1932

Abstract

The past decade has seen a surge of exciting research and applications of carbon nanotubes (CNTs) stimulated by deeper understanding of their fundamental properties and increasing production capability. The intrinsic properties of various CNTs were found to strongly depend on their internal microstructures. This review summarizes the fundamental structure-property relations of seamless tube-like single- and multiwalled CNTs and conically stacked carbon nanofibers, as well as the organized architectures of these CNTs (including randomly stacked thin films, parallel aligned thin films, and vertically aligned arrays). It highlights the recent development of CNTs as key components in selected applications, including nanoelectronics, filtration membranes, transparent conductive electrodes, fuel cells, electrical energy storage devices, and solar cells. Particular emphasis is placed on the link between the basic physical chemical properties of CNTs and the organized CNT architectures with their functions and performance in each application.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121535
2015-04-01
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121535.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121535&mimeType=html&fmt=ahah

Literature Cited

  1. Chung DDL. 1.  1994. Carbon Fiber Composites Newton, MA: Butterworth-Heinemann [Google Scholar]
  2. Ebbesen TW. 2.  1997. Carbon Nanotubes: Preparation and Properties Boca Raton, FL: CRC [Google Scholar]
  3. Iijima S. 3.  1991. Helical microtubules of graphitic carbon. Nature 354:56–58Provides the first report of the helical graphitic microtubule structure of CNTs. [Google Scholar]
  4. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. 4.  2013. Carbon nanotubes: present and future commercial applications. Science 339:535–39Presents a comprehensive review on present and future commercial applications of CNTs. [Google Scholar]
  5. McCreery RL. 5.  1991. Carbon electrodes: structural effects on electron transfer kinetics. Electroanalytical Chemistry AJ Bard 221–374 New York: Marcel Dekker [Google Scholar]
  6. McCreery RL. 6.  2008. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108:2646–87 [Google Scholar]
  7. Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K. 7.  et al. 2002. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80:1267–69 [Google Scholar]
  8. Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW. 8.  et al. 1999. Growth of freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75:1086–88 [Google Scholar]
  9. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P. 9.  et al. 1998. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282:1105–7Provides the first report on synthesizing large arrays of vertically aligned CNFs using PECVD. [Google Scholar]
  10. Melechko AV, Merkulov VI, McKnight TE, Guillorn MA, Klein KL. 10.  et al. 2005. Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J. Appl. Phys. 97:041301Presents a comprehensive review on the structure, growth, and properties of vertically aligned CNFs. [Google Scholar]
  11. Syed LU, Liu J, Prior AM, Hua DH, Li J. 11.  2011. Enhanced electron transfer rates by AC voltammetry for ferrocenes attached to the end of embedded carbon nanofiber nanoelectrode arrays. Electroanalysis 23:1709–17 [Google Scholar]
  12. Swisher LZ, Prior AM, Shishido S, Nguyen TA, Hua DH, Li J. 12.  2014. Quantitative electrochemical detection of cathepsin B activity in complex tissue lysates using enhanced AC voltammetry at carbon nanofiber nanoelectrode arrays. Biosens. Bioelectron. 56:129–36 [Google Scholar]
  13. Swisher LZ, Syed LU, Prior AM, Madiyar FR, Carlson KR. 13.  et al. 2013. Electrochemical protease biosensor based on enhanced AC voltammetry using carbon nanofiber nanoelectrode arrays. J. Phys. Chem. C 117:4268–77 [Google Scholar]
