1932

Abstract

Bimolecular reactions of phenyl-type radicals with the C4 and C5 hydrocarbons vinylacetylene and (methyl-substituted) 1,3-butadiene have been found to synthesize polycyclic aromatic hydrocarbons (PAHs) with naphthalene and 1,4-dihydronaphthalene cores in exoergic and entrance barrierless reactions under single-collision conditions. The reaction mechanism involves the initial formation of a van der Waals complex and addition of a phenyl-type radical to the C1 position of a vinyl-type group through a submerged barrier. Investigations suggest that in the hydrocarbon reactant, the vinyl-type group must be in conjugation with a –C≡CH or –HC=CH group to form a resonantly stabilized free radical intermediate, which eventually isomerizes to a cyclic intermediate followed by hydrogen loss and aromatization (PAH formation). The vinylacetylene-mediated formation of PAHs might be expanded to more complex PAHs, such as anthracene and phenanthrene, in cold molecular clouds via barrierless reactions involving phenyl-type radicals, such as naphthyl, which cannot be accounted for by the classical hydrogen abstraction–acetylene addition mechanism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121502
2015-04-01
2025-06-13
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-physchem-040214-121502
Loading
/content/journals/10.1146/annurev-physchem-040214-121502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error