1932

Abstract

Ultrafast energy transfer is used to transmit electronic excitation among the many molecules in photosynthetic antenna complexes. Recent experiments and theories have highlighted the role of coherent transfer in femtosecond studies of these proteins, suggesting the need for accurate dynamical models to capture the subtle characteristics of energy transfer mechanisms. Here we discuss how to think about coherence in light harvesting and electronic energy transfer. We review the various fundamental concepts of coherence, spanning from classical phenomena to the quantum superposition, and define coherence in electronic energy transfer. We describe the current status of experimental studies on light-harvesting complexes. Insights into the microscopic process are presented to highlight how and why this is a challenging problem to elucidate. We present an overview of the applicable dynamical theories to model energy transfer in the intermediate coupling regime.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121713
2015-04-01
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121713.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121713&mimeType=html&fmt=ahah

Literature Cited

  1. Connolly JS, Janzen AF, Samuel EB. 1.  1982. Fluorescence lifetimes of chlorophyll a: solvent, concentration and oxygen dependence. J. Photochem. Photobiol. B. Biol. 104:142–53 [Google Scholar]
  2. Mullineaux CW, Pascal AA, Horton P, Holzwarth AR. 2.  1993. Excitation-energy quenching in aggregates of the LHC II chlorophyll-protein complex: a time-resolved fluorescence study. Biochim. Biophys. Acta 1141:23–28 [Google Scholar]
  3. Green BR, Parson WW. 3.  2003. Light-Harvesting Antennas in Photosynthesis Dordrecht: Kluwer [Google Scholar]
  4. Sundström V, Pullerits T, van Grondelle R. 4.  1999. Photosynthetic light-harvesting: reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103:2327–46 [Google Scholar]
  5. Novoderezhkin V, van Grondelle R. 5.  2010. Physical origins and models of energy transfer in photosynthetic light-harvesting. Phys. Chem. Chem. Phys. 12:7352–65 [Google Scholar]
  6. van Grondelle R, van Gorkom H. 6.  2014. The birth of the photosynthetic reaction center: the story of Lou Duysens. Photosynth. Res. 120:3–7 [Google Scholar]
  7. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R. 7.  2011. Lessons from nature about solar light harvesting. Nat. Chem. 3:763–74 [Google Scholar]
  8. Renger T. 8.  2009. Theory of excitation energy transfer: from structure to function. Photosynth. Res. 102:471–85 [Google Scholar]
  9. Cheng YC, Fleming GR. 9.  2009. Dynamics of light harvesting in photosynthesis. Annu. Rev. Phys. Chem. 60:241–62 [Google Scholar]
  10. Croce R, van Amerongen H. 10.  2011. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B. Biol. 104:142–53 [Google Scholar]
  11. Blankenship RE. 11.  2002. Molecular Mechanisms of Photosynthesis Oxford: Blackwell [Google Scholar]
  12. Jursinic P, Govindjee. 12.  1977. Temperature dependence of delayed light emission in the 6 to 340 microsecond range after a single flash in chloroplasts. Photochem. Photobiol. 26:617–28 [Google Scholar]
  13. Wientjes E, van Amerongen H, Croce R. 13.  2013. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J. Phys. Chem. B 117:11200–8 [Google Scholar]
  14. Colbow K. 14.  1973. Energy transfer in photosynthesis. Biochim. Biophys. Acta 314:320–27 [Google Scholar]
  15. van Grondelle R. 15.  1985. Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim. Biophys. Acta 811:147–95 [Google Scholar]
  16. Vos M, van Grondelle R, van der Kooij FW, van de Poll D, Amesz J, Duysens LNM. 16.  1986. Singlet-singlet annihilation at low temperatures in the antenna of purple bacteria. Biochem. Biophys. Acta 850:501–12 [Google Scholar]
  17. Anna JM, Scholes GD, van Grondelle R. 17.  2014. A little coherence in photosynthetic light harvesting. Bioscience 64:14–25 [Google Scholar]
  18. Ishizaki A, Calhoun TR, Schlau-Cohen GS, Fleming GR. 18.  2010. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12:7319–37 [Google Scholar]
  19. Ishizaki A, Fleming GR. 19.  2012. Quantum coherence in photosynthetic light harvesting. Annu. Rev. Condens. Matter Phys. 3:333–61 [Google Scholar]
  20. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mančal T. 20.  et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86 [Google Scholar]