  14. Ngo Q, Yamada T, Suzuki M, Ominami Y, Cassell AM. 14.  et al. 2007. Structural and electrical characterization of carbon nanofibers for interconnect via applications. IEEE Trans. Nanotechnol. 6:688–95 [Google Scholar]
  15. Landis EC, Hamers RJ. 15.  2008. Covalent grafting of ferrocene to vertically aligned carbon nanofibers: electron-transfer processes at nanostructured electrodes. J. Phys. Chem. C 112:16910–18 [Google Scholar]
  16. Klankowski SA, Rojeski RA, Cruden BA, Liu J, Wu J, Li J. 16.  2013. A high-performance lithium-ion battery anode based on the core-shell heterostructure of silicon-coated vertically aligned carbon nanofibers. J. Mater. Chem. A 1:1055–64Depicts high-performance silicon LIB anodes enabled by a core-shell structure on vertically aligned CNFs. [Google Scholar]
  17. Cinke M, Li J, Chen B, Cassell A, Delzeit L. 17.  et al. 2002. Pore structure of raw and purified HiPco single-walled carbon nanotubes. Chem. Phys. Lett. 365:69–74 [Google Scholar]
  18. Liu J, Essner J, Li J. 18.  2010. Hybrid supercapacitor based on coaxially coated manganese oxide on vertically aligned carbon nanofiber arrays. Chem. Mater. 22:5022–30 [Google Scholar]
  19. Liu J, Kuo Y-T, Klabunde KJ, Rochford C, Wu J, Li J. 19.  2009. Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays. ACS Appl. Mater. Interfaces 1:1645–49 [Google Scholar]
  20. Liu J, Li J, Sedhain A, Lin J, Jiang H. 20.  2008. Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. J. Phys. Chem. C 112:17127–32 [Google Scholar]
  21. Odom TW, Huang JL, Kim P, Lieber CM. 21.  2000. Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 104:2794–809 [Google Scholar]
  22. Anantram M, Leonard F. 22.  2006. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69:507–61 [Google Scholar]
  23. Han J. 23.  2005. Structures and properties of carbon nanotubes. Carbon Nanotubes: Science and Applications M Meyyappan 1–24 Boca Raton, FL: CRC [Google Scholar]
  24. Collins PC, Arnold MS, Avouris P. 24.  2001. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–9 [Google Scholar]
  25. Salvetat-Delmotte J-P, Rubio A. 25.  2002. Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40:1729–34 [Google Scholar]
  26. Ruoff RS, Qian D, Liu WK. 26.  2003. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C. R. Phys. 4:993–1008 [Google Scholar]
  27. Srivastava D. 27.  2005. Computational nanotechnology of carbon nanotubes. Carbon Nanotubes: Science and Applications M Meyyappan 25–63 Boca Raton, FL: CRC [Google Scholar]
  28. Srivastava D, Menon M, Cho KJ. 28.  1999. Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys. Rev. Lett. 83:2973–76 [Google Scholar]
  29. Wei C, Srivastava D. 29.  2004. Nanomechanics of carbon nanofibers: structural and elastic properties. Appl. Phys. Lett. 85:2208–10 [Google Scholar]
  30. Cruden BA, Cassell AM. 30.  2006. Vertically oriented carbon nanofiber based nanoelectromechanical switch. IEEE Trans. Nanotechnol. 5:350–55 [Google Scholar]
  31. Qi HJ, Teo KBK, Lau KKS, Boyce MC, Milne WI. 31.  et al. 2003. Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation. J. Mech. Phys. Solids 51:2213–37 [Google Scholar]
  32. Pop E, Mann D, Wang Q, Goodson K, Dai H. 32.  2005. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6:96–100 [Google Scholar]
  33. Kim P, Shi L, Majumdar A, McEuen PL. 33.  2001. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87:215502 [Google Scholar]
  34. Hone J, Whitney M, Zettl A. 34.  1999. Thermal conductivity of single-walled carbon nanotubes. Synth. Met. 103:2498–99 [Google Scholar]
  35. Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE. 35.  et al. 2000. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 77:666–68 [Google Scholar]
  36. Yu CH, Saha S, Zhou JH, Shi L, Cassell AM. 36.  et al. 2006. Thermal contact resistance and thermal conductivity of a carbon nanofiber. J. Heat Transf. 128:234–39 [Google Scholar]
  37. Harutyunyan AR, Chen G, Paronyan TM, Pigos EM, Kuznetsov OA. 37.  et al. 2009. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326:116–20 [Google Scholar]
