Bimolecular reactions of phenyl-type radicals with the C4 and C5 hydrocarbons vinylacetylene and (methyl-substituted) 1,3-butadiene have been found to synthesize polycyclic aromatic hydrocarbons (PAHs) with naphthalene and 1,4-dihydronaphthalene cores in exoergic and entrance barrierless reactions under single-collision conditions. The reaction mechanism involves the initial formation of a van der Waals complex and addition of a phenyl-type radical to the C1 position of a vinyl-type group through a submerged barrier. Investigations suggest that in the hydrocarbon reactant, the vinyl-type group must be in conjugation with a –C≡CH or –HC=CH group to form a resonantly stabilized free radical intermediate, which eventually isomerizes to a cyclic intermediate followed by hydrogen loss and aromatization (PAH formation). The vinylacetylene-mediated formation of PAHs might be expanded to more complex PAHs, such as anthracene and phenanthrene, in cold molecular clouds via barrierless reactions involving phenyl-type radicals, such as naphthyl, which cannot be accounted for by the classical hydrogen abstraction–acetylene addition mechanism.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Puget JL, Leger A. 1.  1989. A new component of the interstellar matter: small grains and large aromatic molecules. Annu. Rev. Astron. Astrophys. 27:161–98 [Google Scholar]
  2. Cherchneff I. 2.  2011. The formation of polycyclic aromatic hydrocarbons in evolved circumstellar environments. EAS Publ. Ser. 46:177–89 [Google Scholar]
  3. D'Hendecourt L, Ehrenfreund P. 3.  1997. Spectroscopic properties of polycyclic aromatic hydrocarbons (PAHs) and astrophysical implications. Adv. Space Res. 19:1023–32 [Google Scholar]
  4. Tielens AGGM, Kerckhoven C, Peeters E, Hony S. 4.  2000. Interstellar and circumstellar PAHs. Astrochemistry: From Molecular Clouds to Planetary Systems YC Minh, EF van Dishoeck 349–62 Int. Astron. Union Symp. 197 San Francisco: Astron. Soc. Pac. [Google Scholar]
  5. Ziurys LM. 5.  2006. The chemistry in circumstellar envelopes of evolved stars: following the origin of the elements to the origin of life. Proc. Natl. Acad. Sci. USA 103:12274–79 [Google Scholar]
  6. Ehrenfreund P, Sephton MA. 6.  2006. Carbon molecules in space: from astrochemistry to astrobiology. Faraday Discuss. 133:277–88 [Google Scholar]
  7. Rhee YM, Lee TJ, Gudipati MS, Allamandola LJ, Head-Gordon M. 7.  2007. Charged polycyclic aromatic hydrocarbon clusters and the galactic extended red emission. Proc. Natl. Acad. Sci. USA 104:5274–78 [Google Scholar]
  8. Kim H-S, Wagner DR, Saykally RJ. 8.  2001. Single photon infrared emission spectroscopy of the gas phase pyrene cation: support for a polycyclic aromatic hydrocarbon origin of the unidentified infrared emission bands. Phys. Rev. Lett. 86:5691–94 [Google Scholar]
  9. Ehrenfreund P, Charnley SB. 9.  2000. Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth. Annu. Rev. Astron. Astrophys. 38:427–83 [Google Scholar]
  10. Herbst E, van Dishoeck EF. 10.  2009. Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47:427–80 [Google Scholar]
  11. Bernstein MP, Sandford SA, Allamandola LJ, Gillette JS, Clemett SJ, Zare RN. 11.  1999. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers. Science 283:1135–38 [Google Scholar]
  12. Tielens AGGM. 12.  2008. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46:289–337 [Google Scholar]
