1932

Abstract

Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121359
2015-04-01
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121359.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121359&mimeType=html&fmt=ahah

Literature Cited

  1. Akimov AV, Neukirch AJ, Prezhdo OV. 1.  2013. Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem. Rev. 113:4496–565 [Google Scholar]
  2. Hagfeldt A, Grätzel M. 2.  2000. Molecular photovoltaics. Acc. Chem. Res. 33:269–77 [Google Scholar]
  3. Anderson NA, Lian T. 3.  2005. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 56:491–519 [Google Scholar]
  4. Zhao W, Ma W, Chen C, Zhao J, Shuai Z. 4.  2004. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation. J. Am. Chem. Soc. 126:4782–83 [Google Scholar]
  5. Anfuso CL, Snoeberger RC, Ricks AM, Liu W, Xiao D. 5.  et al. 2011. Covalent attachment of a rhenium bipyridyl CO2 reduction catalyst to rutile TiO2. J. Am. Chem. Soc. 133:6922–25 [Google Scholar]
  6. Tang J, Durrant JR, Klug DR. 6.  2008. Mechanism of photocatalytic water splitting in TiO2: reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 130:13885–91 [Google Scholar]
  7. Roy P, Das C, Lee K, Hahn R, Ruff T. 7.  et al. 2011. Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting. J. Am. Chem. Soc. 133:5629–31 [Google Scholar]
  8. Kamat PV. 8.  1993. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 93:267–300 [Google Scholar]
  9. Zhu X. 9.  1994. Surface photochemistry. Annu. Rev. Phys. Chem. 45:113–44 [Google Scholar]
  10. Jiang D, Zhao H, Zhang S, John R. 10.  2004. Kinetic study of photocatalytic oxidation of adsorbed carboxylic acids at TiO2 porous films by photoelectrolysis. J. Catal. 223:212–20 [Google Scholar]
  11. Cracknell JA, Vincent KA, Armstrong FA. 11.  2008. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108:2439–61 [Google Scholar]
  12. Nitzan A, Ratner MA. 12.  2003. Electron transport in molecular wire junctions. Science 300:1384–89 [Google Scholar]
  13. Fan F-RF, Yao Y, Cai L, Cheng L, Tour JM, Bard AJ. 13.  2004. Structure-dependent charge transport and storage in self-assembled monolayers of compounds of interest in molecular electronics: effects of tip material, headgroup, and surface concentration. J. Am. Chem. Soc. 1264035–42 [Google Scholar]
  14. Naber WJM, Faez S, van der Wiel WG. 14.  2007. Organic spintronics. J. Phys. D 40:R205–28 [Google Scholar]
  15. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S. 15.  et al. 2001. Spintronics: a spin-based electronics vision for the future. Science 294:1488–95 [Google Scholar]
  16. Furube A, Katoh R, Yoshihara T, Hara K, Murata S. 16.  et al. 2004. Ultrafast direct and indirect electron-injection processes in a photoexcited dye-sensitized nanocrystalline zinc oxide film: the importance of exciplex intermediates at the surface. J. Phys. Chem. B 108:12583–92 [Google Scholar]
  17. Furube A, Du L, Hara K, Katoh R, Tachiya M. 17.  2007. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129:14852–53 [Google Scholar]
  18. Shen YR. 18.  1989. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:519–25 [Google Scholar]
  19. Tisdale WA, Williams KJ, Timp BA, Norris DJ, Aydil ES, Zhu X-Y. 19.  2010. Hot-electron transfer from semiconductor nanocrystals. Science 328:1543–47 [Google Scholar]
  20. Tisdale WA, Zhu X-Y. 20.  2011. Artificial atoms on semiconductor surfaces. PNAS 108:965–70 [Google Scholar]
  21. Tully JC. 21.  1990. Molecular dynamics with electronic transitions. J. Chem. Phys. 93:1061–71 [Google Scholar]
  22. Tully JC. 22.  2012. Perspective: nonadiabatic dynamics theory. J. Chem. Phys. 137:22A301 [Google Scholar]
