1932

Abstract

This article is a rough, quirky overview of both the history and present state of the art of density functional theory. The field is so huge that no attempt to be comprehensive is made. We focus on the underlying exact theory, the origin of approximations, and the tension between empirical and nonempirical approaches. Many ideas are illustrated on the exchange energy and hole. Features unique to this article include how approximations can be systematically derived in a nonempirical fashion and a survey of warm dense matter.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121420
2015-04-01
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121420.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121420&mimeType=html&fmt=ahah

Literature Cited

  1. Wong SD, Srnec M, Matthews ML, Liu LV, Kwak Y. 1.  et al. 2013. Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature 499:320–23 [Google Scholar]
  2. Knudson MD, Desjarlais MP, Lemke RW, Mattsson TR, French M. 2.  et al. 2012. Probing the interiors of the ice giants: shock compression of water to 700 GPa and 3.8 g/cm3. Phys. Rev. Lett. 108:091102 [Google Scholar]
  3. Rappoport D, Crawford NRM, Furche F, Burke K. 3.  2009. Approximate density functionals: Which should I choose?. Computational Inorganic and Bioinorganic Chemistry E Solomon, R King, R Scott 159–72 New York: Wiley [Google Scholar]
  4. Burke K, Wagner LO. 4.  2012. DFT in a nutshell. Int. J. Quant. Chem. 113:96–101 [Google Scholar]
  5. Parr RG, Yang W. 5.  1989. Density Functional Theory of Atoms and Molecules New York: Oxford Univ. Press
  6. Dreizler RM, Gross EKU. 6.  1990. Density Functional Theory: An Approach to the Quantum Many-Body Problem Berlin: Springer-Verlag
  7. Burke K. 7.  2012. Perspective on density functional theory. J. Chem. Phys. 136:150901 [Google Scholar]
  8. Jones RO. 8.  2012. Density functional theory: a personal view. Strongly Correlated Systems A Avella, F Mancini 1–28 Berlin: Springer-Verlag [Google Scholar]
  9. Zangwill A. 9.  2014. The education of Walter Kohn and the creation of density functional theory. Arch. Hist. Exact Sci. 68775–848
  10. Schrödinger E. 10.  1926. An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28:1049–70 [Google Scholar]
  11. Thomas LH. 11.  1927. The calculation of atomic fields. Math. Proc. Camb. Philos. Soc. 23:542–48 [Google Scholar]
  12. Fermi E. 12.  1927. Un metodo statistico per la determinazione di alcune proprietà dell'atomo. Rend. Acc. Naz. Lincei 6:602–7 [Google Scholar]
  13. Fermi E. 13.  1928. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente (A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements). Z. Phys. A 48:73–79 [Google Scholar]
  14. Slater JC. 14.  1951. A simplification of the Hartree-Fock method. Phys. Rev. 81:385–90 [Google Scholar]
  15. Fock V. 15.  1930. Näherungsmethode zur lösung des quantenmechanischen mehrkörperproblems. Z. Phys. 61:126–48 [Google Scholar]
  16. Hartree DR, Hartree W. 16.  1935. Self-consistent field, with exchange, for beryllium. Proc. R. Soc. Lond. A 150:9–33 [Google Scholar]
  17. Hohenberg P, Kohn W. 17.  1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71 [Google Scholar]
  18. Teller E. 18.  1962. On the stability of molecules in the Thomas-Fermi theory. Rev. Mod. Phys. 34:627–31 [Google Scholar]
