The liquid interface is a narrow, highly anisotropic region, characterized by rapidly varying density, polarity, and molecular structure. I review several aspects of interfacial solvation and show how these affect reactivity at liquid/liquid interfaces. I specifically consider ion transfer, electron transfer, and S2 reactions, showing that solvent effects on these reactions can be understood by examining the unique structure and dynamics of the liquid interface region.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adamson AW. 1.  1990. Physical Chemistry of Surfaces New York: Wiley [Google Scholar]
  2. Girault HH, Schiffrin DJ. 2.  1989. Electrochemistry of liquid-liquid interfaces. Electroanalytical Chemistry AJ Bard 1–141 New York: Dekker [Google Scholar]
  3. Shen YR. 3.  1989. Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:519–25 [Google Scholar]
  4. Eisenthal KB. 4.  1996. Liquid interfaces by second-harmonic and sum-frequency spectroscopy. Chem. Rev. 96:1343–60 [Google Scholar]
  5. Richmond GL. 5.  2002. Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem. Rev. 102:2693–724 [Google Scholar]
  6. Eisenthal KB. 6.  2006. Second harmonic spectroscopy of aqueous nano- and microparticle interfaces. Chem. Rev. 106:1462–77 [Google Scholar]
  7. Geiger FM. 7.  2009. Second harmonic generation, sum frequency generation, and χ(3): dissecting environmental interfaces with a nonlinear optical Swiss army knife. Annu. Rev. Phys. Chem. 60:61–83 [Google Scholar]
  8. Pomfret MB, Owrutsky JC, Walker RA. 8.  2010. In situ optical studies of solid-oxide fuel cells. Annu. Rev. Anal. Chem. 3:151–74 [Google Scholar]
  9. Schlossman ML. 9.  2002. Liquid-liquid interfaces: studied by X-ray and neutron scattering. Curr. Opin. Colloid Interface Sci. 7:235–43 [Google Scholar]
  10. Luo G, Malkova S, Pingali SV, Schultz DG, Lin B. 10.  et al. 2005. X-ray studies of the interface between two polar liquids: neat and with electrolytes. Faraday Discuss. 129:23–34 Discussion Faraday Discuss. 129:89–109 [Google Scholar]
  11. Bard AJ, Mirkin MV. 11.  2001. Scanning Electrochemical Microscopy New York: Dekker [Google Scholar]
  12. Henderson D. 12.  1992. Fundamentals of Inhomogeneous Fluids New York: Dekker [Google Scholar]
  13. Benjamin I. 13.  1997. Molecular structure and dynamics at liquid-liquid interfaces. Annu. Rev. Phys. Chem. 48:407–51 [Google Scholar]
  14. Pratt LR, Pohorille A. 14.  2002. Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chem. Rev. 102:2671–91 [Google Scholar]
  15. Chang TM, Dang LX. 15.  2006. Recent advances in molecular simulations of ion solvation at liquid interfaces. Chem. Rev. 106:1305–22 [Google Scholar]
  16. Jungwirth P, Tobias DJ. 16.  2006. Specific ion effects at the air/water interface. Chem. Rev. 106:1259–81 [Google Scholar]
  17. Schoen M, Klapp SHL. 17.  2007. Reviews in Computational Chemistry 24 KB Lipkowitz, DB Boyd New York: Wiley [Google Scholar]
  18. Rowlinson JS, Widom B. 18.  1982. Molecular Theory of Capillarity Oxford: Clarendon [Google Scholar]
  19. Luo G, Malkova S, Yoon J, Schultz DG, Lin B. 19.  et al. 2006. Ion distributions near a liquid-liquid interface. Science 311:216–18 [Google Scholar]
  20. Luo G, Malkova S, Yoon J, Schultz DG, Lin B. 20.  et al. 2006. Ion distributions at the nitrobenzene-water interface electrified by a common ion. J. Electroanal. Chem. 593:142–58 [Google Scholar]
  21. Darve E, Pohorille A. 21.  2001. Calculating free energies using average force. J. Chem. Phys. 115:9169–83 [Google Scholar]
  22. Petersen PB, Saykally RJ. 22.  2006. On the nature of ions at the liquid water surface. Annu. Rev. Phys. Chem. 57:333–64 [Google Scholar]