  38. Ding L, Tselev A, Wang J, Yuan D, Chu H. 38.  et al. 2009. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 9:800–5 [Google Scholar]
  39. Qu L, Du F, Dai L. 39.  2008. Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett. 8:2682–87 [Google Scholar]
  40. Arnold MS, Stupp SI, Hersam MC. 40.  2005. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5:713–18 [Google Scholar]
  41. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC. 41.  2006. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1:60–65 [Google Scholar]
  42. Homenick CM, Rousina-Webb A, Cheng F, Jakubinek MB, Malenfant PRL, Simard B. 42.  2014. High-yield, single-step separation of metallic and semiconducting SWCNTs using block copolymers at low temperatures. J. Phys. Chem. C 118:16156–64 [Google Scholar]
  43. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS. 43.  et al. 2003. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2:338–42 [Google Scholar]
  44. Tanaka T, Urabe Y, Nishide D, Kataura H. 44.  2011. Discovery of surfactants for metal/semiconductor separation of single-wall carbon nanotubes via high-throughput screening. J. Am. Chem. Soc. 133:17610–13 [Google Scholar]
  45. Li X, Tu X, Zaric S, Welsher K, Seo WS. 45.  et al. 2007. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 129:15770–71 [Google Scholar]
  46. Krupke R, Hennrich F, Löhneysen HV, Kappes MM. 46.  2003. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301:344–47 [Google Scholar]
  47. LeMieux MC, Roberts M, Barman S, Jin YW, Kim JM, Bao Z. 47.  2008. Self-sorted, aligned nanotube networks for thin-film transistors. Science 321:101–4 [Google Scholar]
  48. Zhang G, Qi P, Wang X, Lu Y, Li X. 48.  et al. 2006. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314:974–77 [Google Scholar]
  49. Chen Y, Zhang J. 49.  2014. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications. Acc. Chem. Res. 47:2273–81 [Google Scholar]
  50. Cao Q, Rogers JA. 50.  2009. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv. Mater. 21:29–53 [Google Scholar]
  51. Krupke R, Linden S, Rapp M, Hennrich F. 51.  2006. Thin films of metallic carbon nanotubes prepared by dielectrophoresis. Adv. Mater. 18:1468–70 [Google Scholar]
  52. Li XL, Zhang L, Wang XR, Shimoyama I, Sun XM. 52.  et al. 2007. Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J. Am. Chem. Soc. 129:4890–91 [Google Scholar]
  53. Kocabas C, Kang SJ, Ozel T, Shim M, Rogers JA. 53.  2007. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 111:17879–86 [Google Scholar]
  54. Zhou W, Ding L, Yang S, Liu J. 54.  2011. Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods. ACS Nano 5:3849–57 [Google Scholar]
  55. Li J, Liu K, Liang S, Zhou W, Pierce M. 55.  et al. 2013. Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity. ACS Nano 8:554–62 [Google Scholar]
  56. Kang SJ, Kocabas C, Kim H-S, Cao Q, Meitl MA. 56.  et al. 2007. Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. Nano Lett. 7:3343–48 [Google Scholar]
  57. Liu X, Han S, Zhou C. 57.  2005. Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett. 6:34–39 [Google Scholar]
  58. Shulaker MM, Hills G, Patil N, Wei H, Chen H-Y. 58.  et al. 2013. Carbon nanotube computer. Nature 501:526–30Reports on the first computer for which the central processor is based entirely on CNTs. [Google Scholar]
  59. Shulaker MM, Van Rethy J, Wu TF, Liyanage LS, Wei H. 59.  et al. 2014. Carbon nanotube circuit integration up to sub-20 nm channel lengths. ACS Nano 8:3434–43 [Google Scholar]
  60. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S. 60.  2004. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–64 [Google Scholar]
  61. Wang W, Epur R, Kumta PN. 61.  2011. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: hierarchical anodes for lithium-ion battery. Electrochem. Commun. 13:429–32 [Google Scholar]