  19. Kurth S, Perdew JP. 19.  2000. Role of the exchange-correlation energy: Nature's glue. Int. J. Quantum Chem. 77:814–18 [Google Scholar]
  20. Bartlett RJ, Musial M. 20.  2007. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79:291–352 [Google Scholar]
  21. Kohn W, Sham LJ. 21.  1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38 [Google Scholar]
  22. Perdew J. 22.  1986. Density functional approximation for the correlation energy of the inhomogeneous gas. Phys. Rev. B 33:8822–24 [Google Scholar]
  23. Becke AD. 23.  1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38:3098–100 [Google Scholar]
  24. Becke AD. 24.  1993. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–52 [Google Scholar]
  25. Perdew JP, Schmidt K. 25.  2001. Jacob's ladder of density functional approximations for the exchange-correlation energy. Density Functional Theory and Its Applications to Materials VEV Doren, KV Alsenoy, P Geerlings 1–20 Melville, NY: Am. Inst. Phys. [Google Scholar]
  26. Perdew JP, Kurth S. 26.  2003. Density functionals for non-relativistic Coulomb systems in the new century. See Reference 36 1–55
  27. Tao J, Perdew JP, Staroverov VN, Scuseria GE. 27.  2003. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91:146401 [Google Scholar]
  28. Perdew JP, Burke K, Ernzerhof M. 28.  1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68 Erratum. Phys. Rev. Lett. 78:1396 [Google Scholar]
  29. Perdew JP, Burke K, Ernzerhof M. 29.  1998. Perdew, Burke, and Ernzerhof reply. Phys. Rev. Lett. 80:891 [Google Scholar]
  30. Lee C, Yang W, Parr RG. 30.  1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:785–89 [Google Scholar]
  31. Froese Fischer C. 31.  1969. A multi-configuration Hartree-Fock program. Comput. Phys. Commun. 1:151–66 [Google Scholar]
  32. Froese Fischer C. 32.  1977. Hartree-Fock Method for Atoms: A Numerical Approach New York: Wiley
  33. Dirac PAM. 33.  1930. Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Philos. Soc. 26:376–85 [Google Scholar]
  34. Schwinger J. 34.  1981. Thomas-Fermi model: the second correction. Phys. Rev. A 24:2353–61 [Google Scholar]
  35. Handy NC, Cohen AJ. 35.  2001. Left-right correlation energy. Mol. Phys. 99:403–12 [Google Scholar]
  36. Fiolhais C, Nogueira F, Marques M. 36.  2003. A Primer in Density Functional Theory New York: Springer-Verlag
  37. Kim M-C, Sim E, Burke K. 37.  2013. Understanding and reducing errors in density functional calculations. Phys. Rev. Lett. 111:073003 [Google Scholar]
  38. Kim M-C, Sim E, Burke K. 38.  2014. Ions in solution: density corrected density functional theory (DC-DFT). J. Chem. Phys. 140:18A528 [Google Scholar]
  39. Baerends EJ, Gritsenko OV, van Meer R. 39.  2013. The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies. Phys. Chem. Chem. Phys. 15:16408–25 [Google Scholar]
  40. Heyd J, Scuseria GE, Ernzerhof M. 40.  2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–15 [Google Scholar]
  41. Kronik L, Stein T, Refaely-Abramson S, Baer R. 41.  2012. Excitation gaps of finite-sized systems from optimally tuned range-separated hybrid functionals. J. Chem. Theory Comput. 8:1515–31 [Google Scholar]
  42. Refaely-Abramson S, Sharifzadeh S, Jain M, Baer R, Neaton JB, Kronik L. 42.  2013. Gap renormalization of molecular crystals from density-functional theory. Phys. Rev. B 88:081204 [Google Scholar]
