1932

Abstract

Molecular solids have attracted attention recently in the context of organic (opto)electronics. These materials exhibit unique charge carrier generation and transport phenomena that are distinct from those of conventional semiconductors. Understanding these phenomena is fundamental to optoelectronics and requires a detailed description of the excited-state properties of molecular solids. Recent advances in many-body perturbation theory (MBPT) and density functional theory (DFT) have made such description possible and have revealed many surprising electronic and optical properties of molecular crystals. Here, we review this progress. We summarize the salient aspects of MBPT and DFT as well as various properties that can be described by these methods. These properties include the fundamental gap and its renormalization, hybridization and band dispersion, singlet and triplet excitations, optical spectra, and excitonic properties. For each, we present concrete examples, a comparison to experiments, and a critical discussion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121351
2016-05-27
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040214-121351.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121351&mimeType=html&fmt=ahah

Literature Cited

  1. Forrest SR, Thompson ME. 1.  2007. Introduction: organic electronics and optoelectronics. Chem. Rev. 107:923–25 [Google Scholar]
  2. Menard E, Podzorov V, Hur SH, Gaur A, Gershenson M, Rogers JA. 2.  2004. High-performance n- and p-type single-crystal organic transistors with free-space gate dielectrics. Adv. Mater. 16:2097–101 [Google Scholar]
  3. Takeya J, Yamagishi M, Tominari Y, Hirahara R, Nakazawa Y. 3.  et al. 2007. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 90:102120 [Google Scholar]
  4. Smith MB, Michl J. 4.  2013. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64:361–86 [Google Scholar]
  5. Kitaigorodsky AI. 5.  1973. Molecular Crystals and Molecules New York: Academic [Google Scholar]
  6. Brédas JL, Norton JE, Cornil J, Coropceanu V. 6.  2009. Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42:1691–99 [Google Scholar]
  7. Savoie BM, Jackson NE, Marks TJ, Ratner MA. 7.  2013. Reassessing the use of one-electron energetics in the design and characterization of organic photovoltaics. Phys. Chem. Chem. Phys. 15:4538–47 [Google Scholar]
  8. Gross EKU, Dreizler RM. 8.  1990. Density Functional Theory Berlin: Springer [Google Scholar]
  9. Parr RG, Yang W. 9.  1989. Density Functional Theory of Atoms and Molecules New York: Oxford Univ. Press [Google Scholar]
  10. Ziegler T. 10.  1991. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev. 91:651–67 [Google Scholar]
  11. Marques MAL, Maitra N, Nogueria F, Gross EKU, Rubiu A. 11.  2012. Fundamentals of Time-Dependent Functional Theory Berlin: Springer [Google Scholar]
  12. Ullrich CA. 12.  2012. Time-Dependent Density-Functional Theory: Concepts and Applications New York: Oxford Univ. Press [Google Scholar]
  13. Hirata S, Head-Gordon M, Bartlett RJ. 13.  1999. Configuration interaction singles, time-dependent Hartree–Fock, and time-dependent density functional theory for the electronic excited states of extended systems. J. Chem. Phys. 111:10774–86 [Google Scholar]
  14. Adamo C, Scuseria GE, Barone VJ. 14.  1999. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110:6158–70 [Google Scholar]
  15. Furche F, Ahlrichs RJ. 15.  2002. Adiabatic time-dependent density functional methods for excited state properties. J. Chem. Phys. 117:7433–47 [Google Scholar]
  16. Chelikowsky JR, Kronik L, Vasiliev I. 16.  2003. Time-dependent density-functional calculations for the optical spectra of molecules, clusters, and nanocrystals. J. Phys. Condens. Matter 15:R1517–47 [Google Scholar]
