The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

[Erratum, Closure]

An erratum has been published for this article:
Crystal Structure and Prediction

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kitaigorodskii AI. 1.  1973. Molecular Crystals and Molecules New York: Academic [Google Scholar]
  2. Desiraju GR. 2.  1989. Crystal Engineering: The Design of Organic Solids Amsterdam: Elsevier [Google Scholar]
  3. Price SL. 3.  2009. Computed crystal energy landscapes for understanding and predicting organic crystal structures and polymorphism. Acc. Chem. Res. 42:117–26 [Google Scholar]
  4. Day GM. 4.  2011. Current approaches to predicting molecular organic crystal structures. Crystallogr. Rev. 17:3–52 [Google Scholar]
  5. Kendrick J, Leusen FJJ, Neumann MA, van de Streek J. 5.  2011. Progress in crystal structure prediction. Chem. Eur. J. 17:10736–44 [Google Scholar]
  6. Bragg WH. 6.  1921. The structure of organic crystals. Proc. Phys. Soc. Lond. 34:33–50 [Google Scholar]
  7. Robertson JM. 7.  1953. Organic Crystals and Molecules: Theory of X-Ray Structure Analysis with Applications to Organic Chemistry Ithaca, NY: Cornell Univ. Press [Google Scholar]
  8. Pauling L. 8.  1929. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51:1010–26 [Google Scholar]
  9. Robertson JM. 9.  1935. The structure of benzoquinone: a quantitative X-ray investigation. Proc. R. Soc. Lond. A 150:106–28 [Google Scholar]
  10. Robertson JM. 10.  1936. The structure of resorcinol: a quantitative X-ray investigation. Proc. R. Soc. Lond. A 157:79–99 [Google Scholar]
  11. Robertson JM, Ubbelohde AR. 11.  1938. A new form of resorcinol. II. Thermodynamic properties in relation to structure. Proc. R. Soc. Lond. A 167:136–47 [Google Scholar]
  12. Authier A. 12.  2013. Early Days of X-Ray Crystallography Oxford, UK: Oxford Univ. Press [Google Scholar]
  13. Khotsyanova TL, Kitaigorodskii AI, Struchkov YT. 13.  1953. Crystal structure of iodoform. Z. Fiz. Khim. 27:647–56 [Google Scholar]
  14. Lommerse JPM, Motherwell WDS, Ammon HL, Dunitz JD, Gavezzotti A. 14.  et al. 2000. A test of crystal structure prediction of small organic molecules. Acta Crystallogr. B 56:697–714 [Google Scholar]
  15. Motherwell WDS, Ammon HL, Dunitz JD, Dzyabchenko A, Erk P. 15.  et al. 2002. Crystal structure prediction of small organic molecules: a second blind test. Acta Crystallogr. B 58:647–61 [Google Scholar]
  16. Day GM, Motherwell WDS, Ammon HL, Boerrigter SXM, Della Valle RG. 16.  et al. 2005. A third blind test of crystal structure prediction. Acta Crystallogr. B 61:511–27 [Google Scholar]
  17. Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL. 17.  et al. 2009. Significant progress in predicting the crystal structures of small organic molecules: a report on the fourth blind test. Acta Crystallogr. B 65:107–25 [Google Scholar]
  18. Bardwell DA, Adjiman CS, Arnautova YA, Bartashevich E, Boerrigter SXM. 18.  et al. 2011. Towards crystal structure prediction of complex organic compounds: a report on the fifth blind test. Acta Crystallogr. B 67:535–51 [Google Scholar]
  19. Kitaigorodskii AI. 19.  1961. The interaction curve of non-bonded carbon and hydrogen atoms and its application. Tetrahedron 14:230–36 [Google Scholar]
  20. Kitaigorodskii AI. 20.  1965. The principle of close packing and the condition of thermodynamic stability of organic crystals. Acta Crystallogr. 18:585–90 [Google Scholar]
  21. Williams DE. 21.  1966. Nonbonded potential parameters derived from crystalline aromatic hydrocarbons. J. Chem. Phys. 45:3770–78 [Google Scholar]
  22. Nyburg SC, Wong-Ng W. 22.  1979. Anisotropic atom-atom forces and the space group of solid chlorine. Proc. R. Soc. Lond. A 367:29–45 [Google Scholar]