  62. Welna DT, Qu LT, Taylor BE, Dai LM, Durstock MF. 62.  2011. Vertically aligned carbon nanotube electrodes for lithium-ion batteries. J. Power Sources 196:1455–60 [Google Scholar]
  63. Meyyappan M, Delzeit L, Cassell A, Hash D. 63.  2003. Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 5:205–16 [Google Scholar]
  64. AuBuchon JF, Chen L-H, Jin S. 64.  2005. Control of carbon capping for regrowth of aligned carbon nanotubes. J. Phys. Chem. B 109:6044–48 [Google Scholar]
  65. Collins PG, Avouris P. 65.  2000. Nanotubes for electronics. Sci. Am. 283:62–69 [Google Scholar]
  66. Tans SJ, Verschueren ARM, Dekker C. 66.  1998. Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52 [Google Scholar]
  67. Javey A, Guo J, Wang Q, Lundstrom M, Dai H. 67.  2003. Ballistic carbon nanotube field-effect transistors. Nature 424:654–57 [Google Scholar]
  68. Franklin AD, Chen Z. 68.  2010. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 5:858–62 [Google Scholar]
  69. Zhou XJ, Park JY, Huang SM, Liu J, McEuen PL. 69.  2005. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95:146805 [Google Scholar]
  70. Franklin AD, Luisier M, Han S-J, Tulevski G, Breslin CM. 70.  et al. 2012. Sub-10 nm carbon nanotube transistor. Nano Lett. 12:758–62 [Google Scholar]
  71. Franklin AD, Tulevski GS, Han S-J, Shahrjerdi D, Cao Q. 71.  et al. 2012. Variability in carbon nanotube transistors: improving device-to-device consistency. ACS Nano 6:1109–15 [Google Scholar]
  72. Cao Q, Kim H-S, Pimparkar N, Kulkarni JP, Wang C. 72.  et al. 2008. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500 [Google Scholar]
  73. Sun D-M, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI. 73.  et al. 2011. Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 6:156–61 [Google Scholar]
  74. Wang C, Hwang D, Yu Z, Takei K, Park J. 74.  et al. 2013. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 12:899–904 [Google Scholar]
  75. Lau PH, Takei K, Wang C, Ju Y, Kim J. 75.  et al. 2013. Fully printed, high performance carbon nanotube thin-film transistors on flexible substrates. Nano Lett. 13:3864–69 [Google Scholar]
  76. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG. 76.  2004. Aligned multiwalled carbon nanotube membranes. Science 303:62–65 [Google Scholar]
  77. Nednoor P, Chopra N, Gavalas V, Bachas LG, Hinds BJ. 77.  2005. Reversible biochemical switching of ionic transport through aligned carbon nanotube membranes. Chem. Mater. 17:3595–99 [Google Scholar]
  78. Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB. 78.  et al. 2006. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–37 [Google Scholar]
  79. Majumder M, Zhan X, Andrews R, Hinds BJ. 79.  2007. Voltage gated carbon nanotube membranes. Langmuir 23:8624–31 [Google Scholar]
  80. Lee CY, Choi W, Han J-H, Strano MS. 80.  2010. Coherence resonance in a single-walled carbon nanotube ion channel. Science 329:1320–24 [Google Scholar]
  81. Wu J, Gerstandt K, Zhang H, Liu J, Hinds BJ. 81.  2012. Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes. Nat. Nanotechnol. 7:133–39Demonstrates that the mobilities of ions within such membranes are three times higher than the bulk mobility. [Google Scholar]
  82. Gao G, Vecitis CD. 82.  2012. Reactive depth and performance of an electrochemical carbon nanotube network as a function of mass transport. ACS Appl. Mater. Interfaces 4:6096–103 [Google Scholar]
  83. Vecitis CD, Schnoor MH, Rahaman MS, Schiffman JD, Elimelech M. 83.  2011. Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol. 45:3672–79 [Google Scholar]
  84. Jirage KB, Hulteen JC, Martin CR. 84.  1997. Nanotubule-based molecular-filtration membranes. Science 278:655–58 [Google Scholar]
  85. Majumder M, Chopra N, Hinds BJ. 85.  2011. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5:3867–77 [Google Scholar]
  86. Wu J, Gerstandt K, Majumder M, Zhan X, Hinds BJ. 86.  2011. Highly efficient electroosmotic flow through functionalized carbon nanotube membranes. Nanoscale 3:3321–28 [Google Scholar]