  17. Silva-Junior MR, Schreiber M, Sauer SPA, Thiel W. 17.  2008. Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction. J. Chem. Phys. 129:104103 [Google Scholar]
  18. Kümmel S, Kronik L. 18.  2008. Orbital-dependent density functionals: theory and applications. Rev. Mod. Phys. 80:3–60 [Google Scholar]
  19. Onida G, Reining L, Rubio A. 19.  2002. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74:601–59 [Google Scholar]
  20. Izmaylov AF, Scuseria GE. 20.  2008. Why are time-dependent density functional theory excitations in solids equal to band structure energy gaps for semilocal functionals, and how does nonlocal Hartree–Fock-type exchange introduce excitonic effects?. J. Chem. Phys. 129:034101 [Google Scholar]
  21. Strinati G. 21.  1988. Application of the Green's function method to the study of the optical properties of semiconductors. Riv. Nuovo Cimento 11:1–86 [Google Scholar]
  22. Hedin L. 22.  1965. New method for calculating the one-particle Green's function with application to the electron-gas problem. Phys. Rev. 139:A796–823 [Google Scholar]
  23. Hybertsen MS, Louie SG. 23.  1986. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34:5390–413 [Google Scholar]
  24. Aulbur WG, Jnsson L, Wilkins JW. 24.  2000. Quasiparticle calculations in solids. Solid State Phys. 54:1–218 [Google Scholar]
  25. Rohlfing M, Louie SG. 25.  1998. Electron–hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81:2312–15 [Google Scholar]
  26. Albrecht S, Reining L, Sole RD, Onida G. 26.  1998. Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80:4510–13 [Google Scholar]
  27. Casida ME, Chong DP. 27.  1989. Physical interpretation and assessment of the Coulomb-hole and screened-exchange approximation for molecules. Phys. Rev. A 40:4837–48 [Google Scholar]
  28. Saito S, Zhang SB, Louie SG, Cohen ML. 28.  1989. Quasiparticle energies in small metal clusters. Phys. Rev. B 40:3643–46 [Google Scholar]
  29. Faber C, Boulanger P, Attaccalite C, Duchemin I, Blase X. 29.  2014. Excited states properties of organic molecules: from density functional theory to the GW and Bethe–Salpeter Green's function formalisms. Phil. Trans. R. Soc. A 372:20130271 [Google Scholar]
  30. Körbel S, Boulanger P, Duchemin I, Blase X, Marques MAL, Botti S. 30.  2014. Benchmark many-body GW and Bethe–Salpeter calculations for small transition metal molecules. J. Chem. Theory Comput. 10:3934–43 [Google Scholar]
  31. Jacquemin D, Duchemin I, Blase X. 31.  2015. Benchmarking the Bethe–Salpeter formalism on a standard organic molecular set. J. Chem. Theory Comput. 11:3290–304 [Google Scholar]
  32. Bruneval F, Hamed SM, Neaton JB. 32.  2015. A systematic benchmark of the ab initio Bethe–Salpeter equation approach for low-lying optical excitations of small organic molecules. J. Chem. Phys. 142:244101 [Google Scholar]
  33. van Setten MJ, Caruso F, Sharifzadeh S, Ren X, Scheffler M. 33.  et al. 2015. GW100: benchmarking G0W0 for molecular systems. J. Chem. Theory Comput. 11:5665–87 [Google Scholar]
  34. Hohenberg P, Kohn W. 34.  1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71 [Google Scholar]
  35. Kohn W, Sham LJ. 35.  1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38 [Google Scholar]
  36. Rohlfing M, Louie SG. 36.  2000. Electron–hole excitations and optical spectra from first principles. Phys. Rev. B 62:4927–44 [Google Scholar]
  37. Benedict LX, Shirley EL, Bohn RB. 37.  1998. Optical absorption of insulators and the electron–hole interaction: an ab initio calculation. Phys. Rev. Lett. 80:4514–17 [Google Scholar]
  38. Bartlett RJ, Musiał M. 38.  2007. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79:291–352 [Google Scholar]