  23. Duncan WR, Prezhdo OV. 23.  2007. Theoretical studies of photoinduced electron transfer in dye-sensitized TiO2. Annu. Rev. Phys. Chem. 58:143–84 [Google Scholar]
  24. Prezhdo OV, Duncan WR, Prezhdo VV. 24.  2008. Dynamics of the photoexcited electron at the chromophore-semiconductor interface. Acc. Chem. Res. 41:339–48 [Google Scholar]
  25. Prezhdo OV, Duncan WR, Prezhdo VV. 25.  2009. Photoinduced electron dynamics at the chromophore-semiconductor interface: a time-domain ab initio perspective. Prog. Surf. Sci. 84:30–68 [Google Scholar]
  26. Prezhdo OV. 26.  2009. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies. Acc. Chem. Res. 42:2005–16 [Google Scholar]
  27. Hyeon-Deuk K, Prezhdo OV. 27.  2012. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination. J. Phys. Condens. Matter 24:363201 [Google Scholar]
  28. Sousa C, Tosoni S, Illas F. 28.  2012. Theoretical approaches to excited-state-related phenomena in oxide surfaces. Chem. Rev. 113:4456–95 [Google Scholar]
  29. Neukirch AJ, Hyeon-Deuk K, Prezhdo OV. 29.  2014. Time-domain ab initio modeling of excitation dynamics in quantum dots. Coord. Chem. Rev. 263–264:161–81 [Google Scholar]
  30. Ehrenfest P. 30.  1927. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45:455–57 [Google Scholar]
  31. Prezhdo OV, Kisil VV. 31.  1997. Mixing quantum and classical mechanics. Phys. Rev. A 56:162–75 [Google Scholar]
  32. Bornemann FA, Nettesheim P, Schütte C. 32.  1996. Quantum-classical molecular dynamics as an approximation to full quantum dynamics. J. Chem. Phys. 105:1074–83 [Google Scholar]
  33. Parandekar PV, Tully JC. 33.  2005. Mixed quantum-classical equilibrium. J. Chem. Phys. 122:094102 [Google Scholar]
  34. Prezhdo O. 34.  2006. Quantized Hamilton dynamics. Theor. Chem. Acc. 116:206–18 [Google Scholar]
  35. Wang L, Akimov AV, Chen L, Prezhdo OV. 35.  2013. Quantized Hamiltonian dynamics captures the low-temperature regime of charge transport in molecular crystals. J. Chem. Phys. 139:174109 [Google Scholar]
  36. Drukker K. 36.  1999. Basics of surface hopping in mixed quantum/classical simulations. J. Comput. Phys. 153:225–72 [Google Scholar]
  37. Barbatti M. 37.  2011. Nonadiabatic dynamics with trajectory surface hopping method. WIREs Comput. Mol. Sci. 1:620–33 [Google Scholar]
  38. Fabiano E, Keal TW, Thiel W. 38.  2008. Implementation of surface hopping molecular dynamics using semiempirical methods. Chem. Phys. 349:334–47 [Google Scholar]
  39. Evenhuis C, Martínez TJ. 39.  2011. A scheme to interpolate potential energy surfaces and derivative coupling vectors without performing a global diabatization. J. Chem. Phys. 135:224110 [Google Scholar]
  40. Granucci G, Persico M, Toniolo A. 40.  2001. Direct semiclassical simulation of photochemical processes with semiempirical wave functions. J. Chem. Phys. 114:10608–15 [Google Scholar]
  41. Fernandez-Alberti S, Roitberg AE, Nelson T, Tretiak S. 41.  2012. Identification of unavoided crossings in nonadiabatic photoexcited dynamics involving multiple electronic states in polyatomic conjugated molecules. J. Chem. Phys. 137:014512 [Google Scholar]
  42. Wang L, Prezhdo OV. 42.  2014. A simple solution to the trivial crossing problem in surface hopping. J. Phys. Chem. Lett. 5:713–19 [Google Scholar]
  43. Wang L, Beljonne D. 43.  2013. Flexible surface hopping approach to model the crossover from hopping to band-like transport in organic crystals. J. Phys. Chem. Lett. 4:1888–94 [Google Scholar]
  44. Wang L, Beljonne D. 44.  2013. Charge transport in organic semiconductors: assessment of the mean field theory in the hopping regime. J. Chem. Phys. 139:064316 [Google Scholar]