  21. Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E. 21.  et al. 2010. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. USA 107:12766–70 [Google Scholar]
  22. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD. 22.  2010. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644–48 [Google Scholar]
  23. Scholes GD. 23.  2003. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54:57–87 [Google Scholar]
  24. Förster T. 24.  1965. Delocalized excitation and excitation transfer. Modern Quantum Chemistry: Instanbul Lectures. Part III: Action of Light and Organic Crystals O Sinanoglu 93–137 New York: Academic [Google Scholar]
  25. Braslavsky SE, Fron E, Rodriguez HB, San Román E, Scholes GD. 25.  et al. 2008. Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer. Photochem. Photobiol. Sci. 7:1444–48 [Google Scholar]
  26. Andrews DL. 26.  2008. Mechanistic principles and applications of resonance energy transfer. Can. J. Chem. 86:855–70 [Google Scholar]
  27. Scholes GD, Curutchet C, Mennucci B, Cammi R, Tomasi J. 27.  2007. How solvent controls electronic energy transfer and light harvesting. J. Phys. Chem. B 111:6978–82 [Google Scholar]
  28. Renger T, Müh F. 28.  2012. Theory of excitonic couplings in dielectric media: foundation of Poisson-TrEsp method and application to photosystem I trimers. Photosynth. Res. 111:47–62 [Google Scholar]
  29. Berlman IB. 29.  1973. Energy Transfer Parameters of Aromatic Compounds New York: Academic [Google Scholar]
  30. Krueger BP, Scholes GD, Fleming GR. 30.  1998. Calculation of couplings and energy transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J. Phys. Chem. B 102:5378–86 [Google Scholar]
  31. Hsu C-P. 31.  2009. The electronic couplings in electron transfer and excitation energy transfer. Acc. Chem. Res. 42:509–18 [Google Scholar]
  32. Kasha M. 32.  1963. Energy transfer mechanisms and molecular exciton model for molecular aggregates. Radiat. Res. 20:55–70 [Google Scholar]
  33. Scholes GD, Rumbles G. 33.  2006. Excitons in nanoscale systems. Nat. Mater. 5:683–96 [Google Scholar]
  34. Bardeen CJ. 34.  2014. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65:127–48 [Google Scholar]
  35. Spano FC. 35.  2010. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43:429–39 [Google Scholar]
  36. Scholes GD, Smyth C. 36.  2014. Perspective: detecting and measuring exciton delocalization in photosynthetic light harvesting. J. Chem. Phys. 140:110901 [Google Scholar]
  37. Andrews DL, Curutchet C, Scholes GD. 37.  2011. Resonance energy transfer: beyond the limits. Laser Photon. Rev. 5:114–23 [Google Scholar]
  38. Müh F, Madjet ME, Renger T. 38.  2010. Structure-based identification of energy sinks in plant light-harvesting complex II. J. Phys. Chem. B 114:13517–35 [Google Scholar]
  39. Cogdell RJ, Gall A, Köhler J. 39.  2006. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39:227–324 [Google Scholar]
  40. Harrop SJ, Wilk KE, Dinshaw R, Collini E, Mirkovic T. 40.  et al. 2014. Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins. Proc. Natl. Acad. Sci. USA 111:E2666–75 [Google Scholar]
  41. Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G. 41.  et al. 1999. Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. Proc. Natl. Acad. Sci. USA 96:8901–6 [Google Scholar]
  42. Wormick JM, Liu H, Moran AM. 42.  2011. Exciton delocalization and energy transport mechanisms in R-phycoerythrin. J. Phys. Chem. A 115:2471–82 [Google Scholar]
  43. Wormick JM, Miller SA, Moran AM. 43.  2010. Toward the origin of exciton electronic structure in phycobiliproteins. J. Chem. Phys. 133:024507 [Google Scholar]
  44. Wormick JM, Moran AM. 44.  2011. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115:1347–56 [Google Scholar]
  45. Apt KE, Collier JL, Grossman AR. 45.  1995. Evolution of the phycobiliproteins. J. Mol. Biol. 248:79–86 [Google Scholar]
  46. Huo P, Coker DF. 46.  2011. Theoretical study of coherent excitation energy transfer in cryptophyte phycocyanin 645 at physiological temperature. J. Phys. Chem. Lett. 2:825–33 [Google Scholar]
  47. Scholes GD, Fleming GR. 47.  2000. On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J. Phys. Chem. B 104:1854–68 [Google Scholar]