  39. Ceperley D, Alder B. 39.  1986. Quantum Monte Carlo.. Science 231:555–60 [Google Scholar]
  40. Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA. 40.  2006. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78:865–951 [Google Scholar]
  41. Perdew JP, Kurth S. 41.  2003. Density functionals for non-relativistic Coulomb systems in the new century. A Primer in Density Functional Theory C Fiolhais, F Nogueira, M Marques 1–55 Berlin: Springer [Google Scholar]
  42. Becke AD. 42.  1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–52 [Google Scholar]
  43. Koch W, Holthausen MC. 43.  2001. A Chemist's Guide to Density Functional Theory. Weinheim, Germany: Wiley [Google Scholar]
  44. Leininger T, Stoll H, Werner HJ, Savin A. 44.  1997. Combining long-range configuration interaction with short-range density functionals. Chem. Phys. Lett. 275:151–60 [Google Scholar]
  45. Yanai T, Tew DP, Handy NC. 45.  2004. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393:51–57 [Google Scholar]
  46. Seidl A, Görling A, Vogl P, Majewski JA, Levy M. 46.  1996. Generalized Kohn–Sham schemes and the band-gap problem. Phys. Rev. B 53:3764–74 [Google Scholar]
  47. Görling A, Levy M. 47.  1997. Hybrid schemes combining the Hartree–Fock method and density-functional theory: underlying formalism and properties of correlation functionals. J. Chem. Phys. 107:2675–80 [Google Scholar]
  48. Baer R, Livshits E, Salzner U. 48.  2010. Tuned range-separated hybrids in density functional theory. Annu. Rev. Phys. Chem. 61:85–109 [Google Scholar]
  49. Kronik L, Stein T, Refaely-Abramson S, Baer R. 49.  2012. Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J. Chem. Theory Comput. 8:1515–31 [Google Scholar]
  50. Kronik L, Kümmel S. 50.  2014. Gas-phase valence-electron photoemission spectroscopy using density functional theory. Top. Curr. Chem. 347:137–92 [Google Scholar]
  51. Klimeš J, Michaelides A. 51.  2012. Advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 137:120901 [Google Scholar]
  52. Riley KE, Pitoňák M, Jurečka P, Hobza P. 52.  2010. Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev. 110:5023–63 [Google Scholar]
  53. Langreth DC, Lundqvist BI, Chakarova-Käck SD, Cooper VR, Dion M. 53.  et al. 2009. Density functional for sparse matter. J. Phys. Condens. Matter 21:084203 [Google Scholar]
  54. Grimme S. 54.  2011. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 1:211–28 [Google Scholar]
  55. Kronik L, Tkatchenko A. 55.  2014. Understanding molecular crystals with dispersion-inclusive density functional theory: pairwise corrections and beyond. Acc. Chem. Res. 47:3208–16 [Google Scholar]
  56. Yanagisawa S, Okuma K, Inaoka T, Hamada I. 56.  2015. Recent progress in predicting structural and electronic properties of organic solids with the van der Waals density functional. J. Electron. Spectrosc. Relat. Phenom. 204:Part A159–67 [Google Scholar]
  57. Rangel T, Berland K, Sharifzadeh S, Altvater F, Lee K. 57.  et al. 2016. Structural and excited-state properties of oligoacene crystals from first principles. Phys. Rev. B 93:115206 [Google Scholar]
  58. Hedin L, Lundqvist S. 58.  1970. Effects of electron–electron and electron–phonon interactions on the one-electron states of solids. Solid State Phys. 23:1–181 [Google Scholar]
  59. Bruneval F, Gonze X. 59.  2008. Accurate GW self-energies in a plane-wave basis using only a few empty states: towards large systems. Phys. Rev. B 78:085125 [Google Scholar]
  60. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R. 60.  et al. 2009. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21:395502 [Google Scholar]
  61. Umari P, Stenuit G, Baroni S. 61.  2010. GW quasiparticle spectra from occupied states only. Phys. Rev. B 81:115104 [Google Scholar]
