert J, Vanhaecke N. 41.  2011. Trapping of a supersonic beam in a traveling magnetic wave. Eur. Phys. J. D 65:263–71 [Google Scholar]
  42. Wiederkehr AW, Schmutz H, Motsch M, Merkt F. 42.  2012. Velocity-tunable slow beams of cold O2 in a single spin-rovibronic state with full angular-momentum orientation by multistage Zeeman deceleration. Mol. Phys. 110:1807–14 [Google Scholar]
  43. Dulitz K, Motsch M, Vanhaecke N, Softley TP. 43.  2014. Getting a grip on the transverse motion in a Zeeman decelerator. J. Chem. Phys. 140:104201 [Google Scholar]
  44. Motsch M, Jansen P, Agner JA, Schmutz H, Merkt F. 44.  2014. Slow and velocity-tunable beams of metastable He2 by multistage Zeeman deceleration. Phys. Rev. A 89:043420 [Google Scholar]
  45. Scharfenberg L, Haak H, Meijer G, van de Meerakker SYT. 45.  2009. Operation of a Stark decelerator with optimum acceptance. Phys. Rev. A 79:023410 [Google Scholar]
  46. Bulleid NE, Hendricks RJ, Hinds E, Meek SA, Meijer G. 46.  et al. 2012. Traveling-wave deceleration of heavy polar molecules in low-field-seeking states. Phys. Rev. A 86:021404 [Google Scholar]
  47. Quintero-Pérez M, Jansen P, Wall TE, van den Berg JE, Hoekstra S, Bethlem HL. 47.  2013. Static trapping of polar molecules in a traveling wave decelerator. Phys. Rev. Lett. 110:133003 [Google Scholar]
  48. van den Berg JE, Mathavan SC, Meinema C, Nauta J, Nijbroek TH. 48.  et al. 2014. Traveling-wave deceleration of SrF molecules. J. Mol. Spectrosc. 300:22–25 [Google Scholar]
  49. Quintero-Pérez M, Wall TE, Hoekstra S, Bethlem HL. 49.  2014. Preparation of an ultra-cold sample of ammonia molecules for precision measurements. J. Mol. Spectrosc. 300:112–15 [Google Scholar]
  50. van de Meerakker SYT, Smeets P, Vanhaecke N, Jongma RT, Meijer G. 50.  2005. Deceleration and electrostatic trapping of OH radicals. Phys. Rev. Lett. 94:023004 [Google Scholar]
  51. van Veldhoven J, Bethlem HL, Meijer G. 51.  2005. ac electric trap for ground-state molecules. Phys. Rev. Lett. 94:083001 [Google Scholar]
  52. Schnell M, Lutzow P, van Veldhoven J, Bethlem HL, Küpper J. 52.  et al. 2007. A linear AC trap for polar molecules in their ground state. J. Phys. Chem. A 111:7411–19 [Google Scholar]
  53. Schlunk S, Marian A, Schoellkopf W, Meijer G. 53.  2008. AC electric trapping of neutral atoms. Phys. Rev. A 77:043408 [Google Scholar]
  54. van de Meerakker SYT, Jongma RT, Bethlem HL, Meijer G. 54.  2001. Accumulating NH radicals in a magnetic trap. Phys. Rev. A 64:041401 [Google Scholar]
  55. Riedel J, Hoekstra S, Jäger W, Gilijamse J, van de Meerakker SYT, Meijer G. 55.  2011. Accumulation of Stark-decelerated NH molecules in a magnetic trap. Eur. Phys. J. D 65:161–66 [Google Scholar]
  56. Sawyer BC, Stuhl BK, Yeo M, Tscherbul TV, Hummon MT. 56.  et al. 2011. Cold heteromolecular dipolar collisions. Phys. Chem. Chem. Phys. 13:19059–66 [Google Scholar]
  57. Metsälä M, Gilijamse JJ, Hoekstra S, van de Meerakker SYT, Meijer G. 57.  2008. Reflection of OH molecules from magnetic mirrors. New J. Phys. 10:053018 [Google Scholar]
  58. González Flórez AI, Meek SA, Haak H, Conrad H, Santambrogio G, Meijer G. 58.  2011. An electrostatic elliptical mirror for neutral polar molecules. Phys. Chem. Chem. Phys. 13:18830–34 [Google Scholar]
  59. Vliegen E, Merkt F. 59.  2006. Normal-incidence electrostatic Rydberg atom mirror. Phys. Rev. Lett. 97:033002 [Google Scholar]