  87. Schnoor MH, Vecitis CD. 87.  2013. Quantitative examination of aqueous ferrocyanide oxidation in a carbon nanotube electrochemical filter: effects of flow rate, ionic strength, and cathode material. J. Phys. Chem. C 117:2855–67 [Google Scholar]
  88. Zhang Q, Vecitis CD. 88.  2014. Conductive CNT-PVDF membrane for capacitive organic fouling reduction. J. Membr. Sci. 459:143–56 [Google Scholar]
  89. Gao G, Vecitis CD. 89.  2013. Electrocatalysis aqueous phenol with carbon nanotubes networks as anodes: electrodes passivation and regeneration and prevention. Electrochim. Acta 98:131–38 [Google Scholar]
  90. Milczarek G, Inganäs O. 90.  2012. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335:1468–71 [Google Scholar]
  91. Gordon RG. 91.  2000. Criteria for choosing transparent conductors. MRS Bull. 25:52–57 [Google Scholar]
  92. Li J, Hu L, Wang L, Zhou Y, Grüner G, Marks TJ. 92.  2006. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 6:2472–77 [Google Scholar]
  93. Hecht DS, Thomas D, Hu L, Ladous C, Lam T. 93.  et al. 2009. Carbon-nanotube film on plastic as transparent electrode for resistive touch screens. J. Soc. Inform. Display 17:941–46 [Google Scholar]
  94. Xu H, Chen L, Hu L, Zhitenev N. 94.  2010. Contact resistance of flexible, transparent carbon nanotube films with metals. Appl. Phys. Lett. 97:143116 [Google Scholar]
  95. Hu L, Li J, Liu J, Grüner G, Marks T. 95.  2010. Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions. Nanotechnology 21:155202 [Google Scholar]
  96. Hecht DS, Hu L, Irvin G. 96.  2011. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23:1482–513Provides a comprehensive review on transparent electrodes on CNTs and graphene films. [Google Scholar]
  97. Kaskela A, Nasibulin AG, Timmermans MY, Aitchison B, Papadimitratos A. 97.  et al. 2010. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 10:4349–55 [Google Scholar]
  98. Du J, Pei S, Ma L, Cheng HM. 98.  2014. 25th anniversary article: carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv. Mater. 26:1958–91 [Google Scholar]
  99. Hecht D, Hu L, Grüner G. 99.  2006. Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89:133112–13 [Google Scholar]
  100. Zhou Y, Hu L, Grüner G. 100.  2006. A method of printing carbon nanotube thin films. Appl. Phys. Lett. 88:123109 [Google Scholar]
  101. Hu L, Yuan W, Brochu P, Grüner G, Pei Q. 101.  2009. Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94:161108 [Google Scholar]
  102. Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ. 102.  2009. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 9:3890–95 [Google Scholar]
  103. Shim BS, Zhu J, Jan E, Critchley K, Kotov NA. 103.  2010. Transparent conductors from layer-by-layer assembled SWNT films: importance of mechanical properties and a new figure of merit. ACS Nano 4:3725–34 [Google Scholar]
  104. Hecht DS, Heintz AM, Lee R, Hu L, Moore B. 104.  et al. 2011. High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 22:075201 [Google Scholar]
  105. Jackson R, Domercq B, Jain R, Kippelen B, Graham S. 105.  2008. Stability of doped transparent carbon nanotube electrodes. Adv. Funct. Mater. 18:2548–54 [Google Scholar]
  106. Basu S. 106.  2007. Fuel Cell Science and Technology New York: Springer [Google Scholar]
  107. Gong K, Du F, Xia Z, Durstock M, Dai L. 107.  2009. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–64Demonstrates the role of nitrogen doping on vertically aligned CNTs for metal-free, efficient ORR catalysts. [Google Scholar]
  108. Winter M, Brodd RJ. 108.  2004. What are batteries, fuel cells, and supercapacitors?. Chem. Rev. 104:4245–70 [Google Scholar]
  109. Zhang S, Shao Y, Yin G, Lin Y. 109.  2010. Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. J. Mater. Chem. 20:2826–30 [Google Scholar]