  45. Wang L, Trivedi D, Prezhdo OV. 45.  2014. Global flux surface hopping approach for mixed quantum-classical dynamics. J. Chem. Theory Comput. 10:3598–605 [Google Scholar]
  46. Akimov AV, Prezhdo OV. 46.  2014. Second-quantized surface hopping. Phys. Rev. Lett. 113:153003 [Google Scholar]
  47. Bittner ER, Rossky PJ. 47.  1995. Quantum decoherence in mixed quantum-classical systems: nonadiabatic processes. J. Chem. Phys. 103:8130–43 [Google Scholar]
  48. Hack MD, Truhlar DG. 48.  2001. A natural decay of mixing algorithm for non-Born-Oppenheimer trajectories. J. Chem. Phys. 114:9305–14 [Google Scholar]
  49. Bedard-Hearn MJ, Larsen RE, Schwartz BJ. 49.  2005. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence. J. Chem. Phys. 123:234106 [Google Scholar]
  50. Prezhdo OV. 50.  1999. Mean field approximation for the stochastic Schrödinger equation. J. Chem. Phys. 111:8366–77 [Google Scholar]
  51. Jaeger HM, Fischer S, Prezhdo OV. 51.  2012. Decoherence-induced surface hopping. J. Chem. Phys. 137:22A545 [Google Scholar]
  52. Akimov AV, Long R, Prezhdo OV. 52.  2014. Coherence penalty functional: a simple method for adding decoherence in Ehrenfest dynamics. J. Chem. Phys. 140:194107 [Google Scholar]
  53. Young KF, Frederikse HPR. 53.  1973. Compilation of the static dielectric constant of inorganic solids. J. Phys. Chem. Ref. Data 2:313–410 [Google Scholar]
  54. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas J-L. 54.  2007. Charge transport in organic semiconductors. Chem. Rev. 107:926–52 [Google Scholar]
  55. Wang L, Nan G, Yang X, Peng Q, Li Q, Shuai Z. 55.  2010. Computational methods for design of organic materials with high charge mobility. Chem. Soc. Rev. 39:423–34 [Google Scholar]
  56. Shuai Z, Wang L, Li Q. 56.  2011. Evaluation of charge mobility in organic materials: from localized to delocalized descriptions at a first-principles level. Adv. Mater. 23:1145–53 [Google Scholar]
  57. Troisi A. 57.  2011. Charge transport in high mobility molecular semiconductors: classical models and new theories. Chem. Soc. Rev. 40:2347–58 [Google Scholar]
  58. Knupfer M. 58.  2003. Exciton binding energies in organic semiconductors. Appl. Phys. A 77:623–26 [Google Scholar]
  59. Nayak PK. 59.  2013. Exciton binding energy in small organic conjugated molecule. Synth. Met. 174:42–45 [Google Scholar]
  60. Engel M, Kunze F, Lupascu DC, Benson N, Schmechel R. 60.  2012. Reduced exciton binding energy in organic semiconductors: tailoring the Coulomb interaction. Phys. Status Solidi Rapid Res. Lett. 6:68–70 [Google Scholar]
  61. Long R, Prezhdo OV. 61.  2011. Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface. J. Am. Chem. Soc. 133:19240–49 [Google Scholar]
  62. Long R, English NJ, Prezhdo OV. 62.  2014. Minimizing electron-hole recombination on TiO2 sensitized with PbSe quantum dots: time-domain ab initio analysis. J. Phys. Chem. Lett. 5:2941–46 [Google Scholar]
  63. Tafen DN, Long R, Prezhdo OV. 63.  2014. Dimensionality of nanoscale TiO2 determines the mechanism of photoinduced electron injection from a CdSe nanoparticle. Nano Lett. 14:1790–96 [Google Scholar]
  64. Long R, Prezhdo OV. 64.  2014. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. J. Am. Chem. Soc. 136:4343–54 [Google Scholar]
  65. Long R, English NJ, Prezhdo OV. 65.  2012. Photo-induced charge separation across the graphene-TiO2 interface is faster than energy losses: a time-domain ab initio analysis. J. Am. Chem. Soc. 134:14238–48 [Google Scholar]