  60. Crompvoets F, Bethlem HL, Meijer G. 60.  2005. A storage ring for neutral molecules. Adv. Atom. Mol. Opt. Phys. 52:209–87 [Google Scholar]
  61. Heiner CE, Bethlem HL, Meijer G. 61.  2009. A synchrotron for neutral molecules. Chem. Phys. Lett. 473:1–9 [Google Scholar]
  62. Zieger P, van de Meerakker SYT, Heiner CE, Bethlem HL, van Roij AJA, Meijer G. 62.  2010. Multiple packets of neutral molecules revolving for over a mile. Phys. Rev. Lett. 105:173001 [Google Scholar]
  63. Gallagher TF. 63.  1994. Rydberg Atoms Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  64. Procter S, Yamakita Y, Merkt F, Softley TP. 64.  2003. Controlling the motion of hydrogen molecules. Chem. Phys. Lett. 374:667–75 [Google Scholar]
  65. Vliegen E, Woerner HJ, Softley TP, Merkt F. 65.  2004. Nonhydrogenic effects in the deceleration of Rydberg atoms in inhomogeneous electric fields. Phys. Rev. Lett. 92:033005 [Google Scholar]
  66. Yamakita Y, Procter S, Goodgame A, Softley TP, Merkt F. 66.  2004. Deflection and deceleration of hydrogen Rydberg molecules in inhomogeneous electric fields. J. Chem. Phys. 121:1419–31 [Google Scholar]
  67. Softley TP, Procter S, Yamakita Y, Maguire G, Merkt F. 67.  2005. Controlling the motion of hydrogen molecules: design of a two-dipole Rydberg decelerator. J. Electron. Spectrosc. 144:113–17 [Google Scholar]
  68. Vliegen E, Merkt F. 68.  2005. On the electrostatic deceleration of argon atoms in high Rydberg states by time-dependent inhomogeneous electric fields. J. Phys. B 38:1623–36 [Google Scholar]
  69. Vliegen E, Merkt F. 69.  2006. Normal-incidence electrostatic Rydberg atom mirror. Phys. Rev. Lett. 97:033002 [Google Scholar]
  70. Vliegen E, Merkt F. 70.  2006. Stark deceleration of hydrogen atoms. J. Phys. B 39:L241–47 [Google Scholar]
  71. Hogan SD, Allmendinger P, Saßmannshausen H, Schmutz H, Merkt F. 71.  2012. Surface-electrode Rydberg-Stark decelerator. Phys. Rev. Lett. 108:063008 [Google Scholar]
  72. Hogan SD, Merkt F. 72.  2008. Demonstration of three-dimensional electrostatic trapping of state-selected Rydberg atoms. Phys. Rev. Lett. 100:043001 [Google Scholar]
  73. Hogan SD, Seiler C, Merkt F. 73.  2009. Rydberg-state-enabled deceleration and trapping of cold molecules. Phys. Rev. Lett. 103:123001 [Google Scholar]
  74. Hogan SD, Seiler C, Merkt F. 74.  2013. Motional, isotope and quadratic Stark effects in Rydberg-Stark deceleration and electric trapping of H and D. J. Phys. B 46:045303 [Google Scholar]
  75. Allmendinger P, Agner JA, Schmutz H, Merkt F. 75.  2013. Deceleration and trapping of a fast supersonic beam of metastable helium atoms with a 44-electrode chip decelerator. Phys. Rev. A 88:043433 [Google Scholar]
  76. Wing WH. 76.  1984. On neutral particle trapping in quasistatic electromagnetic fields. Prog. Quantum Electron. 8:181–99 [Google Scholar]
  77. Bethlem HL, Tarbutt MR, Küpper J, Carty D, Wohlfart K. 77.  et al. 2006. Alternating gradient focusing and deceleration of polar molecules. J. Phys. B 39:R263–91 [Google Scholar]
  78. Wohlfart K, Filsinger F, Grätz F, Küpper J, Meijer G. 78.  2008. Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states. Phys. Rev. A 78:033421 [Google Scholar]
  79. Wohlfart K, Grätz F, Filsinger F, Haak H, Meijer G, Küpper J. 79.  2008. Alternating-gradient focusing and deceleration of large molecules. Phys. Rev. A 77:031404 [Google Scholar]
  80. Holmegaard L, Nielsen JH, Nevo I, Stapelfeldt H, Filsinger F. 80.  et al. 2009. Laser-induced alignment and orientation of quantum-state-selected large molecules. Phys. Rev. Lett. 102:023001 [Google Scholar]