  23. Vácha R, Uhlig F, Jungwirth P. 23.  2014. Charges at aqueous interfaces: development of computational approaches in direct contact with experiment. Adv. Chem. Phys. 155:69–96 [Google Scholar]
  24. Nagatani H, Harada M, Tanida H, Sakae H, Imura H. 24.  2014. Communication: Coordination structure of bromide ions associated with hexyltrimethylammonium cations at liquid/liquid interfaces under potentiostatic control as studied by total-reflection X-ray absorption fine structure. J. Chem. Phys. 140:101101 [Google Scholar]
  25. Wilson MA, Pohorille A. 25.  1991. Interaction of monovalent ions with the water liquid-vapor interface: a molecular dynamics study. J. Chem. Phys. 95:6005–13 [Google Scholar]
  26. Benjamin I. 26.  1991. Theoretical study of ion solvation at the water liquid-vapor interface. J. Chem. Phys. 95:3698–709 [Google Scholar]
  27. Dang LX. 27.  2002. Computational study of ion binding to the liquid interface of water. J. Phys. Chem. B 106:10388–94 [Google Scholar]
  28. Chorny I, Benjamin I. 28.  2005. Hydration shell exchange dynamics during ion transfer across the liquid/liquid interface. J. Phys. Chem. B 109:16455–62 [Google Scholar]
  29. Wick CA, Xantheas SS. 29.  2009. Computational investigation of the first solvation shell structure of interfacial and bulk aqueous chloride and iodide ions. J. Phys. Chem. B 113:4141–46 [Google Scholar]
  30. Warren GL, Patel S. 30.  2008. Comparison of the solvation structure of polarizable and nonpolarizable ions in bulk water and near the aqueous liquid-vapor interface. J. Phys. Chem. C 112:7455–67 [Google Scholar]
  31. Rose D, Benjamin I. 31.  2009. Free energy of transfer of hydrated ion clusters from water to an immiscible organic solvent. J. Phys. Chem. B 113:9296–303 [Google Scholar]
  32. Uhlig F, Marsalek O, Jungwirth P. 32.  2013. Electron at the surface of water: dehydrated or not?. J. Phys. Chem. Lett. 4:338–43 [Google Scholar]
  33. Benjamin I. 33.  1993. Mechanism and dynamics of ion transfer across a liquid-liquid interface. Science 261:1558–60 [Google Scholar]
  34. Schweighofer KJ, Benjamin I. 34.  1995. Transfer of small ions across the water/1,2-dichloroethane interface. J. Phys. Chem. 99:9974–85 [Google Scholar]
  35. Dang LX. 35.  1999. Computer simulation studies of ion transport across a liquid/liquid interface. J. Phys. Chem. B 103:8195–200 [Google Scholar]
  36. Schweighofer KJ, Benjamin I. 36.  1999. Transfer of a tetra methyl ammonium ion across the water-nitrobenzene interface: potential of mean force and non-equilibrium dynamics. J. Phys. Chem. A 103:10274–79 [Google Scholar]
  37. Wick CD, Dang LX. 37.  2006. Distribution, structure, and dynamics of cesium and iodide ions at the H2O-CCl4 and H2O-vapor interfaces. J. Phys. Chem. B 110:6824–31 [Google Scholar]
  38. Wick CD, Dang LX. 38.  2008. Molecular dynamics study of ion transfer and distribution at the interface of water and 1,2-dichlorethane. J. Phys. Chem. C 112:647–49 [Google Scholar]
  39. Wick CD, Dang LX. 39.  2008. Recent advances in understanding transfer ions across aqueous interfaces. Chem. Phys. Lett. 458:1–5 [Google Scholar]
  40. Benjamin I. 40.  2008. Structure and dynamics of hydrated ions in a water-immiscible organic solvent. J. Phys. Chem. B 112:15801–6 [Google Scholar]
  41. Wick CD, Cummings OT. 41.  2011. Understanding the factors that contribute to ion interfacial behavior. Chem. Phys. Lett. 513:161–66 [Google Scholar]
  42. Noah-Vanhoucke J, Geissler PL. 42.  2009. On the fluctuations that drive small ions toward, and away from, interfaces between polar liquids and their vapors. Proc. Natl. Acad. Sci. USA 106:15125–30 [Google Scholar]
  43. Vieceli J, Chorny I, Benjamin I. 43.  2002. Vibrational relaxation at water surfaces. J. Chem. Phys. 117:4532–41 [Google Scholar]