  13. Ricks AM, Douberly GE, Duncan MA. 13.  2009. The infrared spectrum of protonated naphthalene and its relevance for the unidentified infrared bands. Astrophys. J. 702:301–6 [Google Scholar]
  14. Schlemmer S, Cook DJ, Harrison JA, Wurfel B, Chapman W, Saykally RJ. 14.  1994. The unidentified interstellar infrared bands: PAHs as carriers?. Science 265:1686–89 [Google Scholar]
  15. Duley WW. 15.  2006. Polycyclic aromatic hydrocarbons, carbon nanoparticles and the diffuse interstellar bands. Faraday Discuss. 133:415–25 [Google Scholar]
  16. Ruiterkamp R, Cox NL, Spaans M, Kaper L, Foing BH. 16.  et al. 2005. PAH charge state distribution and DIB carriers: implications from the line of sight toward HD 147889. Astron. Astrophys. 432:515–29 [Google Scholar]
  17. Salama F, Galazutdinov GA, Krelowski J, Allamandola LJ, Musaev FA. 17.  1999. Polycyclic aromatic hydrocarbons and the diffuse interstellar bands: a survey. Astrophys. J. 526:265–73 [Google Scholar]
  18. Sironi L, Draine BT. 18.  2009. Polarized emission from polycyclic aromatic hydrocarbons resulting from anisotropic illumination. Astrophys. J. 698:1292–300 [Google Scholar]
  19. Geballe TB, Tielens AGGM, Kwok S, Hrivnak BJ. 19.  1992. Unusual 3 micron emission features in three proto-planetary nebulae. Astrophys. J. 387:L89–91 [Google Scholar]
  20. Kwok S, Zhang Y. 20.  2011. Mixed aromatic-aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 479:80–83 [Google Scholar]
  21. Li A, Draine BT. 21.  2012. The carriers of the interstellar unidentified infrared emission features: aromatic or aliphatic?. Astrophys. J. 760:L31 [Google Scholar]
  22. Elsila JE, de Leon NP, Buseck PR, Zare RN. 22.  2005. Alkylation of polycyclic aromatic hydrocarbons in carbonaceous chondrites. Geochim. Cosmochim. Acta 69:1349–57 [Google Scholar]
  23. Spencer MK, Hammond MR, Zare RN. 23.  2008. Laser mass spectrometric detection of extraterrestrial aromatic molecules: mini-review and examination of pulsed heating effects. Proc. Natl. Acad. Sci. USA 105:18096–101 [Google Scholar]
  24. Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B. 24.  et al. 2010. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl. Acad. Sci. USA 107:2763–68 [Google Scholar]
  25. Frenklach M, Feigelson ED. 25.  1989. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. Astrophys. J. 341:372–84 [Google Scholar]
  26. Frenklach M, Wang H. 26.  1991. Detailed modeling of soot particle nucleation and growth. Symp. (Int.) Combust. 23:1559–66 [Google Scholar]
  27. Cherchneff I, Barker JR, Tielens AGGM. 27.  1992. Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes. Astrophys. J. 401:269–87 [Google Scholar]
  28. Shukla B, Koshi M. 28.  2011. Comparative study on the growth mechanisms of PAHs. Combust. Flame 158:369–75 [Google Scholar]
  29. Shukla B, Tsuchiya K, Koshi M. 29.  2011. Novel products from C6H5 + C6H6/C6H5 reactions. J. Phys. Chem. A 115:5284–93 [Google Scholar]
  30. Mebel AM, Kislov VV, Kaiser RI. 30.  2008. Photoinduced mechanism of formation and growth of polycyclic aromatic hydrocarbons in low-temperature environments via successive ethynyl radical additions. J. Am. Chem. Soc. 130:13618–29 [Google Scholar]
  31. Micelotta ER, Jones AP, Tielens AGGM. 31.  2011. Polycyclic aromatic hydrocarbon processing by cosmic rays. Astron. Astrophys. 526:A52 [Google Scholar]