  62. Deslippe J, Samsonidze G, Strubbe DA, Jain M, Cohen ML, Louie SG. 62.  2012. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Comm. 183:1269–89 [Google Scholar]
  63. Nguyen HV, Pham TA, Rocca D, Galli G. 63.  2012. Improving accuracy and efficiency of calculations of photoemission spectra within the many-body perturbation theory. Phys. Rev. B 85:081101 [Google Scholar]
  64. Friedrich C, Bülgel S, Schindlmayr A. 64.  2010. Efficient implementation of the GW approximation within the all-electron FLAPW methods. Phys. Rev. B 81:125102 [Google Scholar]
  65. Gulans A, Kontur S, Meisenbichler C, Nabok D, Pavone P. 65.  et al. 2014. Exciting: a full-potential all-electron package implementing density-functional theory and many-body perturbation theory. J. Phys. Condens. Matter 26:363202 [Google Scholar]
  66. van Schilfgaarde M, Kotani T, Faleev SV. 66.  2006. Adequacy of approximations in GW theory. Phys. Rev. B 74:245125 [Google Scholar]
  67. Blase X, Attaccalite C, Olevano V. 67.  2011. First-principles GW calculations for fullerenes, porphyrins, phthalocyanine, and other molecules of interest for organic photovoltaic applications. Phys. Rev. B 83:115103 [Google Scholar]
  68. Ren X, Rinke P, Blum V, Wieferink J, Tkatchenko A. 68.  et al. 2012. Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New J. Phys. 14:053020 [Google Scholar]
  69. van Setten MJ, Weigend F, Evers F. 69.  2013. The GW-method for quantum chemistry applications: theory and implementation. J. Chem. Theory Comput. 9:232–46 [Google Scholar]
  70. Koval P, Foerster D, Sánchez-Portal D. 70.  2014. Fully self-consistent GW and quasiparticle self-consistent GW for molecules. Phys. Rev. B 89:155417 [Google Scholar]
  71. Rojas HN, Godby RW, Needs RJ. 71.  1995. Space-time method for ab initio calculations of self-energies and dielectric response functions of solids. Phys. Rev. Lett. 74:1827–30 [Google Scholar]
  72. Steinbeck L, Rubio A, Reining L, Torrent M, White I, Godby R. 72.  2000. Enhancements to the GW space-time method. Comput. Phys. Commun. 125:105–18 [Google Scholar]
  73. Tiago ML, Chelikowsky JR. 73.  2006. Optical excitations in organic molecules, clusters, and defects studied by first-principles Green's function methods. Phys. Rev. B 73:205334 [Google Scholar]
  74. Hung L, Baishya K, Öğüt S. 74.  2014. First-principles real-space study of electronic and optical excitations in rutile TiO2 nanocrystals. Phys. Rev. B 90:165424 [Google Scholar]
  75. Godby RW, Needs RJ. 75.  1989. Metal–insulator transition in Kohn–Sham theory and quasiparticle theory. Phys. Rev. Lett. 62:1169–72 [Google Scholar]
  76. Neuhauser D, Gao Y, Arntsen C, Karshenas C, Rabani E, Baer R. 76.  2015. Breaking the theoretical scaling limit for predicting quasiparticle energies: the stochastic GW approach. Phys. Rev. Lett. 113:076402 [Google Scholar]
  77. Grossman JC, Rohlfing M, Mitas L, Louie SG, Cohen ML. 77.  2001. High accuracy many-body calculational approaches for excitations in molecules. Phys. Rev. Lett. 86:472–75 [Google Scholar]
  78. Marom N, Ren X, Moussa JE, Chelikowsky JR, Kronik L. 78.  2011. Electronic structure of copper phthalocyanine from G0W0 calculations. Phys. Rev. B 84:195143 [Google Scholar]
  79. Körzdörfer T, Marom N. 79.  2012. Strategy for finding a reliable starting point for G0W0 demonstrated for molecules. Phys. Rev. B 86:041110 [Google Scholar]
  80. Sharifzadeh S, Tamblyn I, Doak P, Darancet P, Neaton J. 80.  2012. Quantitative molecular orbital energies within a G0W0 approximation. Eur. Phys. J. B 85:323 [Google Scholar]