  44. Chorny I, Benjamin I. 44.  2004. Molecular dynamics study of the vibrational relaxation of OCl and OCl in the bulk and the surface of water and acetonitrile. J. Mol. Liq. 110:133–39 [Google Scholar]
  45. Benjamin I. 45.  2006. Static and dynamic electronic spectroscopy at liquid interfaces. Chem. Rev. 106:1212–33 [Google Scholar]
  46. Benjamin I. 46.  2009. Solute dynamics at aqueous interfaces. Chem. Phys. Lett. 469:229–41 [Google Scholar]
  47. Chandler D. 47.  1978. Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys. 68:2959–70 [Google Scholar]
  48. Hynes JT. 48.  1985. The theory of reactions in solution. The Theory of Chemical Reactions M Baer 171–234 Boca Raton, FL: CRC [Google Scholar]
  49. Berne BJ, Borkovec M, Straub JE. 49.  1988. Classical and modern methods in reaction rate theory. J. Phys. Chem. 92:3711–25 [Google Scholar]
  50. Whitnell RM, Wilson KR. 50.  1993. Computational molecular dynamics of chemical reactions in solution. Reviews in Computational Chemistry 4 KB Lipkowitz, DB Boyd 67–148 New York: VCH [Google Scholar]
  51. Fleming GR. 51.  1986. Chemical Applications of Ultrafast Spectroscopy New York: Oxford Univ. Press [Google Scholar]
  52. Benjamin I. 52.  2002. Chemical reaction dynamics at liquid interfaces: a computational approach. Prog. React. Kinet. Mech. 27:87–126 [Google Scholar]
  53. Wang SZ, Bianco R, Hynes JT. 53.  2011. An atmospherically relevant acid: HNO3. Comput. Theor. Chem. 965:340–45 [Google Scholar]
  54. Volkov AG, Deamer DW. 54.  1996. Liquid-Liquid Interfaces Boca Raton, FL: CRC [Google Scholar]
  55. Dryfe RAW. 55.  2009. The electrified liquid-liquid interface. Adv. Chem. Phys. 141:153–215 [Google Scholar]
  56. Mirkin MV, Tsionsky M. 56.  2012. Charge transfer processes at the liquid-liquid interface. Scanning Electrochemical Microscopy AJ Bard, MV Mirkin 191–231 Boca Raton, FL: CRC [Google Scholar]
  57. Sanchez Vallejo LJ, Ovejero JM, Fernández RA, Dassie SA. 57.  2012. Simple ion transfer at liquid/liquid interfaces. Int. J. Electrochem. 2012:462197 [Google Scholar]
  58. Scholz F. 58.  2006. Recent advances in the electrochemistry of ion transfer processes at liquid–liquid interfaces. Annu. Rep. Prog. Chem. Sect. C 102:43–70 [Google Scholar]
  59. Pohorille A, Cieplak P, Wilson MA. 59.  1996. Interactions of anesthetics with the membrane-water interface. Chem. Phys. 204:337–45 [Google Scholar]
  60. Chipot C, Wilson MA, Pohorille A. 60.  1997. Interactions of anesthetics with the water-hexane interface: a molecular dynamics study. J. Phys. Chem. B 101:782–91 [Google Scholar]
  61. Wick CD, Dang LX. 61.  2008. Molecular dynamics study of ion transfer and distribution at the interface of water and 1,2-dichlorethane. J. Phys. Chem. C 112:647–49 [Google Scholar]
  62. Kikkawa N, Ishiyama T, Morita A. 62.  2012. Molecular dynamics study of phase transfer catalyst for ion transfer through water-chloroform interface. Chem. Phys. Lett. 534:19–22 [Google Scholar]
  63. Levin Y, dos Santos AP, Diehl A. 63.  2009. Ions at the air-water interface: an end to a hundred-year-old mystery?. Phys. Rev. Lett. 103:257802 [Google Scholar]
  64. Britz D. 64.  2005. Digital Simulation in Electrochemistry Berlin: Springer-Verlag [Google Scholar]
  65. Benjamin I. 65.  1992. Dynamics of ion transfer across a liquid-liquid interface: a comparison between molecular dynamics and a diffusion model. J. Chem. Phys. 96:577–85 [Google Scholar]
  66. Kakiuchi T. 66.  1992. Current–potential characteristic of ion transfer across the interface between two immiscible electrolyte solutions based on the Nernst–Planck equation. J. Electroanal. Chem. 322:55–61 [Google Scholar]
