Recent experiments have demonstrated that the electron transmission yield through chiral molecules depends on the electron spin orientation. This phenomenon has been termed the chiral-induced spin selectivity (CISS) effect, and it provides a challenge to theory and promise for organic molecule–based spintronic devices. This article reviews recent developments in our understanding of CISS. Different theoretical models have been used to describe the effect; however, they all presume an unusually large spin-orbit coupling in chiral molecules for the effect to display the magnitudes seen in experiments. A simplified model for an electron's transport through a chiral potential suggests that these large couplings can be manifested. Techniques for measuring spin-selective electron transport through molecules are overviewed, and some examples of recent experiments are described. Finally, we present results obtained by studying several systems, and we describe the possible application of the CISS effect for memory devices.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Baibich MN, Broto JM, Fert A, FN Nguyen Van Dau, Petroff F. 1.  et al. 1988. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61:2472–75 [Google Scholar]
  2. Binasch G, Grünberg P, Saurenbach F, Zinn W. 2.  1989. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39:4828–30 [Google Scholar]
  3. Szulczewski G, Sanvito S, Coey M. 3.  2009. A spin of their own. Nat. Mater. 8:693–95 [Google Scholar]
  4. Xiong ZH, Wu D, Vardeny ZV, Shi J. 4.  2004. Giant magnetoresistance in organic spin-valves. Nature 427:821–24 [Google Scholar]
  5. Sun DL, Yin LF, Sun CJ, Guo HG, Gai Z. 5.  et al. 2010. Giant magnetoresistance in organic spin valves. Phys. Rev. Lett. 104:236602 [Google Scholar]
  6. Pilia L, Serri M, Matsushita MM, Awaga K, Heutz S, Robertson N. 6.  2014. Giant magnetoresistance in a molecular thin film as an intrinsic property. Adv. Funct. Mater. 24:2383–88 [Google Scholar]
  7. Schmaus S, Bagrets A, Nahas Y, Yamada TK, Bork A. 7.  et al. 2011. Giant magnetoresistance through a single molecule. Nat. Nanotechnol. 6:185–89 [Google Scholar]
  8. Atodiresei N, Brede J, Lazic P, Caciuc V, Hoffmann G. 8.  et al. 2010. Design of the local spin polarization at the organic-ferromagnetic interface. Phys. Rev. Lett. 105:066601 [Google Scholar]
  9. Francis TL, Mermer O, Veeraraghavan G, Wohlgenannt M. 9.  2004. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. New J. Phys. 6:185 [Google Scholar]
  10. Majumdar S, Laiho R, Laukkanen P, Vayrynen IJ, Majumdar HS, Osterbacka R. 10.  2006. Application of regioregular polythiophene in spintronic devices: effect of interface. Appl. Phys. Lett. 89:122114 [Google Scholar]
  11. Romeike C, Wegewijs MR, Ruben M, Wenzel W, Schoeller H. 11.  2007. Charge-switchable molecular magnet and spin blockade of tunneling. Phys. Rev. B 75:064404 [Google Scholar]
  12. Bentley R. 12.  1995. From optical activity in quartz to chiral drugs: molecular handedness in biology and medicine. Perspect. Biol. Med. 38:188–229 [Google Scholar]
  13. Jacobsen EN, Pfaltz A, Yamamoto H. 13.  1999. Comprehensive Asymmetric Catalysis Berlin: Springer [Google Scholar]
  14. Ojima I. 14.  2000. Catalytic Asymmetric Synthesis New York: Wiley, 2nd ed.. [Google Scholar]