  23. Price SL, Stone AJ. 23.  1982. The anisotropy of the C12–C12 pair potential as shown by the crystal structure: evidence for intermolecular bonding or lone pair effects?. Mol. Phys. 47:1457–70 [Google Scholar]
  24. Williams DE, Hsu L-Y. 24.  1985. Transferability of nonbonded Cl⋅⋅⋅Cl potential energy function to crystalline chlorine. Acta Crystallogr. A 41:296–301 [Google Scholar]
  25. Sakurai T. 25.  1965. The crystal structure of the triclinic modification of quinhydrone. Acta Crystallogr. 19:320–30 [Google Scholar]
  26. Sakurai T. 26.  1968. On the refinement of the crystal structures of phenoquinone and monoclinic quinhydrone. Acta Crystallogr. B 24:403–12 [Google Scholar]
  27. Wen S, Beran GJO. 27.  2012. Accidental degeneracy in crystalline aspirin: new insights from high-level ab initio calculations. Cryst. Growth Des. 12:2169–72 [Google Scholar]
  28. Wen S, Beran GJO. 28.  2012. Crystal polymorphism in oxalyl dihydrazide: Is empirical DFT-D accurate enough?. J. Chem. Theory Comput. 8:2698–705 [Google Scholar]
  29. Neumann MA. 29.  2008. Tailor-made force fields for crystal-structure prediction. J. Phys. Chem. B 12:9810–29 [Google Scholar]
  30. Beran GJO, Nanda K. 30.  2010. Predicting organic crystal lattice energies with chemical accuracy. J. Phys. Chem. Lett. 1:3480–87 [Google Scholar]
  31. Hirata S, Gilliard K, He X, Li J, Sode O. 31.  2014. Ab initio molecular crystal structures, spectra, and phase diagrams. Acc. Chem. Res. 472721–30 [Google Scholar]
  32. Yang J, Hu W, Usvyat D, Matthews D, Schütz M, Chan GK-L. 32.  2014. Ab initio determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy. Science 345:640–43 [Google Scholar]
  33. Stoll H, Paulus B, Fulde P. 33.  2005. On the accuracy of correlation-energy expansions in terms of local increments. J. Chem. Phys. 123:144108 [Google Scholar]
  34. Manby FR, Alfe D, Gillan MJ. 34.  2006. Extension of molecular electronic structure methods to the solid state: computation of the cohesive energy of lithium hydride. Phys. Chem. Chem. Phys. 8:5178–80 [Google Scholar]
  35. Li J, Sode O, Voth GA, Hirata S. 35.  2013. A solid-solid phase transition in carbon dioxide at high pressures and intermediate temperatures. Nat. Commun. 4:2647 [Google Scholar]
  36. Kitaigorodskii AI. 36.  1968. Calculation of molecular conformation and packing in crystals by means of atom-atom potentials. Polym. Sci. U.S.S.R. 10:3097–100 [Google Scholar]
  37. Williams DE. 37.  1968. Computer calculation of molecular crystal structures. Science 159:645–46 [Google Scholar]
  38. Dauber P, Hagler AT. 38.  1980. Crystal packing, hydrogen bonding, and the effect of crystal forces on molecular conformation. Acc. Chem. Res. 13:105–12 [Google Scholar]
  39. Leiserowitz L, Hagler AT. 39.  1983. The generation of possible crystal structures of primary amides. Proc. R. Soc. Lond. A 388:133–75 [Google Scholar]
  40. Maddox J. 40.  1988. Crystals from first principles. Nature 335:201 [Google Scholar]
  41. Perlstein J. 41.  1992. Molecular self-assemblies: Monte Carlo predictions for the structure of the one-dimensional translation aggregate. J. Am. Chem. Soc. 114:1955–63 [Google Scholar]
  42. Karfunkel HR, Gdanitz RJ. 42.  1992. Ab initio prediction of possible crystal structures for general organic molecules. J. Comput. Chem. 13:1171–83 [Google Scholar]
  43. Hofmann DMF, Lengauer T. 43.  1998. Crystal structure prediction based on statistical potentials. J. Mol. Model. 4:132–44 [Google Scholar]
  44. Holden JR, Du Z, Ammon HL. 44.  1993. Prediction of possible crystal structures for C-, H-, N-, O-, and F-containing organic compounds. J. Comput. Chem. 14:422–37 [Google Scholar]
  45. Gavezzotti A, Filippini G. 45.  1996. Computer prediction of organic crystal structures using partial X-ray diffraction data. J. Am. Chem. Soc. 118:7153–57 [Google Scholar]