  67. Schmickler W. 67.  1997. A model for ion transfer through liquid/liquid interfaces. J. Electroanal. Chem. 426:5–9 [Google Scholar]
  68. Holmberg N, Sammalkorpi M, Laasonen K. 68.  2014. Ion transport through a water-organic solvent liquid-liquid interface: a simulation study. J. Phys. Chem. B 118:5957–70 [Google Scholar]
  69. Marcus RA. 69.  2000. On the theory of ion transfer rates across the interface of two immiscible liquids. J. Chem. Phys. 113:1618–29 [Google Scholar]
  70. Kornyshev AA, Kuznetsov AM, Urbakh M. 70.  2002. Coupled ion-interface dynamics and ion transfer across the interface of two immiscible liquids. J. Chem. Phys. 117:6766–79 [Google Scholar]
  71. Verdes CG, Urbakh M, Kornyshev AA. 71.  2004. Surface tension and ion transfer across the interface of two immiscible electrolytes. Electrochem. Commun. 6:693–99 [Google Scholar]
  72. Benjamin I. 72.  2013. Recombination, dissociation and transport of ion pairs across the liquid/liquid interface: implications for phase transfer catalysis. J. Phys. Chem. A 117:4325–31 [Google Scholar]
  73. Laforge FO, Sun P, Mirkin MV. 73.  2006. Shuttling mechanism of ion transfer at the interface between two immiscible liquids. J. Am. Chem. Soc. 128:15019–25 [Google Scholar]
  74. Lahtinen R, Fermin DJ, Kontturi K, Girault HH. 74.  2000. Artificial photosynthesis at liquid/liquid interfaces: photoreduction of benzoquinone by water soluble porphyrin species. J. Electroanal. Chem. 483:81–87 [Google Scholar]
  75. Barbara PF, Olson EJJ. 75.  1999. Experimental electron transfer kinetics in a DNA environment. Adv. Chem. Phys. 107:647–76 [Google Scholar]
  76. Wei C, Bard AJ, Mirkin MV. 76.  1995. Scanning electrochemical microscopy. 31. Application of SECM to the study of charge-transfer processes at the liquid-liquid interface. J. Phys. Chem. 99:16033–42 [Google Scholar]
  77. Shi C, Anson FC. 77.  1999. Electron transfer between reactants located on opposite sides of liquid/liquid interfaces. J. Phys. Chem. B 103:6283–89 [Google Scholar]
  78. Fermin DJ, Duong HD, Ding Z, Brevet P-F, Girault HH. 78.  1999. Photoinduced electron transfer at liquid/liquid interfaces. Part III. Photoelectrochemical responses involving porphyrin ion pairs. J. Am. Chem. Soc. 121:10203–10 [Google Scholar]
  79. Jensen H, Fermin DJ, Girault HH. 79.  2001. Photoinduced electron transfer at liquid/liquid interfaces. Part V. Organisation of water-soluble chlorophyll at the water/1,2-dichloroethane interface. Phys. Chem. Chem. Phys. 3:2503–8 [Google Scholar]
  80. Eugster N, Fermin DJ, Girault HH. 80.  2003. Photoinduced electron transfer at liquid/liquid interfaces: dynamics of the heterogeneous photoreduction of quinones by self-assembled porphyrin ion pairs. J. Am. Chem. Soc. 125:4862–69 [Google Scholar]
  81. McArthur EA, Eisenthal KB. 81.  2006. Ultrafast excited-state electron transfer at an organic liquid/aqueous interface. J. Am. Chem. Soc. 128:1068–69 [Google Scholar]
  82. Rao Y, Xu M, Jockusch S, Turro NJ, Eisenthal KB. 82.  2012. Dynamics of excited state electron transfer at a liquid interface using time-resolved sum frequency generation. Chem. Phys. Lett. 544:1–6 [Google Scholar]
  83. Marcus RA. 83.  1965. On the theory of electron-transfer reactions. VI. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43:679–701 [Google Scholar]
  84. Ulstrup J. 84.  1979. Charge Transfer Processes in Condensed Media Berlin: Springer-Verlag [Google Scholar]
  85. Newton MD, Sutin N. 85.  1984. Electron transfer reactions in condensed phases. Annu. Rev. Phys. Chem. 35:437–80 [Google Scholar]
  86. Weaver MJ. 86.  1992. Dynamical solvent effects on activated electron-transfer reactions: principles, pitfalls, and progress. Chem. Rev. 92:463–80 [Google Scholar]