  81. Salomon E, Amsalem P, Marom N, Vondracek M, Kronik L. 81.  et al. 2013. Electronic structure of CoPc adsorbed on Ag(100): evidence for molecule-substrate interaction mediated by Co 3d orbitals. Phys. Rev. B 87:075407 [Google Scholar]
  82. Bruneval F, Marques MAL. 82.  2013. Benchmarking the starting points of the GW approximation for molecules. J. Chem. Theory Comput. 9:324–29 [Google Scholar]
  83. Lischner J, Sharifzadeh S, Deslippe J, Neaton JB, Louie SG. 83.  2014. Effects of self-consistency and plasmon-pole models on GW calculations for closed-shell molecules. Phys. Rev. B 90:115130 [Google Scholar]
  84. Runge E, Gross EKU. 84.  1984. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52:997–1000 [Google Scholar]
  85. Casida ME. 85.  1995. Time-dependent density functional response theory for molecules. Recent Advances in Density Functional Methods Part I, ed. DP Chong 155–92 Singapore: World Sci. [Google Scholar]
  86. Tretiak S, Chernyak V. 86.  2003. Resonant nonlinear polarizabilities in the time-dependent density functional theory. J. Chem. Phys. 119:8809–23 [Google Scholar]
  87. Sato N, Seki K, Iokuchi H. 87.  1981. Polarization energies of organic solids determined by ultraviolet photoemission spectroscopy. J. Chem. Soc. Faraday Trans. 77:1621–33 [Google Scholar]
  88. Neaton JB, Hybertsen MS, Louie SG. 88.  2006. Renormalization of molecular electronic levels at metal–molecule interfaces. Phys. Rev. Lett. 97:216405 [Google Scholar]
  89. Inkson JC. 89.  1973. Many-body effect at metal–semiconductor junctions. II. The self energy and band structure distortion. J. Phys. C 6:1350–62 [Google Scholar]
  90. Sai N, Tiago ML, Chelikowsky JR, Reboredo FA. 90.  2008. Optical spectra and exchange–correlation effects in molecular crystals. Phys. Rev. B 77:161306 [Google Scholar]
  91. Zoppi L, Martin-Samos L, Baldridge KK. 91.  2011. Effect of molecular packing on corannulene-based materials’ electroluminescence. J. Am. Chem. Soc. 133:14002–9 [Google Scholar]
  92. Sharifzadeh S, Biller A, Kronik L, Neaton JB. 92.  2012. Quasiparticle and optical spectroscopy of the organic semiconductors pentacene and PTCDA from first principles. Phys. Rev. B 85:125307 [Google Scholar]
  93. Refaely-Abramson S, Sharifzadeh S, Jain M, Baer R, Neaton JB, Kronik L. 93.  2013. Gap renormalization of molecular crystals from density functional theory. Phys. Rev. B 88:081204(R) [Google Scholar]
  94. Marsili M, Umari P, Santo GD, Caputo M, Panighe M. 94.  et al. 2014. Solid state effects on the electronic structure of H2OEP. Phys. Chem. Chem. Phys. 16:27104–11 [Google Scholar]
  95. Sharifzadeh S, Wong CY, Wu H, Cotts BL, Kronik L. 95.  et al. 2015. Relating the physical structure and optoelectronic function of crystalline TIPS-pentacene. Adv. Funct. Mater. 25:2038–46 [Google Scholar]
  96. Perdew JP, Burke K, Ernzerhof M. 96.  1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68 [Google Scholar]
  97. Atalla V, Yoon M, Caruso F, Rinke P, Scheffler M. 97.  2013. Hybrid density functional theory meets quasiparticle calculations: a consistent electronic structure approach. Phys. Rev. B 88:165122 [Google Scholar]
  98. Hill IG, Kahn A, Soos ZG, Pascal RA. 98.  2000. Charge-separation energy in films of π-conjugated organic molecules. Chem. Phys. Lett. 327:181–88 [Google Scholar]
  99. Heimel G, Salzmann I, Duhm S, Koch N. 99.  2011. Design of organic semiconductors from molecular electrostatics. Chem. Mater. 23:359–77 [Google Scholar]
  100. Krause S, Casu MB, Schöll A, Umbach E. 100.  2008. Determination of transport levels of organic semiconductors by UPS and IPS. New J. Phys. 10:085001 [Google Scholar]
  101. Heyd J, Scuseria GE, Ernzerhof MJ. 101.  2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–15 [Google Scholar]