  43. Jones R, Gunnarsson O. 43.  1989. The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61:689–746 [Google Scholar]
  44. Gross EKU, Dobson JF, Petersilka M. 44.  1996. Density functional theory of time-dependent phenomena. Top. Curr. Chem. 181:81–172 [Google Scholar]
  45. Andersson Y, Langreth D, Lunqvist B. 45.  1996. van der Waals interactions in density-functional theory. Phys. Rev. Lett. 76:102–5 [Google Scholar]
  46. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI. 46.  2004. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92:246401 [Google Scholar]
  47. Soler JM, Artacho E, Gale JD, García A, Junquera J. 47.  et al. 2002. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14:2745–79 [Google Scholar]
  48. Lee K, Kelkkanen AK, Berland K, Andersson S, Langreth DC. 48.  et al. 2011. Evaluation of a density functional with account of van der Waals forces using experimental data of H2 physisorption on Cu(111). Phys. Rev. B 84:193408 [Google Scholar]
  49. Grimme S. 49.  2006. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27:1787–99 [Google Scholar]
  50. Jurecka P, Sponer J, Cerny J, Hobza P. 50.  2006. Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 8:1985–93 [Google Scholar]
  51. Tkatchenko A, Scheffler M. 51.  2009. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102:073005 [Google Scholar]
  52. Zhang G-X, Tkatchenko A, Paier J, Appel H, Scheffler M. 52.  2011. Van der Waals interactions in ionic and semiconductor solids. Phys. Rev. Lett. 107:245501 [Google Scholar]
  53. Warshel A, Levitt M. 53.  1976. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:227–49 [Google Scholar]
  54. Levitt M. 54.  2001. The birth of computational structural biology. Nat. Struct. Biol. 8:392–93 [Google Scholar]
  55. Karplus M. 55.  2006. Spinach on the ceiling: a theoretical chemist's return to biology. Annu. Rev. Biophys. Biomol. Struct. 35:1–47 [Google Scholar]
  56. Car R, Parrinello M. 56.  1985. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55:2471–74 [Google Scholar]
  57. Iftimie R, Minary P, Tuckerman ME. 57.  2005. Ab initio molecular dynamics: concepts, recent developments, and future trends. Proc. Natl. Acad. Sci. USA 102:6654–59 [Google Scholar]
  58. Ufimtsev IS, Luehr N, Martínez TJ. 58.  2011. Charge transfer and polarization in solvated proteins from ab initio molecular dynamics. J. Phys. Chem. Lett. 2:1789–93 [Google Scholar]
  59. Wang YA, Carter EA. 59.  2000. Orbital-free kinetic-energy density functional theory. Theoretical Methods in Condensed Phase Chemistry SD Schwartz 117–84 Dordrecht: Kluwer [Google Scholar]
  60. Karasiev VV, Jones RS, Trickey SB, Harris FE. 60.  2009. Properties of constraint-based single-point approximate kinetic energy functionals. Phys. Rev. B 80:245120 [Google Scholar]
  61. Karasiev VV, Jones RS, Trickey SB, Harris FE. 61.  2013. Erratum: Properties of constraint-based single-point approximate kinetic energy functionals [Phys. Rev. B 80:245120 (2009)]. Phys. Rev. B 87:239903 [Google Scholar]
  62. Karasiev V, Trickey S. 62.  2012. Issues and challenges in orbital-free density functional calculations. Comput. Phys. Commun. 183:2519–27 [Google Scholar]
  63. Snyder JC, Rupp M, Hansen K, Mueller K-R, Burke K. 63.  2012. Finding density functionals with machine learning. Phys. Rev. Lett. 108:253002 [Google Scholar]