  32. Micelotta ER, Jones AP, Tielens AGGM. 32.  2010. Polycyclic aromatic hydrocarbon processing in a hot gas. Astron. Astrophys. 510:A37 [Google Scholar]
  33. Micelotta ER, Jones AP, Tielens AGGM. 33.  2010. Polycyclic aromatic hydrocarbon processing in interstellar shocks. Astron. Astrophys. 510:A36 [Google Scholar]
  34. Kaneda H, Onaka T, Sakon I, Ishihara D, Mouri A. 34.  et al. 2011. PAH evolution in the harsh environment of the ISM. EAS Publ. Ser. 46:157–68 [Google Scholar]
  35. Kislov VV, Sadovnikov AI, Mebel AM. 35.  2013. Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring. J. Phys. Chem. A 117:4794–816 [Google Scholar]
  36. McEwan MJ, Scott GBI, Adams NG, Babcock LM, Terzieva R, Herbst E. 36.  1999. New H and H2 reactions with small hydrocarbon ions and their roles in benzene synthesis in dense interstellar clouds. Astrophys. J. 513:287–93 [Google Scholar]
  37. Woods PM, Millar TJ, Zijlstra AA, Herbst E. 37.  2002. The synthesis of benzene in the proto-planetary nebula CRL 618. Astrophys. J. 574:L167–70 [Google Scholar]
  38. Herbst E. 38.  1991. The in situ formation of large molecules in dense interstellar clouds. Astrophys. J. 366:133–40 [Google Scholar]
  39. Petrie S, Javahery G, Bohme DK. 39.  1992. Gas-phase reactions of benzenoid hydrocarbon ions with hydrogen atoms and molecules: uncommon constraints to reactivity. J. Am. Chem. Soc. 114:9205–6 [Google Scholar]
  40. Jones BM, Zhang F, Kaiser RI, Jamal A, Mebel AM. 40.  et al. 2011. Formation of benzene in the interstellar medium. Proc. Natl. Acad. Sci. USA 108:452–57 [Google Scholar]
  41. Cernicharo J, Heras AM, Tielens AGGM, Pardo JR, Herpin F. 41.  et al. 2001. Infrared Space Observatory's discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J. 546:L123–26 [Google Scholar]
  42. Zhang F, Jones B, Maksyutenko P, Kaiser RI, Chin C. 42.  et al. 2010. Formation of the phenyl radical [C6H5(X2A1)] under single collision conditions: a crossed molecular beam and ab initio study. J. Am. Chem. Soc. 132:2672–83 [Google Scholar]
  43. Zhang F, Parker DSN, Kim YS, Kaiser RI, Mebel AM. 43.  2011. On the formation of ortho-benzyne (o-C6H4) under single collision conditions and its role in interstellar chemistry. Astrophys. J. 728:141 [Google Scholar]
  44. Dangi BB, Parker DSN, Kaiser RI, Jamal A, Mebel AM. 44.  2013. A combined experimental and theoretical study on the gas-phase synthesis of toluene under single collision conditions. Angew. Chem. Int. Ed. Engl. 52:7186–89 [Google Scholar]
  45. Dangi BB, Parker DSN, Yang T, Kaiser RI, Mebel AM. 45.  2014. Gas-phase synthesis of the benzyl radical (C6H5CH2). Angew. Chem. Int. Ed. Engl. 53:4608–13 [Google Scholar]
  46. Gu X, Kaiser RI. 46.  2009. Reaction dynamics of phenyl radicals in extreme environments: a crossed molecular beam study. Acc. Chem. Res. 42:290–302 [Google Scholar]
  47. Gu X, Guo Y, Zhang F, Mebel AM, Kaiser RI. 47.  2006. Reaction dynamics of carbon-bearing radicals in circumstellar envelopes of carbon stars. Faraday Discuss. 133:245–75 [Google Scholar]
  48. Kaiser RI. 48.  2002. Experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral-neutral reactions. Chem. Rev. 102:1309–58 [Google Scholar]
  49. Kaiser RI, Lee TL, Nguyen TL, Mebel AM, Balucani N. 49.  et al. 2001. A combined crossed molecular beam and ab initio investigation of C2 and C3 elementary reactions with unsaturated hydrocarbons: pathways to hydrogen deficient hydrocarbon radicals in combustion flames. Faraday Discuss. 119:51–66 [Google Scholar]