  102. Perdew JP, Levy M. 102.  1983. Physical content of the exact Kohn–Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett. 51:1884–87 [Google Scholar]
  103. Sham LJ, Schlüter M. 103.  1983. Density functional theory of the energy gap. Phys. Rev. Lett. 51:1888–91 [Google Scholar]
  104. Stein T, Eisenberg H, Kronik L, Baer R. 104.  2010. Fundamental gaps of finite systems from the eigenvalues of a generalized Kohn–Sham method. Phys. Rev. Lett. 105:266802 [Google Scholar]
  105. Rohrdanz MA, Herbert JM. 105.  2008. Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. J. Chem. Phys. 129:034107 [Google Scholar]
  106. Srebro M, Autschbach J. 106.  2012. Does a molecule-specific density functional give an accurate electron density? The challenging case of the CuCl electric field gradient. J. Phys. Chem. Lett. 3:576–81 [Google Scholar]
  107. Refaely-Abramson S, Sharifzadeh S, Govind N, Autschbach J, Neaton JB. 107.  et al. 2012. Quasiparticle spectra from a non-empirical optimally-tuned range-separated hybrid density functional. Phys. Rev. Lett. 109:226405 [Google Scholar]
  108. Perdew JP, Parr RG, Levy M, Balduz JR Jr. 108.  1982. Density functional theory for fractional particle number: Derivative discontinuities of the energy. Phys. Rev. Lett. 49:1691–94 [Google Scholar]
  109. Almbladh CO, von Barth U. 109.  1985. Exact results for the charge and spin densities, exchange–correlation potentials, and density-functional eigenvalues. Phys. Rev. B 31:3231–44 [Google Scholar]
  110. Perdew JP, Levy M. 110.  1997. Comment on significance of the highest occupied Kohn–Sham eigenvalue. Phys. Rev. B 56:16021–28 [Google Scholar]
  111. Salzner U, Baer R. 111.  2009. Koopmans springs to life. J. Chem. Phys. 131:231101 [Google Scholar]
  112. Lüftner D, Refaely-Abramson S, Pachler M, Resel R, Ramsey MG. 112.  et al. 2014. Experimental and theoretical electronic structure of quinacridone. Phys. Rev. B 90:075204 [Google Scholar]
  113. Rohrdanz MA, Martins KM, Herbert JM. 113.  2009. A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states. J. Chem. Phys. 130:054112 [Google Scholar]
  114. Egger DA, Weissman S, Refaely-Abramson S, Sharifzadeh S, Dauth M. 114.  et al. 2014. Outer-valence electron spectra of prototypical aromatic heterocycles from an optimally-tuned range-separated hybrid functional. J. Chem. Theory Comput. 10:1934–52 [Google Scholar]
  115. Refaely-Abramson S, Baer R, Kronik L. 115.  2011. Fundamental and excitation gaps in molecules of relevance for organic photovoltaics from an optimally tuned range-separated hybrid functional. Phys. Rev. B 84:075144 [Google Scholar]
  116. Risko C, Brédas JL. 116.  2014. Small optical gap molecules and polymers: using theory to design more efficient materials for organic photovoltaics. Top. Curr. Chem. 352:1–38 [Google Scholar]
  117. Autschbach J, Srebro M. 117.  2014. Delocalization error and ``functional tuning’’ in Kohn–Sham calculations of molecular properties. Acc. Chem. Res. 47:2592–602 [Google Scholar]
  118. Phillips H, Zheng Z, Geva E, Dunietz BD. 118.  2014. Orbital gap predictions for rational design of organic photovoltaic materials. Org. Electron. 15:1509–20 [Google Scholar]
  119. Foster ME, Azoulay JD, Wong BM, Allendorf MD. 119.  2014. Novel metal–organic framework linkers for light harvesting applications. Chem. Sci. 5:2081–90 [Google Scholar]
  120. Tamblyn I, Refaely-Abramson S, Neaton JB, Kronik L. 120.  2014. Simultaneous determination of structures, vibrations, and frontier orbital energies from a self-consistent range-separated hybrid functional. J. Phys. Chem. Lett. 5:2734–41 [Google Scholar]
  121. Körzdörfer T, Brédas J. 121.  2014. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. Acc. Chem. Res. 47:3284–91 [Google Scholar]