  64. Koch W, Holthausen MC. 64.  2002. A Chemist's Guide to Density Functional Theory Weinheim: Wiley-VCH, 2nd ed..
  65. Cangi A, Lee D, Elliott P, Burke K, Gross EKU. 65.  2011. Electronic structure via potential functional approximations. Phys. Rev. Lett. 106:236404 [Google Scholar]
  66. Cangi A, Gross EKU, Burke K. 66.  2013. Potential functionals versus density functionals. Phys. Rev. A 88:062505 [Google Scholar]
  67. Lin H, Truhlar D. 67.  2007. QM/MM: What have we learned, where are we, and where do we go from here?. Theor. Chem. Acc. 117:185–99 [Google Scholar]
  68. Elliott P, Burke K, Cohen MH, Wasserman A. 68.  2010. Partition density-functional theory. Phys. Rev. A 82:024501 [Google Scholar]
  69. Cohen M, Wasserman A. 69.  2006. On hardness and electronegativity equalization in chemical reactivity theory. J. Stat. Phys. 125:1121–39 [Google Scholar]
  70. Cohen MH, Wasserman A. 70.  2007. On the foundations of chemical reactivity theory. J. Phys. Chem. A 111:2229–42 [Google Scholar]
  71. Gross EKU, Oliveira LN, Kohn W. 71.  1988. Density-functional theory for ensembles of fractionally occupied states. I. Basic formalism. Phys. Rev. A 37:2809–20 [Google Scholar]
  72. Pribram-Jones A, Yang Z-H, Trail JR, Burke K, Needs RJ, Ullrich CA. 72.  2014. Excitations and benchmark ensemble density functional theory for two electrons. J. Chem. Phys. 140:18A541 [Google Scholar]
  73. Tang R, Nafziger J, Wasserman A. 73.  2012. Fragment occupations in partition density functional theory. Phys. Chem. Chem. Phys. 14:7780–86 [Google Scholar]
  74. Nafziger J, Wasserman A. 74.  2014. Density-based partition methods for ground-state molecular calculations. J. Phys. Chem. A 118:7623–39 [Google Scholar]
  75. Manby FR, Stella M, Goodpaster JD, Miller TF. 75.  2012. A simple, exact density-functional-theory embedding scheme. J. Chem. Theory Comput. 8:2564–68 [Google Scholar]
  76. Barnes TA, Goodpaster JD, Manby FR, Miller TF. 76.  2013. Accurate basis set truncation for wavefunction embedding. J. Chem. Phys. 139:024103 [Google Scholar]
  77. Goodpaster JD, Barnes TA, Manby FR, Miller TF. 77.  2014. Accurate and systematically improvable density functional theory embedding for correlated wavefunctions. J. Chem. Phys. 140:18A507 [Google Scholar]
  78. Knizia G, Chan GK-L. 78.  2012. Density matrix embedding: a simple alternative to dynamical mean-field theory. Phys. Rev. Lett. 109:186404 [Google Scholar]
  79. Knizia G, Chan GK-L. 79.  2013. Density matrix embedding: a strong-coupling quantum embedding theory. J. Theory Comput. 9:1428–32 [Google Scholar]
  80. White SR. 80.  1992. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69:2863–66 [Google Scholar]
  81. White SR. 81.  1993. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48:10345–56 [Google Scholar]
  82. Langreth D, Perdew J. 82.  1975. The exchange-correlation energy of a metallic surface. Solid State Commun. 17:1425–29 [Google Scholar]
  83. Gunnarsson O, Lundqvist B. 83.  1976. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13:4274–98 [Google Scholar]
  84. Ernzerhof E, Burke K, Perdew JP. 84.  1996. Long-range asymptotic behavior of ground-state wavefunctions. J. Chem. Phys. 105:2798–803 [Google Scholar]
  85. Ernzerhof M, Perdew J. 85.  1998. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 109:3313–20 [Google Scholar]
  86. Becke A. 86.  1997. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107:8554–60 [Google Scholar]
  87. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Fiolhais C. 87.  1992. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46:6671–87 [Google Scholar]
  88. Perdew J, Chevary J, Vosko S, Jackson K, Pederson M. 88.  et al. 1993. Erratum: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [Phys. Rev. B 46, 6671 (1992)]. Phys. Rev. B 48:4978 [Google Scholar]