  50. Kaiser RI, Maksyutenko P, Ennis C, Zhang F, Gu X. 50.  et al. 2010. Untangling the chemical evolution of Titan's atmosphere and surface: from homogeneous to heterogeneous chemistry. Faraday Discuss. 147:429–78 [Google Scholar]
  51. Kaiser RI, Ochsenfeld C, Stranges D, Head-Gordon M, Lee YT. 51.  1998. Combined crossed molecular beams and ab initio investigation of the formation of carbon-bearing molecules in the interstellar medium via neutral-neutral reactions. Faraday Discuss. 109:183–204 [Google Scholar]
  52. Kaiser RI, Mebel AM. 52.  2002. The reactivity of ground-state carbon atoms with unsaturated hydrocarbons in combustion flames and in the interstellar medium. Int. Rev. Phys. Chem. 21:307–56 [Google Scholar]
  53. Balucani N, Zhang F, Kaiser RI. 53.  2010. Elementary reactions of boron atoms with hydrocarbons: toward the formation of organo-boron compounds. Chem. Rev. 110:5107–27 [Google Scholar]
  54. Parker DSN, Kaiser RI, Mebel AM. 54.  2014. The role of isovalency in the reactions of the cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H) radicals with unsaturated hydrocarbons acetylene (C2H2) and ethylene (C2H4). Chem. Soc. Rev. 43:2701–13 [Google Scholar]
  55. Balucani N, Cartechini L, Bergeat A, Casavecchia P, Volpi GG. 55.  2001. Laboratory studies on the formation of CN-containing molecules in the atmosphere of Titan and prebiotic Earth. EAS Publ. Ser. 496:159–62 [Google Scholar]
  56. Alagia M, Balucani N, Cartechini L, Casavecchia P, Volpi GG. 56.  1997. Dynamics of chemical reactions of astrophysical interest. Molecules in Astrophysics: Probes and Processes EF van Dishoeck 271–80 Int. Astron. Union Symp. 178 Dordrecht: Kluwer Acad. [Google Scholar]
  57. Casavecchia P, Balucani N, Volpi GG. 57.  1999. Crossed-beam studies of reaction dynamics. Annu. Rev. Phys. Chem. 50:347–76 [Google Scholar]
  58. Casavecchia P, Balucani N, Cartechini L, Capozza G, Bergeat A, Volpi GG. 58.  2001. Crossed beam studies of elementary reactions of N and C atoms and CN radicals of importance in combustion. Faraday Discuss. 119:27–49 [Google Scholar]
  59. Lee S-H, Lai L-H, Liu K, Chang H. 59.  1999. State-specific excitation function for Cl(2P)+H2 (v = 0, j): effects of spin-orbit and rotational states. J. Chem. Phys. 110:8229–32 [Google Scholar]
  60. Alagia M, Balucani N, Cartechini L, Casavecchia P, van Kleef EH. 60.  et al. 1996. Dynamics of the simplest chlorine atom reaction. Science 273:1519–22 [Google Scholar]
  61. Neumark DM, Wodtke AM, Robinson GN, Hayden CC, Lee YT. 61.  1984. Experimental investigation of resonances in reactive scattering: the atomic fluorine + molecular hydrogen reaction. Phys. Rev. Lett. 53:226–29 [Google Scholar]
  62. Neumark DM, Wodtke AM, Robinson GN, Hayden CC, Shobatake K. 62.  et al. 1985. Molecular beam studies of F + D2 and F + HD reactions. J. Chem. Phys. 82:3067–77 [Google Scholar]
  63. Continetti RE, Balko BA, Lee YT. 63.  1990. Crossed molecular beams study of the reaction D + H2 →DH + H at collision energies of 0.53 and 1.01 eV. J. Chem. Phys. 93:5719–40 [Google Scholar]
  64. Kitsopoulos TN, Buntine MA, Baldwin DP, Zare RN, Chandler DW. 64.  1993. Reaction product imaging: the H + D2 reaction. Science 260:1605–10 [Google Scholar]
  65. Guadagnini R, Schatz GC. 65.  1996. Unusual insertion mechanism in the reaction C(3P) + H2 → CH + H. J. Phys. Chem. 100:18944–49 [Google Scholar]