  66. Long R, English NJ, Prezhdo OV. 66.  2013. Defects are needed for fast photo-induced electron transfer from a nanocrystal to a molecule: time-domain ab initio analysis. J. Am. Chem. Soc. 135:18892–900 [Google Scholar]
  67. Chaban VV, Prezhdo VV, Prezhdo OV. 67.  2013. Covalent linking greatly enhances photoinduced electron transfer in fullerene-quantum dot nanocomposites: time-domain ab initio study. J. Phys. Chem. Lett. 4:1–6 [Google Scholar]
  68. Zhu H, Yang Y, Hyeon-Deuk K, Califano M, Song N. 68.  et al. 2013. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 14:1263–69 [Google Scholar]
  69. Long R, Prezhdo OV. 69.  2014. Electron and hole transfer at an inorganic-organic photovoltaic interface: Inverted dimensionality results in symmetric photoexcited dynamics. Manuscript in preparation
  70. Akimov AV, Muckerman JT, Prezhdo OV. 70.  2013. Nonadiabatic dynamics of positive charge during photocatalytic water splitting on GaN(10-10) surface: Charge localization governs splitting efficiency. J. Am. Chem. Soc. 135:8682–91 [Google Scholar]
  71. Akimov AV, Prezhdo OV. 71.  2014. Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface. J. Am. Chem. Soc. 136:1599–608 [Google Scholar]
  72. Long R, Prezhdo OV. 72.  2014. Asymmetry in the electron and hole transfer at a polymer-carbon nanotube heterojunction. Nano Lett. 14:3335–41 [Google Scholar]
  73. Feynman RP. 73.  1948. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20:367–87 [Google Scholar]
  74. Hohenberg P, Kohn W. 74.  1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71 [Google Scholar]
  75. Kohn W, Sham LJ. 75.  1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38 [Google Scholar]
  76. Ziegler T. 76.  1991. Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev. 91:651–67 [Google Scholar]
  77. Runge E, Gross EKU. 77.  1984. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52:997–1000 [Google Scholar]
  78. Marques MAL, Gross EKU. 78.  2004. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 55:427–55 [Google Scholar]
  79. Baer R, Neuhauser D. 79.  2004. Real-time linear response for time-dependent density-functional theory. J. Chem. Phys. 121:9803–7 [Google Scholar]
  80. Tretiak S, Igumenshchev K, Chernyak V. 80.  2005. Exciton sizes of conducting polymers predicted by time-dependent density functional theory. Phys. Rev. B 71:033201 [Google Scholar]
  81. Fischer SA, Habenicht BF, Madrid AB, Duncan WR, Prezhdo OV. 81.  2011. Regarding the validity of the time-dependent Kohn-Sham approach for electron-nuclear dynamics via trajectory surface hopping. J. Chem. Phys. 134:024102 [Google Scholar]
  82. Chernyak V, Mukamel S. 82.  2000. Density-matrix representation of nonadiabatic couplings in time-dependent density functional (TDDFT) theories. J. Chem. Phys. 112:3572–79 [Google Scholar]
  83. Baer R. 83.  2002. Non-adiabatic couplings by time-dependent density functional theory. Chem. Phys. Lett. 364:75–79 [Google Scholar]
  84. Hu C, Hirai H, Sugino O. 84.  2007. Nonadiabatic couplings from time-dependent density functional theory: formulation in the Casida formalism and practical scheme within modified linear response. J. Chem. Phys. 127:064103 [Google Scholar]
  85. Tavernelli I, Tapavicza E, Rothlisberger U. 85.  2009. Nonadiabatic coupling vectors within linear response time-dependent density functional theory. J. Chem. Phys. 130:124107 [Google Scholar]
  86. Send R, Furche F. 86.  2010. First-order nonadiabatic couplings from time-dependent hybrid density functional response theory: consistent formalism, implementation, and performance. J. Chem. Phys. 132:044107 [Google Scholar]