  81. Filsinger F, Küpper J, Meijer G, Holmegaard L, Nielsen JH. 81.  et al. 2009. Quantum-state selection, alignment, and orientation of large molecules using static electric and laser fields. J. Chem. Phys. 131:064309 [Google Scholar]
  82. Filsinger F, Erlekam U, Helden GV, Küpper J, Meijer G. 82.  2008. Selector for structural isomers of neutral molecules. Phys. Rev. Lett. 100:133003 [Google Scholar]
  83. Filsinger F, Küpper J, Meijer G, Hansen J, Maurer J. 83.  et al. 2009. Pure samples of individual conformers: the separation of stereoisomers of complex molecules using electric fields. Angew. Chem. Int. Ed. Engl. 48:6900–2 [Google Scholar]
  84. Filsinger F, Meijer G, Stapelfeldt H, Chapman HN, Küpper J. 84.  2011. State- and conformer-selected beams of aligned and oriented molecules for ultrafast diffraction studies. Phys. Chem. Chem. Phys. 13:2076–87 [Google Scholar]
  85. Chang Y-P, Długołęcki K, Küpper J, Rösch D, Wild D, Willitsch S. 85.  2013. Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca+ ions. Science 342:98–101 [Google Scholar]
  86. Gupta M, Herschbach D. 86.  2001. Slowing and speeding molecular beams by means of a rapidly rotating source. J. Phys. Chem. A 105:1626–37 [Google Scholar]
  87. Strebel M, Stienkemeier F, Mudrich M. 87.  2010. Improved setup for producing slow beams of cold molecules using a rotating nozzle. Phys. Rev. A 81:033409 [Google Scholar]
  88. Brooks PR, Jones EM, Smith KM. 88.  1969. Orienting polar molecules in molecular beams: symmetric tops. J. Chem. Phys. 51:3073–81 [Google Scholar]
  89. Goepfert A, Lison F, Schütze R, Wynands R, Haubrich D, Meschede D. 89.  1999. Efficient magnetic guiding and deflection of atomic beams with moderate velocities. Appl. Phys. B 69:217–22 [Google Scholar]
  90. Rangwala SA, Junglen T, Rieger T, Pinkse PWH, Rempe G. 90.  2003. Continuous source of translationally cold dipolar molecules. Phys. Rev. A 67:043406 [Google Scholar]
  91. Junglen T, Rieger T, Rangwala SA, Pinkse PWH, Rempe G. 91.  2004. Slow ammonia molecules in an electrostatic quadrupole guide. Eur. Phys. J. D 31:365–73 [Google Scholar]
  92. Rieger T, Junglen T, Rangwala SA, Pinkse PWH, Rempe G. 92.  2005. Continuous loading of an electrostatic trap for polar molecules. Phys. Rev. Lett. 95:173002 [Google Scholar]
  93. Rieger T, Junglen T, Rangwala SA, Rempe G, Pinkse PWH, Bulthuis J. 93.  2006. Water vapor at a translational temperature of 1 K. Phys. Rev. A 73:061402 [Google Scholar]
  94. Motsch M, Schenk M, van Buuren LD, Zeppenfeld M, Pinkse PWH, Rempe G. 94.  2007. Internal-state thermometry by depletion spectroscopy in a cold guided beam of formaldehyde. Phys. Rev. A 76:061402 [Google Scholar]
  95. Motsch M, van Buuren LD, Sommer C, Zeppenfeld M, Rempe G, Pinkse PWH. 95.  2009. Cold guided beams of water isotopologs. Phys. Rev. A 79:013405 [Google Scholar]
  96. Sommer C, van Buuren LD, Motsch M, Pohle S, Bayerl J. 96.  et al. 2009. Continuous guided beams of slow and internally cold polar molecules. Faraday Discuss. 142:203–20 [Google Scholar]
  97. van Buuren LD, Sommer C, Motsch M, Pohle S, Schenk M. 97.  et al. 2009. Electrostatic extraction of cold molecules from a cryogenic reservoir. Phys. Rev. Lett. 102:033001 [Google Scholar]
  98. Sommer C, Motsch M, Chervenkov S, van Buuren LD, Zeppenfeld M. 98.  et al. 2010. Velocity-selected molecular pulses produced by an electric guide. Phys. Rev. A 82:013410 [Google Scholar]