  46. Hofmann DWM, Lengauer T. 46.  1997. A discrete algorithm for crystal structure prediction of organic molecules. Acta Crystallogr. A 53:225–35 [Google Scholar]
  47. Gavezzotti A. 47.  1991. Generation of possible crystal structures from the molecular structure for low-polarity organic compounds. J. Am. Chem. Soc. 113:4622–29 [Google Scholar]
  48. Chin DN, Palmore GTR, Whitesides GM. 48.  1999. Predicting crystalline packing arrangements of molecules that form hydrogen-bonded tapes. J. Am. Chem. Soc. 121:2115–22 [Google Scholar]
  49. Wawak RJ, Gibson KD, Liwo A, Scheraga HA. 49.  1996. Theoretical prediction of a crystal structure. Proc. Natl. Acad. Sci. USA 93:1743–46 [Google Scholar]
  50. Willock DJ, Price SL, Leslie M, Catlow CRA. 50.  1995. The relaxation of molecular crystal structures using a distributed multipole electrostatic model. J. Comput. Chem. 16:628–47 [Google Scholar]
  51. van Eijck BP, Mooij WTM, Kroon J. 51.  1995. Attempted prediction of the crystal structures of six monosaccharides. Acta Crystallogr. B 51:99–103 [Google Scholar]
  52. Chaka AM, Zaniewski R, Youngs W, Tessierj C, Klopman G. 52.  1996. Predicting the crystal structure of organic molecular materials. Acta Crystallogr. B 52:165–83 [Google Scholar]
  53. Rarey M, Kramer B, Lengauer T, Klebe G. 53.  1996. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261:470–89 [Google Scholar]
  54. Rarey M, Wefing S, Lengauer T. 54.  1996. Placement of medium-sized molecular fragments into active sites of proteins. J. Comput.-Aided Mol. Des. 10:41–54 [Google Scholar]
  55. Williams DE. 55.  1996. Ab initio molecular packing analysis. Acta Crystallogr. A 52:326–28 [Google Scholar]
  56. Asmadi A, Neumann MA, Kendrick J, Girard P, Perrin MA, Leusen FJJ. 56.  2009. Revisiting the blind tests in crystal structure prediction: accurate energy ranking of molecular crystals. J. Phys. Chem. B 113:16303–13 [Google Scholar]
  57. Dunitz JD, Gavezzotti A. 57.  2005. Towards a quantitative description of crystal packing in terms of molecular pairs: application to the hexamorphic crystal system, 5-methyl-2[(2-nitrophenyl)amino]-3-thiophenecarbonitrile. Cryst. Growth Des. 5:2180–89 [Google Scholar]
  58. Desiraju GR, Steiner T. 58.  1999. The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford, UK: Oxford Univ. Press [Google Scholar]
  59. Aparna V, Rambabu G, Panigrahi SK, Sarma JARP, Desiraju GR. 59.  2005. Virtual screening of 4-anilinoquinazoline analogues as EGFR kinase inhibitors: importance of hydrogen bonds in the evaluation of poses and scoring functions. J. Chem. Inf. Model. 45:725–38 [Google Scholar]
  60. Jetti RKR, Boese R, Sarma JARP, Reddy LS, Vishweshwar P, Desiraju GR. 60.  2004. Searching for a polymorph: second crystal form of 6-amino-2-phenylsulfonylimino-1,2-dihydropyridine. Angew. Chem. Int. Ed. Engl. 42:1963–67 [Google Scholar]
  61. Roy S, Matzger AJ. 61.  2009. Unmasking a third polymorph of benchmark crystal-structure-prediction compound. Angew. Chem. Int. Ed. Engl. 48:8505–8 [Google Scholar]
  62. Chan HCS, Kendrick J, Leusen FJJ. 62.  2011. Molecule VI, a benchmark crystal-structure-prediction sulfonimide: Are its polymorphs predictable?. Angew. Chem. Int. Ed. Engl. 50:2979–81 [Google Scholar]
  63. Grimme S, Antony J, Ehrlich S, Krieg H. 63.  2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132:154104 [Google Scholar]
  64. Marom N, DiStasio RA Jr., Atalla V, Levchenko S, Reilly AM. 64.  et al. 2013. Many-body dispersion interactions in molecular crystal polymorphism. Angew. Chem. Int. Ed. Engl. 52:6629–32 [Google Scholar]
  65. Reilly AM, Tkatchenko A. 65.  2014. Role of dispersion interactions in the polymorphism and entropic stabilization of the aspirin crystal. Phys. Rev. Lett. 113:055701 [Google Scholar]