  66. Alagia M, Balucani N, Cartechini L, Casavecchia P, Volpi GG. 66.  et al. 1999. Exploring the reaction dynamics of nitrogen atoms: a combined crossed beam and theoretical study of N(2D) + D2 → ND + D. J. Chem. Phys. 110:8857–60 [Google Scholar]
  67. Hsu Y-T, Liu K, Pederson LA, Schatz GC. 67.  1999. Reaction dynamics of O(1D) + HD. II. Effects of excited surfaces. J. Chem. Phys. 111:7931–44 [Google Scholar]
  68. Hsu Y-T, Liu K, Pederson LA, Schatz GC. 68.  1999. Reaction dynamics of O(1D) + HD. I. The insertion pathway. J. Chem. Phys. 111:7921–30 [Google Scholar]
  69. Che D-C, Liu K. 69.  1995. Reactive scattering of O(1D) + HD: product speed and angle distributions. J. Chem. Phys. 103:5164–67 [Google Scholar]
  70. Chao SD, Skodje RT. 70.  2001. Quasi-classical trajectory studies of the insertion reactions S(1D) + H2, HD, and D2. J. Phys. Chem. A 105:2474–84 [Google Scholar]
  71. Alagia M, Balucani N, Casavecchia P, Stranges D, Volpi GG. 71.  1993. Crossed beam studies of four atom reactions: the dynamics of OH + CO. J. Chem. Phys. 98:8341–44 [Google Scholar]
  72. Strazisar BR, Lin C, Davis HF. 72.  2000. Mode-specific energy disposal in the four-atom reaction OH + D2 → HOD + D. Science 290:958–61 [Google Scholar]
  73. Takayanagi T, Schatz GC. 73.  1997. Reaction dynamics calculations for the CN + H2 → HCN + H reaction: applications of the rotating-bond approximation. J. Chem. Phys. 106:3227–36 [Google Scholar]
  74. Park WK, Park J, Park SC, Braams BJ, Chen C, Bowman JM. 74.  2006. Quasiclassical trajectory calculations of the reaction C + C2H2 → l-C3H, c-C3H + H, C3 + H2 using full-dimensional triplet and singlet potential energy surfaces. J. Chem. Phys. 125:081101 [Google Scholar]
  75. Zhang B, Liu K, Czako G, Bowman JM. 75.  2012. Translational energy dependence of the Cl + CH4(vb = 0, 1) reactions: a joint crossed-beam and quasiclassical trajectory study. Mol. Phys. 110:1617–26 [Google Scholar]
  76. Czako G, Bowman JM. 76.  2012. Dynamics of the O(3P) + CHD3(vCH = 0,1) reactions on an accurate ab initio potential energy surface. Proc. Natl. Acad. Sci. USA 109:7997–8001 [Google Scholar]
  77. Wang F, Liu K. 77.  2011. Experimental signatures for a resonance-mediated reaction of bend-excited CD4(vb = 1) with fluorine atoms. Phys. Chem. Lett. 2:1421–25 [Google Scholar]
  78. Bowman JM, Czako G, Fu B. 78.  2011. High-dimensional ab initio potential energy surfaces for reaction dynamics calculations. Phys. Chem. Chem. Phys. 13:8094–111 [Google Scholar]
  79. Albert DR, Davis HF. 79.  2013. Studies of bimolecular reaction dynamics using pulsed high-intensity vacuum-ultraviolet lasers for photoionization detection. Phys. Chem. Chem. Phys. 15:14566–80 [Google Scholar]
  80. Casavecchia P, Leonori F, Balucani N, Petrucci R, Capozza G, Segoloni E. 80.  2009. Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection. Phys. Chem. Chem. Phys. 11:46–65 [Google Scholar]
  81. Liu K. 81.  2001. Crossed-beam studies of neutral reactions: state-specific differential cross sections. Annu. Rev. Phys. Chem. 52:139–64 [Google Scholar]
  82. Capozza G, Segoloni E, Leonori F, Volpi GG, Casavecchia P. 82.  2004. Soft electron impact ionization in crossed molecular beam reactive scattering: the dynamics of the O(3P) + C2H2 reaction. J. Chem. Phys. 120:4557–60 [Google Scholar]