  87. Shi C, Anson FC. 87.  2001. Rates of electron-transfer across liquid/liquid interfaces: effects of changes in driving force and reaction reversibility. J. Phys. Chem. B 105:8963–69 [Google Scholar]
  88. Schmickler W. 88.  1997. Electron-transfer reactions across liquid/liquid interfaces. J. Electroanal. Chem. 428:123–27 [Google Scholar]
  89. Marcus RA. 89.  1990. Reorganization free energy for electron transfers at liquid-liquid and dielectric semiconductor-liquid interfaces. J. Phys. Chem. 94:1050–55 [Google Scholar]
  90. Marcus RA. 90.  1990. Theory of electron-transfer rates across liquid-liquid interfaces. J. Phys. Chem. 94:4152–55 [Google Scholar]
  91. Marcus RA. 91.  1991. Theory of electron-transfer rates across liquid-liquid interfaces. 2. Relationships and application. J. Phys. Chem. 95:2010–13 [Google Scholar]
  92. Wittig C. 92.  2005. The Landau-Zener formula. J. Phys. Chem. B 109:8428–30 [Google Scholar]
  93. Kharkats YI. 93.  1976. On the calculation of probability of electron transfer through the interface between two dielectric media. Elektrokhimiya 12:1370–77 [Google Scholar]
  94. Benjamin I, Kharkats YI. 94.  1998. Reorganization free energy for electron transfer reactions at liquid/liquid interfaces. Electrochim. Acta 44:133–38 [Google Scholar]
  95. Li F, Whitworth AL, Unwin PR. 95.  2007. Measurement of rapid electron transfer across a liquid/liquid interface from 7,7,8,8-tetracyanoquinodimethane radical anion in 1,2-dichloroethane to aqueous tris(2,2-bipyridyl)-ruthenium (III). J. Electroanal. Chem. 602:70–76 [Google Scholar]
  96. Ding Z, Quinn BM, Bard AJ. 96.  2001. Kinetics of heterogeneous electron transfer at liquid/liquid interfaces as studied by SECM. J. Phys. Chem. B 105:6367–74 [Google Scholar]
  97. Hwang JK, Warshel A. 97.  1987. Microscopic examination of free-energy relationships for electron transfer in polar solvents. J. Am. Chem. Soc. 109:715–20 [Google Scholar]
  98. King G, Warshel A. 98.  1990. Investigation of the free energy functions for electron transfer reactions. J. Chem. Phys. 93:8682–92 [Google Scholar]
  99. Kuharski RA, Bader JS, Chandler D, Sprik M, Klein ML, Impey RW. 99.  1988. Molecular model for aqueous ferrous-ferric electron transfer. J. Chem. Phys. 89:3248–57 [Google Scholar]
  100. Carter EA, Hynes JT. 100.  1989. Solute-dependent solvent force constants for ion pairs and neutral pairs in polar solvent. J. Phys. Chem. 93:2184–87 [Google Scholar]
  101. Tachiya M. 101.  1989. Relation between the electron-transfer rate and the free energy change of reaction. J. Phys. Chem. 93:7050–52 [Google Scholar]
  102. Matyushov DV, Voth GA. 102.  2000. Modeling the free energy surfaces of electron transfer in condensed phases. J. Chem. Phys. 113:5413–24 [Google Scholar]
  103. Small DW, Matyushov DV, Voth GA. 103.  2003. The theory of electron transfer reactions: What may be missing?. J. Am. Chem. Soc. 125:7470–78 [Google Scholar]
  104. Matyushov DV. 104.  2007. Energetics of electron-transfer reactions in soft condensed media. Acc. Chem. Res. 40:294–301 [Google Scholar]
  105. Benjamin I. 105.  1991. Molecular dynamics study of the free energy functions for electron transfer reactions at the liquid-liquid interface. J. Phys. Chem. 95:6675–83 [Google Scholar]
  106. Vieceli J, Benjamin I. 106.  2004. Electron transfer at the interface between water and self-assembled monolayers. Chem. Phys. Lett. 385:79–84 [Google Scholar]
  107. Benjamin I. 107.  1994. A molecular model for an electron transfer reaction at the water/1,2-dichloroethane interface. Structure and Reactivity in Aqueous Solution CJ Cramer, DG Truhlar 409–22 Washington, DC: Am. Chem. Soc. [Google Scholar]