  89. Burke K, Perdew JP, Wang Y. 89.  1997. Derivation of a generalized gradient approximation: the PW91 density functional. Electronic Density Functional Theory: Recent Progress and New Directions JF Dobson, G Vignale, MP Das 81–111 New York: Plenum [Google Scholar]
  90. Cancio AC, Fong CY. 90.  2012. Scaling properties of exchange and correlation holes of the valence shell of second-row atoms. Phys. Rev. A 85:042515 [Google Scholar]
  91. Johnson ER, Becke AD. 91.  2006. Van der Waals interactions from the exchange hole dipole moment: application to bio-organic benchmark systems. Chem. Phys. Lett. 432:600–3 [Google Scholar]
  92. Becke AD, Johnson ER. 92.  2007. A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations. J. Chem. Phys. 127:124108 [Google Scholar]
  93. Becke AD, Johnson ER. 93.  2007. Exchange-hole dipole moment and the dispersion interaction revisited. J. Chem. Phys. 127:154108 [Google Scholar]
  94. Otero-de-la Roza A, Cao BH, Price IK, Hein JE, Johnson ER. 94.  2014. Predicting the relative solubilities of racemic and enantiopure crystals by density-functional theory. Angew. Chem. Int. Ed. Engl. 53:7879–82 [Google Scholar]
  95. Becke A, Johnson E. 95.  2006. Exchange-hole dipole moment and the dispersion interaction: high-order dispersion coefficients. J. Chem. Phys. 124:014104 [Google Scholar]
  96. Fuchs M, Niquet Y-M, Gonze X, Burke K. 96.  2005. Describing static correlation in bond dissociation by Kohn-Sham density functional theory. J. Chem. Phys. 122:094116 [Google Scholar]
  97. Cohen AJ, Mori-Sánchez P, Yang W. 97.  2008. Insights into current limitations of density functional theory. Science 321:792–94 [Google Scholar]
  98. Furche F. 98.  2008. Developing the random phase approximation into a practical post-Kohn-Sham correlation model. J. Chem. Phys. 129:114105 [Google Scholar]
  99. Eshuis H, Yarkony J, Furche F. 99.  2010. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. J. Chem. Phys. 132:234114 [Google Scholar]
  100. Eshuis H, Furche F. 100.  2011. A parameter-free density functional that works for noncovalent interactions. J. Phys. Chem. Lett. 2:983–89 [Google Scholar]
  101. van Aggelen H, Yang Y, Yang W. 101.  2014. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation. J. Chem. Phys. 140:18A511 [Google Scholar]
  102. Peng D, Steinmann SN, van Aggelen H, Yang W. 102.  2013. Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles. J. Chem. Phys. 139:104112 [Google Scholar]
  103. Perdew JP, Kurth S, Zupan A, Blaha P. 103.  1999. Accurate density functional with correct formal properties: a step beyond the generalized gradient approximation. Phys. Rev. Lett. 82:2544–47 [Google Scholar]
  104. Sun J, Haunschild R, Xiao B, Bulik IW, Scuseria GE, Perdew JP. 104.  2013. Semilocal and hybrid meta-generalized gradient approximations based on the understanding of the kinetic-energy-density dependence. J. Chem. Phys. 138:044113 [Google Scholar]
  105. Lieb E, Simon B. 105.  1973. Thomas-Fermi theory revisited. Phys. Rev. Lett. 31:681–83 [Google Scholar]
  106. Lieb EH, Simon B. 106.  1977. The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23:22–116 [Google Scholar]
  107. Lieb EH. 107.  1981. Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53:603–41 [Google Scholar]
  108. Elliott P, Burke K. 108.  2009. Non-empirical derivation of the parameter in the B88 exchange functional. Can. J. Chem. Ecol. 87:1485–91 [Google Scholar]
  109. Ernzerhof M, Scuseria GE. 109.  1999. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J. Chem. Phys. 110:5029–36 [Google Scholar]
  110. Armiento R, Mattsson A. 110.  2005. Functional designed to include surface effects in self-consistent density functional theory. Phys. Rev. B 72:085108 [Google Scholar]
  111. Mattsson AE, Armiento R. 111.  2009. Implementing and testing the AM05 spin density functional. Phys. Rev. B 79:155101 [Google Scholar]
  112. Mattsson AE, Armiento R. 112.  2010. The subsystem functional scheme: the Armiento-Mattsson 2005 (AM05) functional and beyond. Int. J. Quantum Chem. 110:2274–82 [Google Scholar]