  66. Braun DE, Bhardwaj RM, Florence AJ, Tocher DA, Price SL. 66.  2013. Complex polymorphic system of gallic acid: five monohydrates, three anhydrates, and over 20 solvates. Cryst. Growth Des. 13:19–23 [Google Scholar]
  67. Desiraju GR, Sarma JARP. 67.  2002. The supramolecular synthon approach to crystal structure prediction. Cryst. Growth Des. 2:93–100 [Google Scholar]
  68. Dey D, Kirchner MT, Vangala VR, Desiraju GR, Mondal R, Howard JAK. 68.  2005. Crystal structure prediction of aminols: advantages of a supramolecular synthon approach with experimental structures. J. Am. Chem. Soc. 127:10545–59 [Google Scholar]
  69. Gavezzotti A. 69.  2002. Structure and intermolecular potentials in molecular crystals. Model. Simul. Mater. Sci. Eng. 10:R1–29 [Google Scholar]
  70. Desiraju GR. 70.  1995. Supramolecular synthons in crystal engineering: a new organic synthesis. Angew. Chem. Int. Ed. Engl. 34:2311–27 [Google Scholar]
  71. Desiraju GR. 71.  2005. Chemistry: the middle kingdom. Curr. Sci. 88:374–80 [Google Scholar]
  72. Groth P. 72.  1906–1919. Chemische Kristallographie3–5 Leipzig: Verlag von Wilhelm Engelmann [Google Scholar]
  73. Deffet L. 73.  1942. Répertoire des Composés organiques polymorphes Liége: Ed. Desoer [Google Scholar]
  74. Staab E, Addadi L, Leiserowitz L, Lahav M. 74.  1990. Control of polymorphism by ‘tailor-made’ polymeric crystallization auxiliaries: preferential precipitation of a metastable polar form for second harmonic generation. Adv. Mater. 2:40–43 [Google Scholar]
  75. Desiraju GR. 75.  2002. Cryptic crystallography. Nat. Mater. 1:77–79 [Google Scholar]
  76. McCrone WC. 76.  1965. Polymorphism. Physics and Chemistry of the Organic Solid State 2 D Fox, MM Labes, A Weissberger 725–67 New York: Wiley Intersci. [Google Scholar]
  77. Dunitz JD, Bernstein J. 77.  1995. Disappearing polymorphs. Acc. Chem. Res. 28:193–200 [Google Scholar]
  78. Sarma JARP, Desiraju GR. 78.  1999. Polymorphism and pseudopolymorphism in organic crystals. Crystal Engineering: The Design and Application of Fundamental Solids KR Seddon, M Zaworotko 325–56 Dordrecht: Kluwer Acad. [Google Scholar]
  79. Mukherjee A, Desiraju GR. 79.  2011. Synthon polymorphism and pseudopolymorphism in co-crystals: the 4,4′-bipyridine–4-hydroxybenzoic acid structural landscape. Chem. Commun. 47:4090–92 [Google Scholar]
  80. Sreekanth BR, Vishweshwar P, Vyas K. 80.  2007. Supramolecular synthon polymorphism in 2:1 co-crystal of 4-hydroxybenzoic acid and 2,3,5,6-tetramethylpyrazine. Chem. Commun. 23:2375–77 [Google Scholar]
  81. Amadei E, Carcelli M, Ianelli S, Cozzini P, Pelagatti P, Pelizzi C. 81.  1998. Ligand behaviour and reactivity of phenyl 2-pyridyl ketone azine: structures of two polymorphic forms of the azine and a copper complex of the 3-phenyltriazolo[1,5-a]pyridine. J. Chem. Soc. Dalton Trans. 1998:1025–30 [Google Scholar]
  82. Desiraju GR. 82.  1997. Crystal gazing: structure prediction and polymorphism. Science 278:404–5 [Google Scholar]
  83. López-Mejías V, Kampf JW, Matzger AJ. 83.  2012. Nonamorphism in flufenamic acid and a new record for a polymorphic compound with solved structures. J. Am. Chem. Soc. 134:9872–75 [Google Scholar]
  84. Boonstra EG, Herbstein FH. 84.  1963. Composite hexabromobenzene crystals. Acta Crystallogr. 16:252–55 [Google Scholar]
  85. Bond AD, Boese R, Desiraju GR. 85.  2007. On the polymorphism of aspirin. Angew. Chem. Int. Ed. Engl. 46:615–17 [Google Scholar]
  86. Bond AD, Boese R, Desiraju GR. 86.  2007. On the polymorphism of aspirin: crystalline aspirin as intergrowths of two “polymorphic” domains. Angew. Chem. Int. Ed. Engl. 46:618–22 [Google Scholar]
  87. Bhatt PM, Desiraju GR. 87.  2007. Tautomeric polymorphism in omeprazole. Chem. Commun. 2007:2057–59 [Google Scholar]
  88. Bernstein J, Dunitz JD, Gavezzotti A. 88.  2008. Polymorphic perversity: crystal structures with many symmetry-independent molecules in the unit cell. Cryst. Growth Des. 8:2011–18 [Google Scholar]