  87. Hammes-Schiffer S, Tully JC. 87.  1994. Proton transfer in solution: molecular dynamics with quantum transitions. J. Chem. Phys. 101:4657–67 [Google Scholar]
  88. Craig CF, Duncan WR, Prezhdo OV. 88.  2005. Trajectory surface hopping in the time-dependent Kohn-Sham approach for electron-nuclear dynamics. Phys. Rev. Lett. 95:163001 [Google Scholar]
  89. Petersilka M, Gossmann UJ, Gross EKU. 89.  1996. Excitation energies from time-dependent density-functional theory. Phys. Rev. Lett. 76:1212–15 [Google Scholar]
  90. Appel H, Gross EKU, Burke K. 90.  2003. Excitations in time-dependent density-functional theory. Phys. Rev. Lett. 90:043005 [Google Scholar]
  91. Prezhdo OV, Rossky PJ. 91.  1997. Mean-field molecular dynamics with surface hopping. J. Chem. Phys. 107:825–34 [Google Scholar]
  92. Neria E, Nitzan A. 92.  1993. Semiclassical evaluation of nonadiabatic rates in condensed phases. J. Chem. Phys. 99:1109–23 [Google Scholar]
  93. Akimov AV, Prezhdo OV. 93.  2013. The PYXAID program for non-adiabatic molecular dynamics in condensed matter systems. J. Chem. Theory Comput. 9:4959–72 [Google Scholar]
  94. Wang L, Beljonne D, Chen L, Shi Q. 94.  2011. Mixed quantum-classical simulations of charge transport in organic materials: numerical benchmark of the Su-Schrieffer-Heeger model. J. Chem. Phys. 134:244116 [Google Scholar]
  95. Neuhauser D, Lopata K. 95.  2008. Quantum Drude friction for time-dependent density functional theory. J. Chem. Phys. 129:134106 [Google Scholar]
  96. Meng S, Kaxiras E. 96.  2008. Real-time, local basis-set implementation of time-dependent density functional theory for excited state dynamics simulations. J. Chem. Phys. 129:054110 [Google Scholar]
  97. Prezhdo OV, Pereverzev YV. 97.  2000. Quantized Hamilton dynamics. J. Chem. Phys. 113:6557–65 [Google Scholar]
  98. Kilin DS, Pereversev YV, Prezhdo OV. 98.  2004. Electron-nuclear correlations for photo-induced dynamics in molecular dimers. J. Chem. Phys. 120:11209–23 [Google Scholar]
  99. Akimov AV, Prezhdo OV. 99.  2012. Formulation of quantized Hamiltonian dynamics in terms of natural variables. J. Chem. Phys. 137:224115 [Google Scholar]
  100. Wang LJ, Peng Q, Li QK, Shuai Z. 100.  2007. Roles of inter- and intramolecular vibrations and band-hopping crossover in the charge transport in naphthalene crystal. J. Chem. Phys. 127:044506 [Google Scholar]
  101. Wang LJ, Li QK, Shuai Z. 101.  2008. Effects of pressure and temperature on the carrier transports in organic crystal: a first-principles study. J. Chem. Phys. 128:194706 [Google Scholar]
  102. Wang L, Li Q, Shuai Z, Chen L, Shi Q. 102.  2010. Multiscale study of charge mobility of organic semiconductor with dynamic disorders. Phys. Chem. Chem. Phys. 12:3309–14 [Google Scholar]
  103. Cheng Y-C, Silbey RJ. 103.  2008. A unified theory for charge-carrier transport in organic crystals. J. Chem. Phys. 128:114713 [Google Scholar]
  104. Hannewald K, Bobbert PA. 104.  2004. Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals. Phys. Rev. B 69:075212 [Google Scholar]
  105. Fratini S, Ciuchi S. 105.  2003. Dynamical mean-field theory of transport of small polarons. Phys. Rev. Lett. 91:256403 [Google Scholar]
  106. Berkelbach TC, Hybertsen MS, Reichman DR. 106.  2013. Microscopic theory of singlet exciton fission. I. General formulation. J. Chem. Phys. 138:114102 [Google Scholar]
  107. Seidel W, Titkov A, André JP, Voisin P, Voos M. 107.  1994. High-efficiency energy up-conversion by an “Auger fountain” at an InP-AIInas type-II heterojunction. Phys. Rev. Lett. 73:2356–59 [Google Scholar]
  108. Hartmann T, Reineker P, Yudson VI. 108.  2011. Auger release of a deeply trapped carrier in a quantum dot. Phys. Rev. B 84:245317 [Google Scholar]