  113. Cangi A, Lee D, Elliott P, Burke K. 113.  2010. Leading corrections to local approximations. Phys. Rev. B 81:235128 [Google Scholar]
  114. Mermin ND. 114.  1965. Thermal properties of the inhomogenous electron gas. Phys. Rev. 137:A1441–43 [Google Scholar]
  115. Pribram-Jones A, Pittalis S, Gross E, Burke K. 115.  2014. Thermal density functional theory in context. See Reference 117 25–60
  116. 116. Comm. High Energy Density Plasma Phys., Plasma Sci. Comm 2003. Frontiers in High Energy Density Physics: The X-Games of Contemporary Science Washington, DC: Natl. Acad. Press
  117. Graziani F, Desjarlais MP, Redmer R, Trickey SB. 117.  2014. Frontiers and Challenges in Warm Dense Matter New York: Springer
  118. Mattsson TR, Desjarlais MP. 118.  2006. Phase diagram and electrical conductivity of high energy-density water from density functional theory. Phys. Rev. Lett. 97:017801 [Google Scholar]
  119. Desjarlais MP, Kress JD, Collines LA. 119.  2002. Electrical conductivity for warm, dense aluminum plasmas and liquids. Phys. Rev. E 66:025401 [Google Scholar]
  120. Desjarlais MP. 120.  2003. Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing. Phys. Rev. B 68:064204 [Google Scholar]
  121. Holst B, Redmer R, Desjarlais MP. 121.  2008. Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. Phys. Rev. B 77:184201 [Google Scholar]
  122. Kietzmann A, Redmer R, Desjarlais MP, Mattsson TR. 122.  2008. Complex behavior of fluid lithium under extreme conditions. Phys. Rev. Lett. 101:070401 [Google Scholar]
  123. Knudson MD, Desjarlais MP. 123.  2009. Shock compression of quartz to 1.6 TPa: redefining a pressure standard. Phys. Rev. Lett. 103:225501 [Google Scholar]
  124. Root S, Magyar RJ, Carpenter JH, Hanson DL, Mattsson TR. 124.  2010. Shock compression of a fifth period element: liquid xenon to 840 GPa. Phys. Rev. Lett. 105:085501 [Google Scholar]
  125. Eschrig H. 125.  2010. T > 0 ensemble-state density functional theory via Legendre transform. Phys. Rev. B 82:205120 [Google Scholar]
  126. Pittalis S, Proetto CR, Floris A, Sanna A, Bersier C. 126.  et al. 2011. Exact conditions in finite-temperature density-functional theory. Phys. Rev. Lett. 107:163001 [Google Scholar]
  127. Dufty JW, Trickey SB. 127.  2011. Scaling, bounds, and inequalities for the noninteracting density functionals at finite temperature. Phys. Rev. B 84:125118 [Google Scholar]
  128. Karasiev VV, Sjostrom T, Trickey SB. 128.  2012. Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations. Phys. Rev. B 86:115101 [Google Scholar]
  129. Karasiev VV, Chakraborty D, Shukruto OA, Trickey SB. 129.  2013. Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Phys. Rev. B 88:161108 [Google Scholar]
  130. Sjostrom T, Daligault J. 130.  2013. Nonlocal orbital-free noninteracting free-energy functional for warm dense matter. Phys. Rev. B 88:195103 [Google Scholar]
  131. Cangi A, Pribram-Jones A. 131.  2014. Bypassing the malfunction junction in warm dense matter simulations. arXiv:1411.1532 [physics.chem-ph] [Google Scholar]
  132. Baer R, Neuhauser D, Rabani E. 132.  2013. Self-averaging stochastic Kohn-Sham density-functional theory. Phys. Rev. Lett. 111:106402 [Google Scholar]
  133. Medford AJ, Wellendorff J, Vojvodic A, Studt F, Abild-Pedersen F. 133.  et al. 2014. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345:197–200 [Google Scholar]
  134. Snyder JC, Rupp M, Hansen K, Blooston L, Mller K-R, Burke K. 134.  2013. Orbital-free bond breaking via machine learning. J. Chem. Phys. 139:224104 [Google Scholar]
  135. Schusteritsch G, Kaxiras E. 135.  2012. Sulfur-induced embrittlement of nickel: a first-principles study. Model. Simul. Mater. Sci. Eng. 20:065007 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121420
Loading
/content/journals/10.1146/annurev-physchem-040214-121420
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error