Rare earth nanomaterials, which feature long-lived intermediate energy levels and intraconfigurational 4f-4f transitions, are promising supporters for photon upconversion. Owing to their unique optical properties, rare earth upconversion nanomaterials have found applications in bioimaging, theranostics, photovoltaic devices, and photochemical reactions. Here, we review recent advances in the photon upconversion processes of these nanomaterials. We start by considering energy transfer models involved in the study of upconversion emissions, as well as well-established synthesis strategies to control the size and shape of rare earth upconversion nanomaterials. Progress in engineering energy transfer pathways, which play a dominant role in determining upconversion emission outputs, is then discussed. Lastly, representative optical applications of these materials are considered. The aim of this review is to provide inspiration for researchers to explore novel upconversion nanomaterials and extended optical applications.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Freeman AJ. 1.  1962. Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions. Phys. Rev. 127:2058–75 [Google Scholar]
  2. Xu GX. 2.  1995. Rare Earths Beijing: Metall. Ind..
  3. Bünzli JCG. 3.  2006. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 39:53–61 [Google Scholar]
  4. Auzel F. 4.  2004. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104:139–73A review article comprehensively discussing the photon upconversion and anti-Stokes processes. [Google Scholar]
  5. Bünzli JCG, Piguet C. 5.  2005. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34:1048–77 [Google Scholar]
  6. Eliseeva S, Bünzli JCG. 6.  2010. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 29:189–227 [Google Scholar]
  7. Binnemans K. 7.  2007. Lanthanide-based luminescent hybrid materials. Chem. Rev. 109:4283–374 [Google Scholar]
  8. Bloembergen N. 8.  1959. Solid state quantum counters. Phys. Rev. Lett. 2:84–85First paper proposing the process of photon upconversion. [Google Scholar]
  9. Wang F, Liu XG. 9.  2009. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38:976–89 [Google Scholar]
  10. Downing E, Hesselink L, Ralston J, Macfarlane R. 10.  1996. A three-color, solid state, three-dimensional display. Science 273:1185–89 [Google Scholar]
  11. Silversmith AJ, Lenth W, Macfarlane RM. 11.  1987. Green infrared-pumped erbium upconversion laser. Appl. Phys. Lett. 51:1977–79 [Google Scholar]
  12. Sandrock T, Scheife H, Heumann E, Huber G. 12.  1997. High-power continuous-wave upconversion fiber laser at room temperature. Opt. Lett. 22:808–10 [Google Scholar]
  13. Suyer JF, Aebischer A, Biner D, Gerner P, Grimm J. 13.  et al. 2005. Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27:1111–30 [Google Scholar]
  14. Haase M, Schäfer H. 14.  2011. Upconverting nanoparticles. Angew. Chem. Int. Ed. Engl. 50:5808–29 [Google Scholar]
  15. Li XM, Zhang F, Zhao DY. 15.  2013. Highly efficient lanthanide upconverting nanomaterials: progress and challenges. Nano Today 8:643–76 [Google Scholar]
  16. Sun LD, Wang YF, Yan CH. 16.  2014. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Acc. Chem. Res. 47:1001–9 [Google Scholar]
  17. Chen GY, Qiu HL, Prasad PN, Chen XY. 17.  2014. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114:5161–214 [Google Scholar]
  18. Gai SL, Li CX, Yang PP, Lin J. 18.  2014. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114:2343–89 [Google Scholar]
  19. Shen J, Sun LD, Yan CH. 19.  2008. Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans. 2008:5687–99 [Google Scholar]
  20. Wang F, Banerjee D, Liu YS, Chen XY, Liu XG. 20.  2010. Upconversion nanoparticles in biological labeling, imaging and therapy. Analyst 135:1839–54 [Google Scholar]
  21. Zhou J, Liu Z, Li FY. 21.  2012. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 41:1323–49 [Google Scholar]
  22. Cheng L, Wang C, Liu Z. 22.  2013. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5:23–37 [Google Scholar]
  23. Gu ZJ, Yan L, Tian G, Li SJ, Chai ZF. 23.  et al. 2013. Recent advantages in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 25:3758–79 [Google Scholar]