  99. Bertsche B, Osterwalder A. 99.  2011. Dynamics of individual rotational states in an electrostatic guide for neutral molecules. Phys. Chem. Chem. Phys. 13:18954–61 [Google Scholar]
  100. Chervenkov S, Wu X, Bayerl J, Rohlfes A, Gantner T. 100.  et al. 2014. Continuous centrifuge decelerator for polar molecules. Phys. Rev. Lett. 112:013001 [Google Scholar]
  101. Patterson D, Doyle JM. 101.  2007. Bright, guided molecular beam with hydrodynamic enhancement. J. Chem. Phys. 126:154307 [Google Scholar]
  102. Maxwell S, Brahms N, Decarvalho R, Glenn DR, Helton JS. 102.  et al. 2005. High-flux beam source for cold, slow atoms or molecules. Phys. Rev. Lett. 95:173201 [Google Scholar]
  103. Patterson D, Rasmussen J, Doyle JM. 103.  2009. Intense atomic and molecular beams via neon buffer-gas cooling. New J. Phys. 11:055018 [Google Scholar]
  104. Lu H-I, Rasmussen J, Wright MJ, Patterson D, Doyle JM. 104.  2011. A cold and slow molecular beam. Phys. Chem. Chem. Phys. 13:18986–90 [Google Scholar]
  105. Levine RD. 105.  2009. Molecular Reaction Dynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  106. Wakelam V, Smith IWM, Herbst E, Troe J, Geppert W. 106.  et al. 2010. Reaction networks for interstellar chemical modelling: improvements and challenges. Space Sci. Rev. 156:13–72 [Google Scholar]
  107. Bertsche B, Osterwalder A. 107.  2010. State-selective detection of velocity-filtered ND3 molecules. Phys. Rev. A 82:033418 [Google Scholar]
  108. Mizouri A, Deng LZ, Eardley JS, Nahler NH, Wrede E, Carty D. 108.  2013. Absolute density measurement of SD radicals in a supersonic jet at the quantum-noise-limit. Phys. Chem. Chem. Phys. 15:19575–79 [Google Scholar]
  109. Sims IR, Smith IWM. 109.  1995. Gas-phase reactions and energy transfer at very low temperatures. Annu. Rev. Phys. Chem. 46:109–37 [Google Scholar]
  110. Smith IWM. 110.  2008. Low Temperatures and Cold Molecules London: Imperial Coll. Press [Google Scholar]
  111. Berteloite C, Lara M, Le Picard SD, Dayou F, Canosa A. 111.  et al. 2010. Kinetics and dynamics of the S(1D2) + H2 → SH + H reaction at very low temperatures and collision energies. Phys. Rev. Lett. 105:203201 [Google Scholar]
  112. Wigner E. 112.  1948. On the behavior of cross sections near thresholds. Phys. Rev. 73:1002–9 [Google Scholar]
  113. Kirste M, Scharfenberg L, Kłos J, Lique F, Alexander MH. 113.  et al. 2010. Low-energy inelastic collisions of OH radicals with He atoms and D2 molecules. Phys. Rev. A 82:042717 [Google Scholar]
  114. Wei Q, Lyuksyutov I, Herschbach D. 114.  2012. Merged-beams for slow molecular collision experiments. J. Chem. Phys. 137:054202 [Google Scholar]
  115. Bertsche B, Jankunas J, Osterwalder A. 115.  2014. Low-temperature collisions between neutral molecules in merged molecular beams. Chimia 68:256–59 [Google Scholar]
  116. Jankunas J, Bertsche B, Jachymski K, Hapka M, Osterwalder A. 116.  2014. Dynamics of gas phase Ne* + NH3 and Ne* + ND3 Penning ionisation at low temperatures. J. Chem. Phys. 140:244302 [Google Scholar]
  117. Jankunas J, Bertsche B, Osterwalder A. 117.  2014. Study of the Ne(3P2) + CH3F electron-transfer reaction below 1 K. J. Phys. Chem. A 118:3875–79 [Google Scholar]
  118. Ben Arfa M, Lescop B, Cherid M, Brunetti BG, Candori P. 118.  et al. 1999. Ionization of ammonia molecules by collision with metastable neon atoms. Chem. Phys. Lett. 308:71–77 [Google Scholar]