  109. Sippel P, Albrecht W, Mitoraj D, Eichberger R, Hannappel T, Vanmaekelbergh D. 109.  2013. Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum dot solids. Nano Lett. 13:1655–61 [Google Scholar]
  110. Lindblad G. 110.  1976. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48:119–30 [Google Scholar]
  111. Zurek WH. 111.  2003. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75:715–75 [Google Scholar]
  112. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A, Zwerger W. 112.  1987. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59:1–85 [Google Scholar]
  113. Plenio MB, Knight PL. 113.  1998. The quantum-jump approach to dissipative dynamics in quantum optics. Rev. Mod. Phys. 70:101–44 [Google Scholar]
  114. Strunz WT. 114.  2001. The Brownian motion stochastic Schrödinger equation. Chem. Phys. 268:237–48 [Google Scholar]
  115. Diósi L, Strunz WT. 115.  1997. The non-Markovian stochastic Schrödinger equation for open systems. Phys. Lett. A 235:569–73 [Google Scholar]
  116. Akimov AV, Prezhdo OV. 116.  2014. Advanced capabilities of the PYXAID program: integration schemes, decoherence effects, multiexcitonic states, and field-matter interaction. J. Chem. Theory Comput. 10:789–804 [Google Scholar]
  117. Trotter HF. 117.  1959. On the product of semi-groups of operators. Proc. Am. Math. Soc. 10:545–51 [Google Scholar]
  118. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R. 118.  et al. 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21:395502 [Google Scholar]
  119. Prakash T. 119.  2012. Review on nanostructured semiconductors for dye sensitized solar cells. Electron. Mater. Lett. 8:231–43 [Google Scholar]
  120. Kohler A, dos Santos DA, Beljonne D, Shuai Z, Bredas JL. 120.  et al. 1998. Charge separation in localized and delocalized electronic states in polymeric semiconductors. Nature 392:903–6 [Google Scholar]
  121. Salant A, Shalom M, Tachan Z, Buhbut S, Zaban A, Banin U. 121.  2012. Quantum rod-sensitized solar cell: nanocrystal shape effect on the photovoltaic properties. Nano Lett. 12:2095–100 [Google Scholar]
  122. Moon GD, Ko S, Xia Y, Jeong U. 122.  2010. Chemical transformations in ultrathin chalcogenide nanowires. ACS Nano 4:2307–19 [Google Scholar]
  123. Kim JY, Noh JH, Zhu K, Halverson AF, Neale NR. 123.  et al. 2011. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties. ACS Nano 5:2647–56 [Google Scholar]
  124. Subramanian V, Wolf EE, Kamat PV. 124.  2004. Catalysis with TiO2/gold nanocomposites: effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126:4943–50 [Google Scholar]
  125. Mayer KM, Lee S, Liao H, Rostro BC, Fuentes A. 125.  et al. 2008. A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods. ACS Nano 2:687–92 [Google Scholar]
  126. Park JB, Graciani J, Evans J, Stacchiola D, Senanayake SD. 126.  et al. 2009. Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2(110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. J. Am. Chem. Soc. 132:356–63 [Google Scholar]
  127. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC. 127.  et al. 2008. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100:016602 [Google Scholar]
  128. Chen L, Wang L, Shuai Z, Beljonne D. 128.  2013. Energy level alignment and charge carrier mobility in noncovalently functionalized graphene. J. Phys. Chem. Lett. 4:2158–65 [Google Scholar]
  129. Williams G, Seger B, Kamat PV. 129.  2008. TiO2-graphene nanocomposites: UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–91 [Google Scholar]
  130. Zhang H, Lv X, Li Y, Wang Y, Li J. 130.  2009. P25-graphene composite as a high performance photocatalyst. ACS Nano 4:380–86 [Google Scholar]