  24. Chatterjee DK, Gnanasammandhan MK, Zhang Y. 24.  2010. Small upconverting fluorescent nanoparticles for biomedical applications. Small 24:2781–95 [Google Scholar]
  25. Huang XY, Han SY, Huang W, Liu XG. 25.  2013. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42:173–201 [Google Scholar]
  26. Idris NM, Jaykumar MKG, Bansal A, Zhng Y. 26.  2014. Upconversion nanoparticles as versatile light nanostructures for photoactivation applications. Chem. Soc. Rev. In press. doi: 10.1039/c4cs00158c
  27. Chivian JS, Case WE, Eden DD. 27.  1979. The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters. Appl. Phys. Lett. 35:124–25 [Google Scholar]
  28. Strek W, Deren P, Bednarkiewicz A. 28.  2000. Cooperative process in KYb(WO)2 crystal doped with Eu3+ and Tb3+ ions. J. Lumin. 87–89:999–1001 [Google Scholar]
  29. Nakazawa E. 29.  1970. Cooperative luminescence in YbPO4. Phys. Rev. Lett. 25:1710–12 [Google Scholar]
  30. Prorok K, Gnach A, Bednarkiewicz A, Strek W. 30.  2013. Energy up-conversion in Yb3+/Tb3+ co-doped colloidal α-NaYF4 nanocrystals. J. Lumin. 140:103–9 [Google Scholar]
  31. Wang F, Deng RR, Wang J, Wang QX, Han Y. 31.  et al. 2011. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10:968–73 [Google Scholar]
  32. Dong H, Sun LD, Yan CH. 32.  2013. Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5:5703–14 [Google Scholar]
  33. Pollnau M, Gamelin DR, Lüthi SR, Güdel HU, Hehlen MP. 33.  2000. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61:3337–46 [Google Scholar]
  34. Suyver JF, Aebischer A, García-Revilla S, Gerner P, Güdel HU. 34.  2005. Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 71:125123 [Google Scholar]
  35. Mai HX, Zhang YW, Sun LD, Yan CH. 35.  2007. Highly efficient multicolor upconversion emissions and their mechanisms of monodispersed NaYF4:Yb,Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 111:13721–29 [Google Scholar]
  36. Wang J, Wang F, Xu J, Wang Y, Liu YS. 36.  et al. 2010. Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning. C. R. Chim. 13:731–36 [Google Scholar]
  37. Yin AX, Zhang YW, Sun LD, Yan CH. 37.  2010. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. Nanoscale 2:953–59 [Google Scholar]
  38. Zhang YW, Sun X, Si R, You LP, Yan CH. 38.  2005. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 127:3260–61First paper illustrating the synthesis of rare earth nanomaterials by single-source precursor thermal decomposition. [Google Scholar]
  39. Boyer JC, Vetrone F, Cuccia LA, Capobianco JA. 39.  2006. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128:7444–45 [Google Scholar]
  40. Mai HX, Zhang YW, Si R, Yan ZG, Sun LD. 40.  et al. 2006. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J. Am. Chem. Soc. 128:6426–36 [Google Scholar]
  41. Du YP, Zhang YW, Sun LD, Yan CH. 41.  2008. Luminescent monodisperse nanocrystals of lanthanide oxyfluorides synthesized from trifluoroacetate precursors in high-boiling solvents. J. Phys. Chem. C 112:405–15 [Google Scholar]
  42. Du YP, Zhang YW, Sun LD, Yan CH. 42.  2009. Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluoroacetate precursors. Dalton Trans. 2009:8574–81 [Google Scholar]
  43. Yang DM, Li CX, Li GG, Shang MM, Kang XJ, Lin J. 43.  2011. Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. J. Mater. Chem. 21:5923–27 [Google Scholar]
  44. Li XM, Shen DK, Yang JP, Yao C, Che RC. 44.  et al. 2013. Successive layer-by-layer strategy for multishell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 25:106–12 [Google Scholar]
  45. Liu CH, Wang H, Zhang XR, Chen DP. 45.  2009. Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence. J. Mater. Chem. 49:489–96 [Google Scholar]
  46. Li ZQ, Zhang Y. 46.  2008. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb,Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19:345606–10 [Google Scholar]
  47. Wang LY, Li YD. 47.  2007. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19:727–34 [Google Scholar]
  48. Zhang F, Wan Y, Yu T, Zhang FQ, Shi YF. 48.  et al. 2007. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int. Ed. Engl. 46:7976–79 [Google Scholar]