  110. Kongkanand A, Kuwabata S, Girishkumar G, Kamat P. 110.  2006. Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 22:2392–96 [Google Scholar]
  111. Yang W, Wang X, Yang F, Yang C, Yang X. 111.  2008. Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction. Adv. Mater. 20:2579–87 [Google Scholar]
  112. Higgins DC, Meza D, Chen Z. 112.  2010. Nitrogen-doped carbon nanotubes as platinum catalyst supports for oxygen reduction reaction in proton exchange membrane fuel cells. J. Phys. Chem. C 114:21982–88 [Google Scholar]
  113. Shaijumon MM, Ramaprabhu S, Rajalakshmi N. 113.  2006. Platinum/multiwalled carbon nanotubes-platinum/carbon composites as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cell. Appl. Phys. Lett. 88:253105 [Google Scholar]
  114. Kundu S, Nagaiah TC, Xia W, Wang Y, Dommele SV. 114.  et al. 2009. Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J. Phys. Chem. C 113:14302–10 [Google Scholar]
  115. Chen Z, Higgins D, Chen Z. 115.  2010. Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells. Carbon 48:3057–65 [Google Scholar]
  116. Nagaiah TC, Kundu S, Bron M, Muhler M, Schuhmann W. 116.  2010. Nitrogen-doped carbon nanotubes as a cathode catalyst for the oxygen reduction reaction in alkaline medium. Electrochem. Commun. 12:338–41 [Google Scholar]
  117. Zhong G, Wang H, Yu H, Peng F. 117.  2014. The effect of edge carbon of carbon nanotubes on the electrocatalytic performance of oxygen reduction reaction. Electrochem. Commun. 40:5–8 [Google Scholar]
  118. Qu L, Liu Y, Baek J-B, Dai L. 118.  2010. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–26 [Google Scholar]
  119. Xiong W, Du F, Liu Y, Perez A. Supp M. 119.  Jr, et al. 2010. 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 132:15839–41 [Google Scholar]
  120. Ozaki J-I, Anahara T, Kimura N, Oya A. 120.  2006. Simultaneous doping of boron and nitrogen into a carbon to enhance its oxygen reduction activity in proton exchange membrane fuel cells. Carbon 44:3358–61 [Google Scholar]
  121. Yu D, Xue Y, Dai L. 121.  2012. Vertically aligned carbon nanotube arrays co-doped with phosphorus and nitrogen as efficient metal-free electrocatalysts for oxygen reduction. J. Phys. Chem. Lett. 3:2863–70 [Google Scholar]
  122. Yu D, Zhang Q, Dai L. 122.  2010. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction. J. Am. Chem. Soc. 132:15127–29 [Google Scholar]
  123. Yang L, Jiang S, Zhao Y, Zhu L, Chen S. 123.  et al. 2011. Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 123:7270–73 [Google Scholar]
  124. Han W-Q, Cumings J, Zettl A. 124.  2001. Pyrolytically grown arrays of highly aligned BxCyNz nanotubes. Appl. Phys. Lett. 78:2769–71 [Google Scholar]
  125. Hamada N, Sawada S-I, Oshiyama A. 125.  1992. New one-dimensional conductors: graphitic microtubules. Phys. Rev. Lett. 68:1579–81 [Google Scholar]
  126. Wang S, Iyyamperumal E, Roy A, Xue Y, Yu D, Dai L. 126.  2011. Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew. Chem. Int. Ed. Engl. 50:11756–60Provides the first report on ORR catalysts based on vertically aligned BCN nanotubes. [Google Scholar]
  127. Li Y, Zhou W, Wang H, Xie L, Liang Y. 127.  et al. 2012. An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes. Nat. Nanotechnol. 7:394–400 [Google Scholar]
  128. Frackowiak E, Beguin F. 128.  2002. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 40:1775–87 [Google Scholar]
  129. Niu C, Sichel EK, Hoch R, Moy D, Tennent H. 129.  1997. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70:1480–82 [Google Scholar]
  130. Frackowiak E, Metenier K, Bertagna V, Beguin F. 130.  2000. Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77:2421–23 [Google Scholar]
  131. Liu CG, Liu M, Li F, Cheng HM. 131.  2008. Frequency response characteristic of single-walled carbon nanotubes as supercapacitor electrode material. Appl. Phys. Lett. 92:143108 [Google Scholar]
  132. An K, Jeon K, Heo J, Lim S, Bae D, Lee Y. 132.  2002. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 149:A1058–62 [Google Scholar]