  15. Yoon TP, Jacobsen EN. 15.  2003. Privileged chiral catalysts. Science 299:1691–93 [Google Scholar]
  16. Barron LD. 16.  2000. Chirality, magnetism and light. Nature 405:895–96 [Google Scholar]
  17. Naaman R, Waldeck DH. 17.  2012. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3:2178–87 [Google Scholar]
  18. E Venkatramani Wierzbinski R, Davis KL, Bezer S, Kong J. 18.  et al. 2013. The single-molecule conductance and electrochemical electron-transfer rate are related by a power law. ACS Nano`18 7:5391–401 [Google Scholar]
  19. Eremko AA, Loktev VM. 19.  2013. Spin sensitive electron transmission through helical potentials. Phys. Rev. B 88:165409 [Google Scholar]
  20. Krstić V, Rikken GLJA. 20.  2002. Magneto-chiral anisotropy of the free electron on a helix. Chem. Phys. Lett. 364:51–56 [Google Scholar]
  21. Koretsune T, Arita R, Aoki H. 21.  2012. Magneto-orbital effect without spin-orbit interactions in a noncentrosymmetric zeolite-templated carbon structure. Phys. Rev. B 86:125207 [Google Scholar]
  22. Yeganeh S, Ratner MA, Medina E, Mujica V. 22.  2009. Chiral electron transport: scattering through helical potentials. J. Chem. Phys. 131:014707 [Google Scholar]
  23. Medina E, Lopez F, Ratner MA, Mujica V. 23.  2012. Chiral molecular films as electron polarizers and polarization modulators. Europhys. Lett. 99:17006 [Google Scholar]
  24. Gutierrez R, Díaz E, Naaman R, Cuniberti G. 24.  2012. Spin selective transport through helical molecular systems. Phys. Rev. B 85:081404 [Google Scholar]
  25. Gutierrez R, Díaz E, Gaul C, Brumme T, Domínguez-Adame F, Cuniberti G. 25.  2013. Modeling spin transport in helical fields: derivation of an effective low-dimensional Hamiltonian. J. Phys. Chem. C 117:22276–84 [Google Scholar]
  26. Guo AM, Sun QF. 26.  2012. Spin-selective transport of electrons in DNA double helix. Phys. Rev. Lett. 108:218102 [Google Scholar]
  27. Guo AM, Sun QF. 27.  2012. Sequence-dependent spin-selective tunneling along double-stranded DNA. Phys. Rev. B 86:115441 [Google Scholar]
  28. Guo AM, Sun QF. 28.  2014. Spin-dependent electron transport in protein-like single-helical molecules. Proc. Natl. Acad. Sci. USA 111:11658–62 [Google Scholar]
  29. Rai D, Galperin M. 29.  2013. Electrically driven spin currents in DNA. J. Phys. Chem. C 117:13730–37 [Google Scholar]
  30. Gersten J, Kaasbjerg K, Nitzan A. 30.  2013. Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling. J. Chem. Phys. 139:114111 [Google Scholar]
  31. Vager D, Vager Z. 31.  2012. Spin order without magnetism: a new phase of spontaneously broken symmetry in condensed matter. Phys. Lett. A 376:1895–97 [Google Scholar]
  32. Kuzmin SL, Duley WW. 32.  2014. Properties of specific electron helical states leads to spin filtering effect in dsDNA molecules. Phys. Lett. A 378:1647–50 [Google Scholar]
  33. Eremko AA, Loktev VM. 33.  2013. Spin sensitive electron transmission through helical potentials. Phys. Rev. B 88:165409 [Google Scholar]
  34. Xie Z, Markus TZ, Cohen SR, Vager Z, Gutierrez R, Naaman R. 34.  2011. Spin specific electron conduction through DNA oligomers. Nano Lett. 11:4652–55 [Google Scholar]
  35. Aronov AG, Lyanda-Geller YB. 35.  1993. Spin-orbit Berry phase in conducting rings. Phys. Rev. Lett. 70:343–46 [Google Scholar]
  36. Fuchs JN, Pièchon F, Goerbig MO, Montambaux G. 36.  2010. Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models. Eur. Phys. J. B 77:351–62 [Google Scholar]