  89. Desiraju GR, Calabrese JC, Harlow RL. 89.  1991. Pseudoinversion centers in space group and a redetermination of the crystal structure of 3,4-dimethoxycinnamic acid: a study of non-crystallographic symmetry. Acta Crystallogr. B 47:77–86 [Google Scholar]
  90. Nangia A. 90.  2008. Conformational polymorphisms in organic crystals. Acc. Chem. Res. 41:595–604 [Google Scholar]
  91. Desiraju GR. 91.  2007. On the presence of multiple molecules in the crystal asymmetric unit (Z′ > 1). CrystEngComm 9:91–92 [Google Scholar]
  92. Anderson KM, Steed JW. 92.  2007. Comment on “On the presence of multiple molecules in the crystal asymmetric unit (Z′ > 1)” by Gautam R. Desiraju, CrystEngComm, 2007, 9, 91. CrystEngComm 9:328–30 [Google Scholar]
  93. Thakur TS, Sathishkumar R, Dikundwar AG, Guru Row TN, Desiraju GR. 93.  2010. Third polymorph of phenylacetylene. Cryst. Growth Des. 10:4246–49 [Google Scholar]
  94. Dikundwar AG, Sathishkumar R, Guru Row TN, Desiraju GR. 94.  2011. Structural variability in the monofluoroethynylbenzenes mediated through interactions involving “organic” fluorine. Cryst. Growth Des. 11:3954–63 [Google Scholar]
  95. Ridout J, Price LS, Howard JAK, Probert MR. 95.  2014. Polymorphism arising from differing rates of compression of liquids. Cryst. Growth Des. 14:3384–91 [Google Scholar]
  96. Gavezzotti A. 96.  2002. Ten years of experience in polymorph prediction: what next?. CrystEngComm 4:343–47 [Google Scholar]
  97. Laio A, Parrinello M. 97.  2002. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99:12562–66 [Google Scholar]
  98. Raiteri P, Martoňák R, Parrinello M. 98.  2005. Exploring polymorphism: the case of benzene. Angew. Chem. Int. Ed. Engl. 44:3769–73 [Google Scholar]
  99. Karamertzanis PG, Raiteri P, Parrinello M, Leslie M, Price SL. 99.  2008. The thermal stability of lattice-energy minima of 5-fluorouracil: metadynamics as an aid to polymorph prediction. J. Phys. Chem. B 112:4298–308 [Google Scholar]
  100. Mukherjee A, Grobelny P, Thakur TS, Desiraju GR. 100.  2011. Polymorphs, pseudopolymorphs, and co-crystals of orcinol: exploring the structural landscape with high throughput crystallography. Cryst. Growth Des. 11:2637–53 [Google Scholar]
  101. Tothadi S, Desiraju GR. 101.  2012. Unusual co-crystal of isonicotinamide: the structural landscape in crystal engineering. Philos. Trans. R. Soc. A 370:2900–15 [Google Scholar]
  102. Desiraju GR. 102.  2007. Crystal engineering: a holistic view. Angew. Chem. Int. Ed. Engl. 46:8342–56 [Google Scholar]
  103. Friščič T, MacGillivray LR. 103.  2009. Engineering cocrystal and polymorph architecture via pseudoseeding. Chem. Commun.773–75 [Google Scholar]
  104. Blagden N, Davey RJ. 104.  2003. Polymorph selection: challenges for the future?. Cryst. Growth Des. 3:873–85 [Google Scholar]
  105. Dubey R, Pavan MS, Guru Row TN, Desiraju GR. 105.  2014. Crystal landscape in the orcinol: 4,4′-bipyridine system: synthon modularity, polymorphism and transferability of multipole charge density parameters. IUCrJ 1:8–18 [Google Scholar]
  106. Dubey R, Pavan MS, Desiraju GR. 106.  2012. Structural landscape of benzoic acid: using experimental crystal structures of fluorobenzoic acids as a probe. Chem. Commun. 48:9020–22 [Google Scholar]
  107. Dubey R, Desiraju GR. 107.  2014. Structural landscape of the 1:1 benzoic acid:isonicotinamide cocrystal. Chem. Commun. 50:1181–84 [Google Scholar]
  108. Hammond GS. 108.  1955. A correlation of reaction rates. J. Am. Chem. Soc. 77:334–38 [Google Scholar]
  109. Curtin DY. 109.  1954. Stereochemical control of organic reactions: differences in behavior of diastereoisomers. I. Ethane derivatives: the cis effect. Rec. Chem. Prog. 15:111–28 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error