  133. Izadi-Najafabadi A, Yasuda S, Kobashi K, Yamada T, Futaba DN. 133.  et al. 2010. Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density. Adv. Mater. 22:E235–41 [Google Scholar]
  134. Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F. 134.  2002. Enhanced capacitance of carbon nanotubes through chemical activation. Chem. Phys. Lett. 361:35–41 [Google Scholar]
  135. Simon P, Burke AF. 135.  2008. Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interface 17:38–43 [Google Scholar]
  136. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y. 136.  et al. 2006. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5:987–94 [Google Scholar]
  137. Lu W, Qu L, Henry K, Dai L. 137.  2009. High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes. J. Power Sources 189:1270–77 [Google Scholar]
  138. Kim B, Chung H, Kim W. 138.  2012. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology 23:155401 [Google Scholar]
  139. Talapatra S, Kar S, Pal SK, Vajtai R, Ci L. 139.  et al. 2006. Direct growth of aligned carbon nanotubes on bulk metals. Nat. Nanotechnol. 1:112–16 [Google Scholar]
  140. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L. 140.  et al. 2007. Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. USA 104:13574–77 [Google Scholar]
  141. Kim Y-T, Tadai K, Mitani T. 141.  2005. Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater. Chem. 15:4914–21 [Google Scholar]
  142. Lee J-K, Pathan HM, Jung K-D, Joo O-S. 142.  2006. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. J. Power Sources 159:1527–31 [Google Scholar]
  143. Sun Z, Liu Z, Han B, Miao S, Du J, Miao Z. 143.  2006. Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethyl amine. Carbon 44:888–93 [Google Scholar]
  144. Ramani M, Haran BS, White RE, Popov BN, Arsov L. 144.  2001. Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide. J. Power Sources 93:209–14 [Google Scholar]
  145. Panić V, Vidaković T, Gojković S, Dekanski A, Milonjić S, Nikolić B. 145.  2003. The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol. Electrochim. Acta 48:3805–13 [Google Scholar]
  146. Yan J, Fan Z, Wei T, Cheng J, Shao B. 146.  et al. 2009. Carbon nanotube/MnO2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J. Power Sources 194:1202–7 [Google Scholar]
  147. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. 147.  2010. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48:3825–33 [Google Scholar]
  148. Kim I-H, Kim J-H, Cho B-W, Lee Y-H, Kim K-B. 148.  2006. Synthesis and electrochemical characterization of vanadium oxide on carbon nanotube film substrate for pseudocapacitor applications. J. Electrochem. Soc. 153:A989–96 [Google Scholar]
  149. Zhang H, Cao GP, Wang ZY, Yang YS, Shi ZJ, Gu ZN. 149.  2008. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8:2664–68 [Google Scholar]
  150. Liu J, Sun J, Gao L. 150.  2010. A promising way to enhance the electrochemical behavior of flexible single-walled carbon nanotube/polyaniline composite films. J. Phys. Chem. C 114:19614–20 [Google Scholar]
  151. Fang Y, Liu J, Yu DJ, Wicksted JP, Kalkan K. 151.  et al. 2010. Self-supported supercapacitor membranes: polypyrrole-coated multi-walled carbon nanotube networks enabled by pulsed electrodeposition. J. Power Sources 195:674–79 [Google Scholar]
  152. Shimoda H, Gao B, Tang XP, Kleinhammes A, Fleming L. 152.  et al. 2002. Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties. Phys. Rev. Lett. 88:015502 [Google Scholar]
  153. Zamfir MR, Nguyen HT, Moyen E, Lee YH, Pribat D. 153.  2013. Silicon nanowires for Li-based battery anodes: a review. J. Mater. Chem. A 1:9566–86 [Google Scholar]
  154. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W. 154.  2005. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4:366–77 [Google Scholar]
  155. Szczech JR, Jin S. 155.  2011. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4:56–72 [Google Scholar]