  108. Benjamin I. 108.  1994. Solvation and charge transfer at liquid interfaces. Reaction Dynamics in Clusters and Condensed Phases J Jortner, RD Levine, B Pullman 179–94 Dordrecht: Kluwer [Google Scholar]
  109. Benjamin I. 109.  1995. Theory and computer simulations of solvation and chemical reactions at liquid interfaces. Acc. Chem. Res. 28:233–39 [Google Scholar]
  110. Ding ZF, Fermin DJ, Brevet PF, Girault HH. 110.  1998. Spectroelectrochemical approaches to heterogeneous electron transfer reactions at the polarised water/1,2-dichloroethane interfaces. J. Electroanal. Chem. 458:139–48 [Google Scholar]
  111. Eugster N, Fermin DJ, Girault HH. 111.  2002. Photoinduced electron transfer at liquid/liquid interfaces. Part VI. On the thermodynamic driving force dependence of the phenomenological electron-transfer rate constant. J. Phys. Chem. B 106:3428–33 [Google Scholar]
  112. Chakraborty A, Seth D, Setua P, Sarkar N. 112.  2006. Photoinduced electron transfer from N,N-dimethylaniline to 7-amino coumarins in protein-surfactant complex: slowing down of electron transfer dynamics compared to micelles. J. Chem. Phys. 124:074512 [Google Scholar]
  113. Ghosh S, Mondal SK, Sahu K, Bhattacharyya K. 113.  2007. Ultrafast photoinduced electron transfer from dimethylaniline to coumarin dyes in sodium dodecyl sulfate and triton X-100 micelles. J. Chem. Phys. 126:204708 [Google Scholar]
  114. Wang HF, Borguet E, Eisenthal KB. 114.  1998. Generalized interface polarity scale based on second harmonic spectroscopy. J. Phys. Chem. B 102:4927–32 [Google Scholar]
  115. Cooper JK, Benjamin I. 115.  2014. Photoinduced excited state electron transfer at liquid/liquid interfaces. J. Phys. Chem. B 118:7703–14 [Google Scholar]
  116. Maroncelli M. 116.  1993. The dynamics of solvation in polar liquids. J. Mol. Liq. 57:1–37 [Google Scholar]
  117. Rossky PJ, Simon JD. 117.  1994. Dynamics of chemical processes in polar solvents. Nature 370:263–69 [Google Scholar]
  118. Stratt RM, Maroncelli M. 118.  1996. Nonreactive dynamics in solution: the emerging molecular view of solvation dynamics and vibrational relaxation. J. Phys. Chem. 100:12981–96 [Google Scholar]
  119. Nandi N, Bhattacharyya K, Bagchi B. 119.  2000. Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem. Rev. 100:2013–46 [Google Scholar]
  120. Bagchi B, Jana B. 120.  2010. Solvation dynamics in dipolar liquids. Chem. Soc. Rev. 39:1936–54 [Google Scholar]
  121. Thompson WH. 121.  2011. Solvation dynamics and proton transfer in nanoconfined liquids. Annu. Rev. Phys. Chem. 62:599–619 [Google Scholar]
  122. Makosza M. 122.  2000. Phase transfer catalysis: a general green methodology in organic synthesis. Pure Appl. Chem. 72:1399–403 [Google Scholar]
  123. Volkov AG. 123.  2003. Interfacial Catalysis New York: Dekker [Google Scholar]
  124. Eckert CA, Liotta CL, Bush D, Brown JS, Hallett JP. 124.  2004. Sustainable reactions in tunable solvents. J. Phys. Chem. B 108:18108–18 [Google Scholar]
  125. Ingold CK. 125.  1969. Structure and Mechanism in Organic Chemistry Ithaca, NY: Cornell Univ. Press [Google Scholar]
  126. Warshel A, Weiss RM. 126.  1980. An empirical valence bond approach for comparing reactions in solutions and in enzymes. J. Am. Chem. Soc. 102:6218–26 [Google Scholar]
  127. Hwang JK, King G, Creighton S, Warshel A. 127.  1988. Simulation of free-energy relationships and dynamics of SN2 reactions in aqueous solution. J. Am. Chem. Soc. 110:5297–311 [Google Scholar]
  128. Chandrasekhar J, Smith SF, Jorgensen WL. 128.  1984. SN2 reaction profiles in the gas phase and aqueous solution. J. Am. Chem. Soc. 106:3049–50 [Google Scholar]