  83. Parker DSN, Zhang F, Kim YS, Kaiser RI, Landera A. 83.  et al. 2012. Low temperature formation of naphthalene and its role in the synthesis of PAHs (polycyclic aromatic hydrocarbons) in the interstellar medium. Proc. Natl. Acad. Sci. USA 109:53–58 [Google Scholar]
  84. Kaiser RI, Chiong CC, Asvany O, Lee YT, Stahl F. 84.  et al. 2001. Chemical dynamics of d1-methyldiacetylene (CH3CCCCD; X1A1) and d1-ethynylallene (H2CCCH(C2D); X1A′) formation from reaction of C2D(X2Σ+) with methylacetylene CH3CCH(X1A1). J. Chem. Phys. 114:3488–96 [Google Scholar]
  85. Stahl F, von Ragué Schleyer P, Bettinger HF, Kaiser RI, Lee YT, Schaefer HF III. 85.  2001. Reaction of the ethynyl radical, C2H, with methylacetylene, CH3CCH, under single collision conditions: implications for astrochemistry. J. Chem. Phys. 114:3476–87 [Google Scholar]
  86. Stahl F, von Ragué Schleyer P, Schaefer HF III, Kaiser RI. 86.  2002. Reactions of ethynyl radicals as a source of C4 and C5 hydrocarbons in Titan's atmosphere. Planet. Space Sci. 50:685–92 [Google Scholar]
  87. Gu X, Zhang F, Guo Y, Kaiser RI. 87.  2007. Reaction dynamics of phenyl radicals (C6H5) with methylacetylene (CH3CCH), allene (H2CCCH2), and their D4-isotopomers. J. Phys. Chem. A 111:11450–59 [Google Scholar]
  88. Zhang F, Maksyuntenko P, Kaiser RI. 88.  2012. Chemical dynamics of the CH + C2H4, CH + C2D4, and CD + C2H4 reactions studied under single collision conditions. Phys. Chem. Chem. Phys. 14:529–37 [Google Scholar]
  89. Kaiser RI, Gu X, Zhang F, Maksyuntenko P. 89.  2012. Crossed beam reaction of methylidyne [CH(X2Π)] with D2-acetylene [C2D2(X1Σg+)] and D1-methylidyne [CD(X2Π)] with acetylene [C2H2(X1Σg+)]. Phys. Chem. Chem. Phys. 14:575–88 [Google Scholar]
  90. Kaiser RI, Parker DSN, Zhang F, Landera A, Kislov VV, Mebel AM. 90.  2012. PAH formation under single collision conditions: reaction of phenyl radical and 1,3-butadiene to form 1,4-dihydronaphthalene. J. Phys. Chem. A 116:4248–58 [Google Scholar]
  91. Parker DSN, Dangi BB, Kaiser RI, Jamal A, Ryazantsev MN. 91.  et al. 2014. An experimental and theoretical study on the formation of 2-methylnaphthalene (C11H10/C11H3D7) in the reactions of the para-tolyl (C7H7) and para-tolyl-d7 (C7D7) with vinylacetylene (C4H4). J. Phys. Chem. A 118:2709–18 [Google Scholar]
  92. Parker DSN, Yang T, Kaiser RI. 92.  2014. Submitted manuscript
  93. Kaiser RI, Parker DSN, Goswami M, Zhang F, Kislov VV. 93.  et al. 2012. Crossed beam reaction of phenyl and D5-phenyl radicals with propene and deuterated counterparts: competing atomic hydrogen and methyl loss pathways. Phys. Chem. Chem. Phys. 14:720–29 [Google Scholar]
  94. Parker DSN, Zhang F, Kaiser RI, Kislov VV, Mebel AM. 94.  2011. Indene formation under single-collision conditions from the reaction of phenyl radicals with allene and methylacetylene: a crossed molecular beam and ab initio study. Chem. Asian J. 6:3035–47 [Google Scholar]
  95. Albert DR, Todt MA, Davis HF. 95.  2013. Crossed molecular beams studies of phenyl radical reactions with propene and trans-2-butene. J. Phys. Chem. A 117:13967–75 [Google Scholar]
  96. Yang T, Parker DSN, Dangi BB, Kaiser RI, Kislov VV, Mebel AM. 96.  2014. Crossed beam reactions of the phenyl (C6H5; X2A1) and phenyl-d5 radical (C6D5; X2A1) with 1,2-butadiene (H2CCCHCH3; X1A′). J. Phys. Chem. A 118:6181–90 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error