  37. Buttiker M. 37.  1988. Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B 38:9375–89 [Google Scholar]
  38. Hirota E, Sakakima H, Inomata K. 38.  2002. Giant Magneto-Resistance Devices New York: Springer [Google Scholar]
  39. Ray K, Ananthavel SP, Waldeck DH, Naaman R. 39.  1999. Asymmetric scattering of polarized electrons by organized organic films made of chiral molecules. Science 283:814–16 [Google Scholar]
  40. Naaman R, Vager Z. 40.  2010. Cooperative electronic and magnetic properties of self-assembled monolayers. MRS Bull. 35:429–34 [Google Scholar]
  41. Meier F, Fescia D. 41.  1981. Band-structure investigation of gold by spin-polarized photoemission. Phys. Rev. Lett. 47:374–77 [Google Scholar]
  42. Mott NF. 42.  1929. The scattering of fast electrons by atomic nuclei. Proc. R. Soc. Lond. A 124:425–42 [Google Scholar]
  43. Mott NF. 43.  1932. The polarisation of electrons by double scattering. Proc. R. Soc. Lond. A 135:429–58 [Google Scholar]
  44. Göhler B, Hamelbeck V, Markus TZ, Kettner M, Hanne GF. 44.  et al. 2011. Spin selectivity in electron transmission through self-assembled monolayers of dsDNA. Science 331:894–97 [Google Scholar]
  45. Mishra D, Markus TZ, Naaman R, Kettner M, Göhler B. 45.  et al. 2013. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc. Natl. Acad. Sci. USA 110:14872–76 [Google Scholar]
  46. Gellrich A, Kessler J. 46.  1991. Precision measurement of the Sherman asymmetry function for electron scattering from gold. Phys. Rev. A 43:204–16 [Google Scholar]
  47. Kurzawa R, Kämper KP, Schmitt W, Güntherodt G. 47.  1986. Spin-resolved photoemission study of in situ grown epitaxial Fe layers on W(110). Solid State Commun. 60:777–80 [Google Scholar]
  48. Dedkov YS, Fonin M, Rüdiger U, Güntherodt G. 48.  2002. Growth and spin-resolved photoemission spectroscopy of the epitaxial α-Al2O3/Fe(110) system. Appl. Phys. Lett. 81:2584–86 [Google Scholar]
  49. Dedkov YS, Fonin M, Rüdiger U, Güntherodt G. 49.  2006. Spin-resolved photoelectron spectroscopy of the MgO/Fe(110) system. Appl. Phys. A 82:489–93 [Google Scholar]
  50. Ben Dor O, Morali N, Yochelis S, Baczewski LT, Paltiel Y. 50.  2014. Local light-induced magnetization using nanodots and chiral molecules. Nano Lett. 14:6042–49 [Google Scholar]
  51. Ravi S, Sowmiya P, Karthikeyan A. 51.  2013. Magnetoresistance and spin-filtering efficiency of DNA-sandwiched ferromagnetic nanostructures. Spin 3:1350003 [Google Scholar]
  52. Wei JJ, Schafmeister C, Bird G, Paul A, Naaman R, Waldeck DH. 52.  2006. Molecular chirality and charge transfer through self-assembled scaffold monolayers. J. Phys. Chem. B 110:1301–8 [Google Scholar]
  53. Nogues C, Cohen SR, Daube SS, Naaman R. 53.  2004. Electrical properties of short DNA oligomers characterized by conducting atomic force microscopy. Phys. Chem. Chem. Phys. 6:4459–66 [Google Scholar]
  54. Kerr J. 54.  1877. On rotation of the plane of the polarization by reflection from the pole of a magnet. Philos. Mag. 3:321–43 [Google Scholar]
  55. Ouyang M, Awschalom DD. 55.  2003. Coherent spin transfer between molecularly bridged quantum dots. Science 22:1074–78 [Google Scholar]