  119. Parazzoli LP, Fitch NJ, Żuchowski PS, Hutson JM, Lewandowski HJ. 119.  2011. Large effects of electric fields on atom-molecule collisions at millikelvin temperatures. Phys. Rev. Lett. 106:193201 [Google Scholar]
  120. Sawyer BC, Stuhl BK, Wang D, Yeo M, Ye J. 120.  2008. Molecular beam collisions with a magnetically trapped target. Phys. Rev. Lett. 101:203203 [Google Scholar]
  121. Taatjes CA, Welz O, Eskola AJ, Savee JD, Scheer AM. 121.  et al. 2013. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Science 340:177–80 [Google Scholar]
  122. Yoder BL, Bisson R, Beck RD. 122.  2010. Steric effects in the chemisorption of vibrationally excited methane on Ni(100). Science 329:553–56 [Google Scholar]
  123. Hundt PM, Jiang B, van Reijzen ME, Guo H, Beck RD. 123.  2014. Vibrationally promoted dissociation of water on Ni (111). Science 344:504–7 [Google Scholar]
  124. Grätz F, Engelhart DP, Wagner RJV, Haak H, Meijer G. 124.  et al. 2013. Vibrational enhancement of electron emission in CO (a3Π) quenching at a clean metal surface. Phys. Chem. Chem. Phys. 15:14951–55 [Google Scholar]
  125. Campargue R. 125.  2001. Atomic and Molecular Beams: The State of the Art 2000 New York: Springer Sci. Bus. Media [Google Scholar]
  126. Demtröder W. 126.  2003. Laser Spectroscopy: Basic Concepts and Instrumentation Berlin: Springer, 3rd ed.. [Google Scholar]
  127. van Veldhoven J, Küpper J, Bethlem HL, Sartakov B, van Roij A, Meijer G. 127.  2004. Decelerated molecular beams for high-resolution spectroscopy: the hyperfine structure of 15ND3. Eur. Phys. J. D 31:337–49 [Google Scholar]
  128. Gilijamse JJ, Hoekstra S, Meek SA, Metsälä M, van de Meerakker SYT. 128.  et al. 2007. The radiative lifetime of metastable CO (a3Π, v = 0). J. Chem. Phys. 127:221102 [Google Scholar]
  129. Skoff SM, Hendricks RJ, Sinclair CDJ, Tarbutt MR, Hudson JJ. 129.  et al. 2009. Doppler-free laser spectroscopy of buffer-gas-cooled molecular radicals. New J. Phys. 11:123026 [Google Scholar]
  130. Kirste M, Wang X, Meijer G, Gubbels KB, van der Avoird A. 130.  et al. 2012. Magnetic dipole transitions in the OH A 2Σ+ ← X2Π system. J. Chem. Phys. 137:101102 [Google Scholar]
  131. Dirac PAM. 131.  1937. The cosmological constants. Nature 139:323 [Google Scholar]
  132. Barrow JD, Sandvik HB, Magueijo J. 132.  2002. Behavior of varying-alpha cosmologies. Phys. Rev. D 65:063504 [Google Scholar]
  133. Uzan JP. 133.  2003. The fundamental constants and their variation: observational and theoretical status. Rev. Mod. Phys. 75:403–55 [Google Scholar]
  134. Ginges JSM, Flambaum VV. 134.  2004. Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles. Phys. Rep. 397:91–154 [Google Scholar]
  135. Ramsey NF Jr. 135.  1956. Molecular Beams Oxford, UK: Clarendon [Google Scholar]
  136. Hudson JJ, Kara DM, Smallman IJ, Sauer BE, Tarbutt MR, Hinds EA. 136.  2011. Improved measurement of the shape of the electron. Nature 473:493–96 [Google Scholar]
  137. Kara DM, Smallman IJ, Hudson JJ, Sauer BE, Tarbutt MR, Hinds EA. 137.  2012. Measurement of the electron's electric dipole moment using YbF molecules: methods and data analysis. New J. Phys. 14:103051 [Google Scholar]
  138. Barry JF, Shuman ES, Norrgard EB, DeMille D. 138.  2012. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108:103002 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121307
Loading
/content/journals/10.1146/annurev-physchem-040214-121307
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error