  122. Bokarev SI, Bokareva OS, Kühn O. 122.  2015. A theoretical perspective on charge transfer in photocatalysis. The example of Ir-based systems. Coord. Chem. Rev. 304-305133–45 [Google Scholar]
  123. de Queiroz TB, Kümmel S. 123.  2015. Tuned range separated hybrid functionals for solvated low bandgap oligomers. J. Chem. Phys. 143:034101 [Google Scholar]
  124. Azadi S, Foulkes WMC, Kühne TD. 124.  2013. Quantum Monte Carlo study of high pressure solid molecular hydrogen. New J. Phys. 15:113005 [Google Scholar]
  125. Kim DY, Lebègue S, Araújo CM, Arnaud B, Alouani M, Ahuja R. 125.  2008. Structurally induced insulator–metal transition in solid oxygen: a quasiparticle investigation. Phys. Rev. B 77:092104 [Google Scholar]
  126. Kim DY, Scheicher RH, Lebègue S, Prasongkit J, Arnaud B. 126.  et al. 2008. Crystal structure of the pressure-induced metallic phase of SiH4from ab initio theory. PNAS 105:16454–59 [Google Scholar]
  127. Appalakondaiah S, Vaitheeswaran G, Lebègue S. 127.  2013. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane. J. Chem. Phys. 138:184705 [Google Scholar]
  128. Sham LJ, Kohn W. 128.  1966. One-particle properties of an inhomogeneous interacting electron gas. Phys. Rev. 145:561–67 [Google Scholar]
  129. Shirley EL, Louie SG. 129.  1993. Electron excitations in solid C60: energy gap, band dispersions, and effects of orientational disorder. Phys. Rev. Lett. 71:133–36 [Google Scholar]
  130. Tiago ML, Northrup JE, Louie SG. 130.  2003. Ab initio calculation of the electronic and optical properties of solid pentacene. Phys. Rev. B 67:115212 [Google Scholar]
  131. Fonari A, Sutton C, Brédas JL, Coropceanu V. 131.  2014. Impact of exact exchange in the description of the electronic structure of organic charge-transfer molecular crystals. Phys. Rev. B 90:165205 [Google Scholar]
  132. Refaely-Abramson S, Jain M, Sharifzadeh S, Neaton JB, Kronik L. 132.  2015. Solid-state optical absorption from optimally tuned time-dependent range-separated hybrid density functional theory. Phys. Rev. B 92:081204(R) [Google Scholar]
  133. Yanagisawa S, Morikawa Y, Schindlmayr A. 133.  2013. HOMO band dispersion of crystalline rubrene: effects of self-energy corrections within the GW approximation. Phys. Rev. B 88:115438 [Google Scholar]
  134. Yanagisawa S, Morikawa Y, Schindlmayr A. 134.  2014. Theoretical investigation of the band structure of picene single crystals within the GW approximation. Jpn. J. Appl. Phys. 53:05FY02 [Google Scholar]
  135. Fedorov IA, Zhuravlev YN. 135.  2014. Hydrostatic pressure effects on structural and electronic properties of TATB from first principles calculations. Chem. Phys. 436–437:1–7 [Google Scholar]
  136. Yanagisawa S, Yamauchi K, Inaoka T, Oguchi T, Hamada I. 136.  2014. Origin of the band dispersion in a metal phthalocyanine crystal. Phys. Rev. B 90:245141 [Google Scholar]
  137. Shirley EL. 137.  1998. Many-body effects on bandwidths in ionic, noble gas, and molecular solids. Phys. Rev. B 58:9579–83 [Google Scholar]
  138. Koch N, Vollmer A, Salzmann I, Nickel B, Weiss H, Rabe JP. 138.  2006. Evidence for temperature-dependent electron band dispersion in pentacene. Phys. Rev. Lett. 96:156803 [Google Scholar]
  139. Berkebile S, Koller G, Fleming AJ, Puschnig P, Ambrosch-Draxl C. 139.  et al. 2009. The electronic structure of pentacene revisited. J. Electron. Spectrosc. Relat. Phenom. 174:22–27 [Google Scholar]
  140. Hannewald K, Stojanović VM, Schellekens JMT, Bobbert PA, Kresse G, Hafner J. 140.  2004. Theory of polaron bandwidth narrowing in organic molecular crystals. Phys. Rev. B 69:075211 [Google Scholar]