  129. Jorgensen WL, Buckner JK. 129.  1986. Effect of hydration on the structure of an SN2 transition state. J. Phys. Chem. 90:4651–54 [Google Scholar]
  130. Reichardt C. 130.  1988. Solvents and Solvent Effects in Organic Chemistry Weinheim: Springer-Verlag [Google Scholar]
  131. Mathis JR, Bianco R, Hynes JT. 131.  1994. On the activation free energy of the Cl + CH3Cl SN2 reaction in solution. J. Mol. Liq. 61:81–101 [Google Scholar]
  132. Hu W-P, Truhlar DG. 132.  1994. Modeling transition state solvation at the single-molecule level: test of correlated ab initio predictions against experiment for the gas-phase SN2 reaction of microhydrated fluoride with methyl chloride. J. Am. Chem. Soc. 116:7797–800 [Google Scholar]
  133. Vayner G, Houk KN, Jorgensen WL, Brauman JI. 133.  2004. Steric retardation of SN2 reactions in the gas phase and solution. J. Am. Chem. Soc. 126:9054–58 [Google Scholar]
  134. Almerindo GI, Pliego JR. 134.  2006. Rate acceleration of SN2 reactions through selective solvation of the transition state. Chem. Phys. Lett. 423:459–62 [Google Scholar]
  135. Pliego JR. 135.  2009. First solvation shell effects on ionic chemical reactions: new insights for supramolecular catalysis. J. Phys. Chem. B 113:505–10 [Google Scholar]
  136. Kim Y, Cramer CJ, Truhlar DG. 136.  2009. Steric effects and solvent effects on SN2 reactions. J. Phys. Chem. A 113:9109–14 [Google Scholar]
  137. Albanese D, Landini D, Maia A, Penso M. 137.  2001. Key role of water for nucleophilic substitutions in phase-transfer-catalyzed processes: a mini-review. Ind. Eng. Chem. Res. 40:2396–401 [Google Scholar]
  138. Tamburello-Luca AA, Hébert P, Antoine R, Brevet PF, Girault HH. 138.  1997. Optical surface second harmonic generation study of the two acid/base equilibria of eosin B at the air/water interface. Langmuir 13:4428–34 [Google Scholar]
  139. Steel WH, Walker RA. 139.  2003. Solvent polarity at an aqueous/alkane interface: the effect of solute identity. J. Am. Chem. Soc. 125:1132–33 [Google Scholar]
  140. Steel WH, Walker RA. 140.  2003. Measuring dipolar width across liquid-liquid interfaces with ‘molecular rulers.’. Nature 424:296–99 [Google Scholar]
  141. Steel WH, Lau YY, Beildeck CL, Walker RA. 141.  2004. Solvent polarity across weakly associating interfaces. J. Phys. Chem. B 108:13370–78 [Google Scholar]
  142. Steel WH, Beildeck CL, Walker RA. 142.  2004. Solvent polarity across strongly associating interfaces. J. Phys. Chem. B 108:16107–16 [Google Scholar]
  143. Nelson KV, Benjamin I. 143.  2010. A molecular dynamics–empirical valence bond study of an SN2 reaction at the water/chloroform interface. J. Phys. Chem. C 114:1154–63 [Google Scholar]
  144. Benjamin I. 144.  2008. Empirical valence bond model of an SN2 reaction in polar and non-polar solvents. J. Chem. Phys. 129:074508 [Google Scholar]
  145. Juanos i Timoneda J, Hynes JT. 145.  1991. Nonequilibrium free-energy surfaces for hydrogen-bonded proton-transfer complexes in solution. J. Phys. Chem. 95:10431–42 [Google Scholar]
  146. Chandler D. 146.  1987. Introduction to Modern Statistical Mechanics New York: Oxford Univ. Press [Google Scholar]
  147. Benjamin I. 147.  1998. Solvent effects on electronic spectra at liquid interfaces: a continuum electrostatic model. J. Phys. Chem. A 102:9500–6 [Google Scholar]
  148. Nelson KV, Benjamin I. 148.  2009. Microhydration effects on a model SN2 reaction in a nonpolar solvent. J. Chem. Phys. 130:194502 [Google Scholar]
  149. Nelson KV, Benjamin I. 149.  2011. Effect of a phase transfer catalyst on the dynamics of an SN2 reaction: a molecular dynamics study. J. Phys. Chem. C 115:2290–96 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error