  48. Beddard GS, Porter G. 48.  1976. Concentration quenching in chlorophyll. Nature 260:366–67 [Google Scholar]
  49. Watson WF, Livingston R. 49.  1950. Self-quenching and sensitization of fluorescence of chlorophyll solutions. J. Chem. Phys. 18:802–9 [Google Scholar]
  50. Barros T, Kühlbrandt W. 50.  2009. Crystallisation, structure and function of plant light-harvesting complex II. Biochim. Biophys. Acta 1787:753–72 [Google Scholar]
  51. Orf GS, Blankenship RE. 51.  2013. Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth. Res. 116:315–31 [Google Scholar]
  52. Ishizaki A, Fleming GR. 52.  2009. Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. J. Chem. Phys. 130:234111 [Google Scholar]
  53. Hemelrijk PW, Kwa SLS, van Grondelle R, Dekker JP. 53.  1992. Spectroscopic properties of LHC-II, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes. Biochim. Biophys. Acta 1098:159–66 [Google Scholar]
  54. Szalay L, Tombácz E, Singhal GS. 54.  1974. Effect of solvent on the absorption spectra and Stokes' shift of absorption and fluorescence of chlorophylls. Acta Phys. Acad. Sci. Hung. 35:29–36 [Google Scholar]
  55. Scholes GD. 55.  2010. Quantum-coherent electronic energy transfer: Did nature think of it first?. J. Phys. Chem. Lett. 1:2–8 [Google Scholar]
  56. Jumper C, Anna J, Stradomska A, Schins J, Myahkostupov M. 56.  et al. 2014. Intramolecular radiationless transitions dominate exciton relaxation dynamics. Chem. Phys. Lett. 599:23–33 [Google Scholar]
  57. Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuru-Guzik A. 57.  2009. Environment-assisted quantum transport. New J. Phys. 11:033003 [Google Scholar]
  58. Plenio MB, Huelga SF. 58.  2008. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10:113019 [Google Scholar]
  59. May V, Kühn O. 59.  2001. Charge and Energy Transfer Dynamics in Molecular Systems Berlin: Wiley-VCH [Google Scholar]
  60. Ishizaki A, Fleming GR. 60.  2009. On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130:234110 [Google Scholar]
  61. Nalbach P, Ishizaki A, Fleming G, Thorwart M. 61.  2011. Iterative path-integral algorithm versus cumulant time-nonlocal master equation approach for dissipative biomolecular exciton transport. New J. Phys. 13:063040 [Google Scholar]
  62. Dijkstra AG, Tanimura Y. 62.  2012. The role of the environment time scale in light-harvesting efficiency and coherent oscillations. New J. Phys. 14:073027 [Google Scholar]
  63. Rebentrost P, Mohseni M, Aspuru-Guzik A. 63.  2009. Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113:9942–47 [Google Scholar]
  64. Hossein-Nejad H, Olaya-Castro A, Scholes GD. 64.  2012. Phonon-mediated path-interference in electronic energy transfer. J. Chem. Phys. 136:024112 [Google Scholar]
  65. Wu J, Cao J. 65.  2013. Higher-order kinetic expansion of quantum dissipative dynamics: mapping quantum networks to kinetic networks. J. Chem. Phys. 139:044102 [Google Scholar]
  66. Tanimura Y. 66.  2006. Stochastic Liouville, Langevin, Fokker-Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn. 75:082001 [Google Scholar]
  67. Mülken O, Mühlbacher L, Schmid T, Blumen A. 67.  2010. Dissipative dynamics with trapping in dimers. Phys. Rev. E 81:041114 [Google Scholar]
  68. Weiss S, Hützen R, Becker D, Eckel J, Egger R, Thorwart M. 68.  2013. Iterative path integral summation for nonequilibrium quantum transport. Phys. Status Solidi B 250:2298–314 [Google Scholar]
  69. Jang S. 69.  2011. Theory of multichromophoric coherent resonance energy transfer: a polaronic quantum master equation approach. J. Chem. Phys. 135:034105 [Google Scholar]
  70. Jang S, Cheng Y-C, Reichman D, Eaves J. 70.  2008. Theory of coherent resonance energy transfer. J. Chem. Phys. 129:101104 [Google Scholar]
  71. Kolli A, Nazir A, Olaya-Castro A. 71.  2011. Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation. J. Chem. Phys. 135:154112 [Google Scholar]
  72. Nazir A, McCutcheon DPS, Chin AW. 72.  2012. Ground state and dynamics of the biased dissipative two-state system: beyond variational polaron theory. Phys. Rev. B 85:224301 [Google Scholar]
  73. Gardner WA. 73.  1992. A unifying view of coherence in signal processing. Signal Process. 29:113–40 [Google Scholar]
  74. Glauber RJ. 74.  2007. Quantum Theory of Optical Coherence Berlin: Wiley-VCH [Google Scholar]