  49. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M. 49.  2004. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals. J. Appl. Phys. 95:661–67 [Google Scholar]
  50. Wang F, Liu XG. 50.  2008. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130:5642–43 [Google Scholar]
  51. Qiu HL, Chen GY, Ran RW, Yang LM, Liu C. 51.  et al. 2014. Intense ultraviolet upconversion emission from water-dispersed colloidal YF3:Yb3+/Tm3+ rhombic nanodisks. Nanoscale 6:753–57 [Google Scholar]
  52. Shen J, Chen GY, Ohulchanskyy TY, Kesseli SJ, Buchholz S. 52.  et al. 2013. Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α-NaYF4:Y,Tm)/CaF2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation. Small 9:3213–17 [Google Scholar]
  53. Soukka T, Kuningas K, Rantanen T, Haaslahti V, Lövgren T. 53.  2005. Photochemical characterization of upconverting inorganic lanthanide phosphors as potential labels. J. Fluoresc. 15:513–28 [Google Scholar]
  54. Teng X, Zhu YH, Wei W, Wang SC, Huang JF. 54.  et al. 2012. Lanthanide-doped NaxScF3+x nanocrystals: crystal structure evolution and multicolor tuning. J. Am. Chem. Soc. 134:8340–43 [Google Scholar]
  55. Ding YJ, Teng X, Zhu H, Wang LL, Pei WB. 55.  2013. Orthorhombic KSc2F7:Yb/Er nanorods: controlled synthesis and strong red upconversion emission. Nanoscale 5:11928–32 [Google Scholar]
  56. Mahalingam V, Hazra C, Naccache R, Vetrone F, Capobianco JA. 56.  2013. Enhancing the color purity of the green upconversion emission from Er3+/Yb3+-doped GdVO4 nanocrystals via tuning of the sensitizer concentration. J. Mater. Chem. C 1:6536–40 [Google Scholar]
  57. Wang J, Deng RR, MacDonald MA, Chen B, Yuan JK. 57.  et al. 2014. Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 13:157–62 [Google Scholar]
  58. Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco JA. 58.  2009. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 21:4025–28 [Google Scholar]
  59. Wang M, Mi CC, Zhang YX, Liu JL, Li F. 59.  2009. NIR-responsive silica-coated NaYbF4:Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J. Phys. Chem. C 113:19021–27 [Google Scholar]
  60. Chen GY, Liu HC, Somesfalean G, Liang HJ, Zhang ZG. 60.  2009. Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology 20:385704 [Google Scholar]
  61. Wang GF, Peng Q, Li YD. 61.  2010. Luminescence tuning of upconversion nanocrystals. Chem. Eur. J. 16:4923–31 [Google Scholar]
  62. Huang LJ, Wang LL, Xue XJ, Zhao D, Qin GS. 62.  2011. Enhanced red upconversion luminescence in Er-Tm codoped NaYF4 phosphor. J. Nanosci. Nanotechnol. 11:9498–501 [Google Scholar]
  63. Chan EM, Han G, Goldberg JD, Gargas DJ, Ostrowshi AD. 63.  et al. 2012. Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett. 12:3839–45 [Google Scholar]
  64. Zeng JH, Xie T, Li ZH, Li YD. 64.  2007. Monodispersed nanocrystalline fluoropervskite up-conversion phosphors. Cryst. Growth Des. 7:2774–77 [Google Scholar]
  65. Wang J, Wang F, Wang C, Liu Z, Liu XG. 65.  2011. Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew. Chem. Int. Ed. Engl. 50:10369–72 [Google Scholar]
  66. Wang LY, Yan RX, Huo ZY, Wang L, Zeng JH. 66.  et al. 2005. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. Engl. 44:6054–57 [Google Scholar]
  67. Li ZQ, Zhang Y, Jiang S. 67.  2008. Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20:4765–69 [Google Scholar]
  68. Gorris HH, Ali R, Saleh SM, Wolfbeis OS. 68.  2011. Tuning the dual emission of photon-upconverting nanoparticles for ratiometric multiplexed encoding. Adv. Mater. 23:1652–55 [Google Scholar]
  69. Boyer JC, van Veggel FCJM. 69.  2010. Absolute quantum yield of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles. Nanoscale 2:14717–19 [Google Scholar]
  70. Bogdan N, Vetrone F, Ozin GA, Capobianco JA. 70.  2011. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 11:835–40 [Google Scholar]
  71. Wang F, Wang J, Liu XG. 71.  2010. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. Engl. 49:7456–60 [Google Scholar]
  72. Johnson NJJ, Korinek A, Dong CH, van Veggel FCJM. 72.  2012. Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconversion nanocrystals. J. Am. Chem. Soc.11068–71