  131. Manga KK, Zhou Y, Yan Y, Loh KP. 131.  2009. Multilayer hybrid films consisting of alternating graphene and titania nanosheets with ultrafast electron transfer and photoconversion properties. Adv. Funct. Mater. 19:3638–43 [Google Scholar]
  132. Wei HH-Y, Evans CM, Swartz BD, Neukirch AJ, Young J. 132.  et al. 2012. Colloidal semiconductor quantum dots with tunable surface composition. Nano Lett. 12:4465–71 [Google Scholar]
  133. Inerbaev TM, Masunov AE, Khondaker SI, Dobrinescu A, Plamadă A-V, Kawazoe Y. 133.  2009. Quantum chemistry of quantum dots: effects of ligands and oxidation. J. Chem. Phys. 131:044106 [Google Scholar]
  134. Yang Y, Rodríguez-Córdoba W, Lian T. 134.  2011. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot–methylene blue complexes probed by electron and hole intraband transitions. J. Am. Chem. Soc. 133:9246–49 [Google Scholar]
  135. Bang JH, Kamat PV. 135.  2011. CdSe quantum dot–fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry. ACS Nano 5:9421–27 [Google Scholar]
  136. Marcus RA. 136.  1956. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24:966–78 [Google Scholar]
  137. Marcus RA. 137.  1965. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43:679–701 [Google Scholar]
  138. Brus LE. 138.  1983. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79:5566–71 [Google Scholar]
  139. Caruso D, Troisi A. 139.  2012. Long-range exciton dissociation in organic solar cells. PNAS 109:13498–502 [Google Scholar]
  140. Cappel UB, Dowland SA, Reynolds LX, Dimitrov S, Haque SA. 140.  2013. Charge generation dynamics in CdS:P3HT blends for hybrid solar cells. J. Phys. Chem. Lett. 4:4253–57 [Google Scholar]
  141. Fujishima A, Honda K. 141.  1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38 [Google Scholar]
  142. Ni M, Leung MKH, Leung DYC, Sumathy K. 142.  2007. A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew. Sustain. Energy Rev. 11:401–25 [Google Scholar]
  143. Woodhouse M, Parkinson BA. 143.  2009. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 38:197–210 [Google Scholar]
  144. Maeda K, Teramura K, Lu D, Takata T, Saito N. 144.  et al. 2006. Photocatalyst releasing hydrogen from water. Nature 440:295 [Google Scholar]
  145. Smith MB, Michl J. 145.  2010. Singlet fission. Chem. Rev. 110:6891–936 [Google Scholar]
  146. Smith MB, Michl J. 146.  2013. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64:361–86 [Google Scholar]
  147. Beljonne D, Yamagata H, Brédas JL, Spano FC, Olivier Y. 147.  2013. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 110:226402 [Google Scholar]
  148. Rao A, Wilson MWB, Hodgkiss JM, Albert-Seifried S, Bässler H, Friend RH. 148.  2010. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132:12698–703 [Google Scholar]
  149. Anthony JE. 149.  2010. Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem. Mater. 23:583–90 [Google Scholar]
  150. Stranks SD, Weisspfennig C, Parkinson P, Johnston MB, Herz LM, Nicholas RJ. 150.  2010. Ultrafast charge separation at a polymer-single-walled carbon nanotube molecular junction. Nano Lett. 11:66–72 [Google Scholar]
  151. Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R. 151.  1995. Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys. Rev. B 51:12947–57 [Google Scholar]
  152. Koskinen P, Mäkinen V. 152.  2009. Density-functional tight-binding for beginners. Comput. Mater. Sci. 47:237–53 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121359
Loading
/content/journals/10.1146/annurev-physchem-040214-121359
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error