  141. Bisti F, Stroppa A, Picozzi S, Ottaviano L. 141.  2011. Fingerprints of the hydrogen bond in the photoemission spectra of croconic acid condensed phase: an X-ray photoelectron spectroscopy and ab-initio study. J. Chem. Phys. 134:174505 [Google Scholar]
  142. Chong DP, Gritsenko OV, Baerends EJ. 142.  2002. Interpretation of the Kohn–Sham orbital energies as approximate vertical ionization potentials. J. Chem. Phys. 116:1760–72 [Google Scholar]
  143. Dori N, Menon M, Kilian L, Sokolowski M, Kronik L, Umbach E. 143.  2006. Valence electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride: experiment and theory. Phys. Rev. B 73:195208 [Google Scholar]
  144. Körzdörfer T, Kümmel S, Marom N, Kronik L. 144.  2009. When to trust photoelectron spectra from Kohn–Sham eigenvalues: the case of organic semiconductors. Phys. Rev. B 79:201205(R). Erratum: Phys. Rev. B 82:129903 [Google Scholar]
  145. Körzdörfer T, Kümmel S. 145.  2010. Single-particle and quasiparticle interpretation of Kohn–Sham and generalized Kohn–Sham eigenvalues for hybrid functionals. Phys. Rev. B 82:155206 [Google Scholar]
  146. Perdew JP, Zunger A. 146.  1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23:5048–79 [Google Scholar]
  147. Leng X, Yin H, Liang D, Ma Y. 147.  2015. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green function theory. J. Chem. Phys. 143:114501 [Google Scholar]
  148. Hummer K, Puschnig P, Ambrosch-Draxl C. 148.  2004. Lowest optical excitations in molecular crystals: bound excitons versus free electron–hole pairs in anthracene. Phys. Rev. Lett. 92:147402 [Google Scholar]
  149. Hummer K, Ambrosch-Draxl C. 149.  2005. Oligoacene exciton binding energies: their dependence on molecular size. Phys. Rev. B 71:081202(R) [Google Scholar]
  150. Hummer K, Puschnig P, Sagmeister S, Ambrosch-Draxl C. 150.  2006. Ab initio study on the exciton binding energies in organic semiconductors. Mod. Phys. Lett. B 20:261–80 [Google Scholar]
  151. Ambrosch-Draxl C, Hummer K, Sagmeister S, Puschnig P. 151.  2006. Excitonic effects in molecular crystals built up by small organic molecules. Chem. Phys. 325:3–8 [Google Scholar]
  152. Cudazzo P, Gatti M, Rubio A. 152.  2012. Excitons in molecular crystals from first-principles many-body perturbation theory: picene versus pentacene. Phys. Rev. B 86:195307 [Google Scholar]
  153. Berkelbach TC, Hybertsen MS, Reichman DR. 153.  2013. Microscopic theory of singlet exciton fission. II. Application to pentacene dimers and the role of super exchange. J. Chem. Phys. 138:114103 [Google Scholar]
  154. Sharifzadeh S, Darancet P, Kronik L, Neaton JB. 154.  2013. Low-energy charge-transfer excitons in organic solids from first-principles: the case of pentacene. J. Phys. Chem. Lett. 4:2197–201 [Google Scholar]
  155. Cudazzo P, Gatti M, Rubio A, Sottile F. 155.  2013. Frenkel versus charge-transfer exciton dispersion in molecular crystals. Phys. Rev. B 88:195152 [Google Scholar]
  156. Romaner L, Heimel G, Wiesenhofer H, Scandiucci de Freitas P, Scherf U. 156.  et al. 2004. Ketonic defects in ladder-type poly(p-phenylene)s. Chem. Mater. 16:4667–74 [Google Scholar]
  157. Tretiak S, Igumenshchev K, Chernyak V. 157.  2005. Exciton sizes of conducting polymers predicted by time-dependent density functional theory. Phys. Rev. B 71:033201 [Google Scholar]
  158. Ullrich CA, Yang ZH. 158.  2016. Excitons in time-dependent density functional theory. Top. Curr. Chem. 368:185–217 [Google Scholar]
  159. Cocchi C, Draxl C. 159.  2015. Bound excitons and many-body effects in X-ray absorption spectra of azobenzene-functionalized self-assembled monolayers. Phys. Rev. B 92:205105 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121351
Loading
/content/journals/10.1146/annurev-physchem-040214-121351
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error