  56. Kimel AV, Bentivegna F, Gridnev VN, Pavlov VV, Pisarev RV, Rasing T. 56.  2001. Sub-picosecond dynamics of the photo-induced magneto-optical Kerr effect in CdTe at room temperature. Ultrafast Phenomena XII T Elsaesser, S Mukamel, MM Murnane, NF Scherer 363–65 Berlin: Springer-Verlag [Google Scholar]
  57. Kikkawa JM, Awschalom DD. 57.  1999. Lateral drag of spin coherence in gallium arsenide. Nature 397:139–41 [Google Scholar]
  58. Malajovich I, Kikkawa JM, Awschalom DD, Berry JJ, Samarth N. 58.  2000. Coherent transfer of spin through a semiconductor heterointerface. Phys. Rev. Lett. 84:1015–18 [Google Scholar]
  59. Kumar KS, Kantor-Uriel N, Mathew SP, Guliamov R, Naaman R. 59.  2013. Device for measuring spin selectivity in electron transfer. Phys. Chem. Chem. Phys. 15:18357–62 [Google Scholar]
  60. Carmeli I, Kumar KS, Heifler O, Carmeli C, Naaman R. 60.  2014. Spin selectivity in electron transfer in photosystem I. Angew. Chem. Int. Ed. Engl. 53:8953–58 [Google Scholar]
  61. Gotesman G, Guliamov R, Naaman R. 61.  2012. Horizontal versus vertical charge and energy transfer in hybrid assemblies of semiconductor nanoparticles. Beilstein J. Nanotechnol. 3:629–36 [Google Scholar]
  62. 62.  Deleted in proof
  63. Moodera JS, Mathon G. 63.  1999. Spin polarized tunneling in ferromagnetic junctions. J. Magn. Magn. Mater. 200:248–73 [Google Scholar]
  64. Elliott RJ. 64.  1954. Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys. Rev. 96:266–79 [Google Scholar]
  65. Yafet Y. 65.  1963. g factors and spin-lattice relaxation of conduction electrons. Solid State Physics 14 S Frederick, T David 1–98 New York: Academic [Google Scholar]
  66. Idzuchi H, Fukuma Y, Wang L, Otani Y. 66.  2012. Spin relaxation mechanism in silver nanowires covered with MgO protection layer. App. Phys. Lett. 101:022415 [Google Scholar]
  67. Carmeli I, Skakalova V, Naaman R, Vager Z. 67.  2002. Magnetization of chiral monolayers of polypeptide: a possible source of magnetism in some biological membranes. Angew. Chem. Int. Ed. Engl. 41:761–64 [Google Scholar]
  68. Kettner M, Göhler B, Zacharias H, Mishra D, Kiran V. 68.  et al. 2014. Submitted manuscript
  69. Gallagher WJ, Parkin SSP. 69.  2006. Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip. IBM J. Res. Dev. 50:5–23 [Google Scholar]
  70. Huai Y. 70.  2008. Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bull 18:33–40 [Google Scholar]
  71. Katine JA, Fullerton EE. 71.  2008. Device implications of spin-transfer torques. J. Magn. Magn. Mater. 320:1217–26 [Google Scholar]
  72. Ralph DC, Stiles MD. 72.  2008. Spin transfer torques. J. Magn. Magn. Mater. 320:1190–216 [Google Scholar]
  73. Wang C, Cui YT, Katine JA, Buhrman RA, Ralph DC. 73.  2011. Time-resolved measurement of spin-transfer-driven ferromagnetic resonance and spin torque in magnetic tunnel junctions. Nat. Phys. 7:496–501 [Google Scholar]
  74. Ben Dor O, Yochelis S, Mathew SP, Naaman R, Paltiel Y. 74.  2013. A chiral-based magnetic memory device without a permanent magnet. Nat. Commun. 4:2256 [Google Scholar]
  75. Chappert C, Fert A, Van Dau FN. 75.  2007. The emergence of spin electronics in data storage. Nat. Mater. 6:813–23 [Google Scholar]
  76. Kartopu G, Yalçin O, Choy KL, Topkaya R, Kazan S, Aktaş B. 76.  2011. Size effects and origin of easy-axis in nickel nanowire arrays. J. Appl. Phys. 109:033909 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error