  156. Cui LF, Yang Y, Hsu CM, Cui Y. 156.  2009. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 9:3370–74 [Google Scholar]
  157. Gohier A, Laïk B, Kim K-H, Maurice J-L, Pereira-Ramos J-P. 157.  et al. 2012. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv. Mater. 24:2592–97 [Google Scholar]
  158. Fan Y, Zhang Q, Xiao QZ, Wang XH, Huang K. 158.  2013. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology. Carbon 59:264–69 [Google Scholar]
  159. Klankowski SA, Pandey GP, Cruden BA, Liu J, Wu J. 159.  et al. 2014. High-rate lithium-ion battery anodes based on silicon-coated vertically aligned carbon nanofibers In 2014 IEEE International Conference on Nanotechnology, pp. 22–23. New York: IEEE [Google Scholar]
  160. Long JW, Dunn B, Rolison DR, White HS. 160.  2004. Three-dimensional battery architectures. Chem. Rev. 104:4463–92 [Google Scholar]
  161. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW. 161.  2012. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24:5166–80 [Google Scholar]
  162. Kymakis E, Amaratunga GAJ. 162.  2002. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80:112–14 [Google Scholar]
  163. Nam C-Y, Wu Q, Su D, Chiu C-Y, Tremblay NJ. 163.  et al. 2011. Nanostructured electrodes for organic bulk heterojunction solar cells: model study using carbon nanotube dispersed polythiophene-fullerene blend devices. J. Appl. Phys. 110:064307 [Google Scholar]
  164. Cataldo S, Salice P, Menna E, Pignataro B. 164.  2012. Carbon nanotubes and organic solar cells. Energy Environ. Sci. 5:5919–40 [Google Scholar]
  165. Geng J, Zeng T. 165.  2006. Influence of single-walled carbon nanotubes induced crystallinity enhancement and morphology change on polymer photovoltaic devices. J. Am. Chem. Soc. 128:16827–33 [Google Scholar]
  166. Lee HW, Yoon Y, Park S, Oh JH, Hong S. 166.  et al. 2011. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat. Commun. 2:541 [Google Scholar]
  167. Dissanayake NM, Zhong Z. 167.  2010. Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic. Nano Lett. 11:286–90 [Google Scholar]
  168. Kongkanand A, Dominguez RM, Kamat PV. 168.  2007. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells: capture and transport of photogenerated electrons. Nano Lett. 7:676–80 [Google Scholar]
  169. Zhang S, Niu H, Lan Y, Cheng C, Xu J, Wang X. 169.  2011. Synthesis of TiO2 nanoparticles on plasma-treated carbon nanotubes and its application in photoanodes of dye-sensitized solar cells. J. Phys. Chem. C 115:22025–34 [Google Scholar]
  170. Jang S-R, Vittal R, Kim K-J. 170.  2004. Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells. Langmuir 20:9807–10 [Google Scholar]
  171. Dembele KT, Selopal GS, Soldano C, Nechache R, Rimada JC. 171.  et al. 2013. Hybrid carbon nanotubes–TiO2 photoanodes for high efficiency dye-sensitized solar cells. J. Phys. Chem. C 117:14510–17 [Google Scholar]
  172. Dang XN, Yi HJ, Ham MH, Qi JF, Yun DS. 172.  et al. 2011. Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nat. Nanotechnol. 6:377–84 [Google Scholar]
  173. Yang N, Zhai J, Wang D, Chen Y, Jiang L. 173.  2010. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS Nano 4:887–94 [Google Scholar]
  174. Saito N, Haniu H, Usui Y, Aoki K, Hara K. 174.  et al. 2014. Safe clinical use of carbon nanotubes as innovative biomaterials. Chem. Rev. 114:6040–79 [Google Scholar]
  175. Liu Z, Tabakman S, Welsher K, Dai H. 175.  2009. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2:85–120 [Google Scholar]
  176. Li J, Wu NQ. 176.  2014. Biosensors Based on Nanomaterials and Nanodevices Boca Raton. FL: CRC517 [Google Scholar]
  177. Klingeler R, Sim RB. 177.  2011. Carbon Nanotubes for Biomedical Applications Heidelberg: Springer [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121535
Loading
/content/journals/10.1146/annurev-physchem-040214-121535
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error