  73. Zhang F, Che RC, Li XM, Yao C, Yang JP. 73.  et al. 2012. Direct imaging the upconversion nanocrystals core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12:2852–58 [Google Scholar]
  74. Wang YF, Sun LD, Xiao JW, Feng W, Zhou JC. 74.  et al. 2012. Rare earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage. Chem. Eur. J. 18:5558–64 [Google Scholar]
  75. Prorok K, Bednarkiewicz A, Cichy B, Gnach A, Misiak M. 75.  et al. 2013. The impact of shell host (NaYF4/CaF2) and shell deposition methods on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF4 core-shell nanoparticles. Nanoscale 6:1855–64 [Google Scholar]
  76. Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco JA. 76.  2009. The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 19:2924–29 [Google Scholar]
  77. Zhang YH, Zhang LX, Deng RR, Tian J, Zong Y. 77.  et al. 2014. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 136:4893–96 [Google Scholar]
  78. Liu YS, Tu DT, Zhu HM, Li RF, Luo WQ. 78.  et al. 2010. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 22:3266–71 [Google Scholar]
  79. Su QQ, Han SY, Xie XJ, Zhu HM, Chen HY. 79.  et al. 2012. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 134:20849–57 [Google Scholar]
  80. Chen GY, Liu HC, Liang HJ, Somesfalean G, Zhang ZG. 80.  2008. Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions. J. Phys. Chem. C 112:12030–36 [Google Scholar]
  81. Wang HQ, Nann T. 81.  2009. Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 11:3804–8 [Google Scholar]
  82. Cheng Q, Sui JH, Cai W. 82.  2012. Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions. Nanoscale 4:779–84 [Google Scholar]
  83. Jiang L, Xiao S, Yang X, Ding J, Dong K. 83.  2012. Enhancement of up-conversion luminescence in Zn2SiO4:Yb3+,Er3+ by co-doping with Li+ or Bi3+. Appl. Phys. B 107:477–81 [Google Scholar]
  84. Ramasamy P, Chandra P, Rhee SW, Kim J. 84.  2013. Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application for bioimaging. Nanoscale 5:8711–17 [Google Scholar]
  85. Hao JH, Zhang Y, Wei XH. 85.  2011. Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaiO3:Yb/Er thin films. Angew. Chem. Int. Ed. Engl. 50:6876–80 [Google Scholar]
  86. Feng W, Sun LD, Yan CH. 86.  2009. Ag nanowires enhanced upconversion emission of NaYF4:Yb,Er nanocrystals via a direct assembly method. Chem. Commun. 2009:4393–95First demonstration of noble metal–enhanced upconversion emissions. [Google Scholar]
  87. Zhang H, Li YJ, Ivanov IA, Qu YQ, Huang Y, Duan XF. 87.  2010. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb,Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. Engl. 49:2865–68 [Google Scholar]
  88. Priyam A, Idris NM, Zhang Y. 88.  2012. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging. J. Mater. Chem. 22:960–65 [Google Scholar]
  89. Yuan PY, Lee YH, Gnanasammandhan MK, Guan ZP, Zhong Y. 89.  et al. 2012. Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging. Nanoscale 4:5132–37 [Google Scholar]
  90. Saboktakin M, Ye XC, Oh SJ, Hong SH, Fafarman AT. 90.  et al. 2012. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS Nano 6:8758–66 [Google Scholar]
  91. Paudel HP, Zhong LL, Bayat K, Baroughi MF, Smith S. 91.  et al. 2011. Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces. J. Phys. Chem. C 115:19028–36 [Google Scholar]
  92. Sun QC, Mundoor H, Ribot JC, Singh V, Smalyukh II. 92.  et al. 2014. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals. Nano Lett. 14:101–6 [Google Scholar]
  93. Zou WQ, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC. 93.  2012. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 6:560–64First report of broadband NIR antenna-sensitized upconversion emissions. [Google Scholar]
  94. Wang YF, Liu GY, Sun LD, Xiao JW, Zhou JC, Yan CH. 94.  2013. Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7:7200–6First report of Nd3+ ion-sensitized efficient upconversion emission by core. [Google Scholar]
  95. Wen HL, Zhu H, Chen X, Huang TF, Wang BL. 95.  et al. 2013. Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. Angew. Chem. Int. Ed. Engl. 52:13419–23 [Google Scholar]
  96. Shen J, Chen GY, Vu AM, Fan W, Bilsel OS. 96.  et al. 2013. Engineering the upconversion nanoparticle excitation wavelength: cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv. Opt. Mater. 1:644–50 [Google Scholar]
  97. Xie XJ, Gao NY, Deng RR, Sun Q, Xu QH. 97.  et al. 2013. Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles. J. Am. Chem. Soc. 135:12608–11 [Google Scholar]
  98. Wang M, Mi CC, Wang WX, Liu CH, Wu YF. 98.  et al. 2009. Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles. ACS Nano 3:1580–86 [Google Scholar]
  99. Vetrone F, Naccache R, de la Fuente AJ, Sanz-Rodríguez F, Blazquez-Castro A. 99.  et al. 2009. Intracellular imaging of HeLa cells by non-functionalized NaYF4:Er3+,Yb3+ upconverting nanoparticles. Nanoscale 2:495–98 [Google Scholar]
  100. Jin JF, Gu YJ, Man CWY, Cheng JP, Xu ZH. 100.  et al. 2011. Polymer-coated NaFY4:Yb3+,Er3+ upconversion nanoparticles for charge dependent cellular imaging. ACS Nano 5:7838–47 [Google Scholar]
  101. Wang C, Cheng L, Xu H, Liu Z. 101.  2012. Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33:4872–81 [Google Scholar]
  102. Chatterjee DK, Rufaihah AJ, Zhang Y. 102.  2008. Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29:937–43 [Google Scholar]
  103. Liu Q, Sun Y, Yang TS, Feng W, Li CG, Li FY. 103.  2011. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 133:17122–25 [Google Scholar]
  104. Yang TS, Sun Y, Liu Q, Feng W, Yang PY, Li FY. 104.  2012. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 33:3733–42 [Google Scholar]
  105. Chen GY, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A. 105.  et al. 2012. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6:8280–87 [Google Scholar]
  106. Zhou JC, Yang ZL, Dong W, Tang RJ, Sun LD, Yan CH. 106.  2011. Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYbF4:Yb,Tm nanocrystals. Biomaterials 32:9059–67 [Google Scholar]
  107. Wang C, Tao HQ, Cheng L, Liu Z. 107.  2011. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32:6145–54 [Google Scholar]
  108. Qiao XF, Zhou JC, Xiao JW, Wang YF, Sun LD, Yan CH. 108.  2012. Triple-functional core–shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. Nanoscale 4:4611–23 [Google Scholar]
  109. Liu Y, Chen M, Cao TY, Sun Y, Li CY. 109.  et al. 2013. A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J. Am. Chem. Soc. 135:9869–76 [Google Scholar]
  110. Wang P, Ahmadov TO, Lee CW, Zhang P. 110.  2013. Ligase-assisted signal-amplifiable DNA detection using upconversion nanoparticles. RSC Adv. 3:16326–29 [Google Scholar]
  111. Carling CJ, Boyer JC, Branda NR. 111.  2009. Remote-control photoswitching using NIR light. J. Am. Chem. Soc. 131:10838–39 [Google Scholar]
  112. Boyer JC, Carling CJ, Gates DB, Branda NR. 112.  2010. Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J. Am. Chem. Soc. 132:15766–72 [Google Scholar]
  113. Carling CJ, Nourmohammadian F, Boyer JC, Branda NR. 113.  2010. Remote-control photorelease of caged compounds using near-infrared light and upconverting nanoparticles. Angew. Chem. Int. Ed. Engl. 49:3782–85First paper showing the NIR-light-triggered photorelease of small molecules. [Google Scholar]
  114. Yang YM, Shao Q, Deng RR, Wang C, Teng X. 114.  et al. 2012. In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Ed. Engl. 51:3125–29 [Google Scholar]
  115. Wu W, Yao LM, Yang TS, Yin RY, Li FY. 115.  et al. 2011. NIR-light-induced deformation of cross-linked liquid-crystal polymers using upconversion nanophosphors. J. Am. Chem. Soc. 133:15810–13 [Google Scholar]
  116. Wang L, Dong H, Li YN, Xue CM, Sun LD. 116.  et al. 2014. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J. Am. Chem. Soc. 136:4480–83 [Google Scholar]
  117. Vetrone F, Naccache R, Zamarrón A, de la Fuente AJ. 117.  et al. 2010. Temperature sensing using fluorescent nanothermometers. ACS Nano 4:3254–58 [Google Scholar]
  118. Su LT, Karuturi SK, Luo JS, Liu LJ, Liu XF. 118.  et al. 2013. Photon upconversion in hetero-nanostructured photoanodes for enhanced near-infrared light harvesting. Adv. Mater. 25:1603–07 [Google Scholar]
  119. Ramasamy P, Kim J. 119.  2014. Combined plasmonic and upconversion rear reflectors for efficient dye-sensitized solar cells. Chem. Commun. 50:879–81 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error