  75. Loudon R. 75.  2000. The Quantum Theory of Light New York: Oxford Univ. Press [Google Scholar]
  76. Kassal I, Yuen-Zhou J, Rahimi-Keshari S. 76.  2013. Does coherence enhance transport in photosynthesis?. J. Phys. Chem. Lett. 4:362–67 [Google Scholar]
  77. Brańczyk A, Turner DB, Scholes GD. 77.  2014. Crossing disciplines: a view on two-dimensional optical spectroscopy. Ann. Phys. 526:31–49 [Google Scholar]
  78. Mančal T, Valkunas L. 78.  2010. Exciton dynamics in photosynthetic complexes: excitation by coherent and incoherent light. New J. Phys. 12:065044 [Google Scholar]
  79. Brumer P, Shapiro M. 79.  2012. Molecular response in one-photon absorption via natural thermal light versus pulsed laser excitation. Proc. Natl. Acad. Sci. USA 109:19575–78 [Google Scholar]
  80. Chenu A, Maly P, Mančal T. 80.  2014. Dynamic coherence in excitonic molecular complexes under various excitation conditions. Chem. Phys. 439:100–10 [Google Scholar]
  81. Porter G. 81.  1978. The Bakerian Lecture, 1977: in vitro models for photosynthesis. Proc. R. Soc. Lond. A 362:281–303 [Google Scholar]
  82. Jonas DM. 82.  2003. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54:425–63 [Google Scholar]
  83. Brixner T, Mančal T, Stiopkin IV, Fleming GR. 83.  2004. Phase-stabilized two-dimensional electronic spectroscopy. J. Chem. Phys. 121:4221–36 [Google Scholar]
  84. Abramavicius D, Palmieri B, Voronine DV, Sanda F, Mukamel S. 84.  2009. Coherent multidimensional optical spectroscopy of excitons in molecular aggregates: quasiparticle versus supermolecule perspectives. Chem. Rev. 109:2350–408 [Google Scholar]
  85. Cho MH, Vaswani HM, Brixner T, Stenger J, Fleming GR. 85.  2005. Exciton analysis in 2D electronic spectroscopy. J. Phys. Chem. B 109:10542–56 [Google Scholar]
  86. Fassioli F, Dinshaw R, Arpin PC, Scholes GD. 86.  2014. Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interface 11:20130901 [Google Scholar]
  87. Heller E. 87.  1981. A semiclassical way to molecular spectroscopy. Acc. Chem. Res. 14:368–75 [Google Scholar]
  88. Gruebele M, Zewail A. 88.  1993. Femtosecond wave packet spectroscopy: coherences, the potential, and structural determination. J. Chem. Phys. 98:883–902 [Google Scholar]
  89. Bardeen CJ, Wang Q, Shank CV. 89.  1995. Selective excitation of vibrational wave packet motion using chirped pulses. Phys. Rev. Lett. 75:3410–13 [Google Scholar]
  90. Fleming GR. 90.  1986. Chemical Applications of Ultrafast Spectroscopy New York: Oxford Univ. Press [Google Scholar]
  91. Banin U, Bartana A, Ruhman S, Kosloff R. 91.  1994. Impulsive excitation of coherent vibrational motion ground surface dynamics induced by intense short pulses. J. Chem. Phys. 101:8461–81 [Google Scholar]
  92. Vos MH, Rappaport F, Lambry J-C, Breton J, Martin J-L. 92.  1993. Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363:320–25 [Google Scholar]
  93. Vos MH, Jones MR, Hunter CN, Breton J, Martin J-L. 93.  1994. Coherent nuclear dynamics at room temperature in bacterial reaction centers. Proc. Natl. Acad. Sci. USA 91:12701–5 [Google Scholar]
  94. Chachisvilis M, Fidder H, Pullerits T, Sundström V. 94.  1995. Coherent nuclear motions in light-harvesting pigments and dye molecules, probed by ultrafast spectroscopy. J. Raman Spectrosc. 26:513–22 [Google Scholar]
  95. Monshouwer R, Baltuska A, van Mourik F, van Grondelle R. 95.  1998. Time-resolved absorption difference spectroscopy of the LH-1 antenna of Rhodopseudomonas viridis. J. Phys. Chem. A 102:4360–71 [Google Scholar]
  96. Bradforth SE, Jimenez R, van Mourik F, van Grondelle R, Fleming GR. 96.  1995. Excitation transfer in the core light-harvesting complex (LH1) of Rhodobacter sphaeroides: an ultrafast fluorescence depolarization and annihilation study. J. Phys. Chem. B 99:16179–91 [Google Scholar]
  97. McClure SD, Turner DB, Arpin PC, Mirkovic T, Scholes GD. 97.  2014. Coherent oscillations in the PC577 cryptophyte antenna occur in the excited electronic state. J. Phys. Chem. B 118:1296–308 [Google Scholar]
  98. Pollard WT, Dexheimer SL, Wang Q, Peteanu LA, Shank CV, Mathies RA. 98.  1992. Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin. J. Phys. Chem. 96:6147–58 [Google Scholar]
  99. Braun M, Sobotta C, Dürr R, Pulvermacher H, Malkmus S. 99.  2006. Analysis of wave packet motion in frequency and time domain: oxazine 1. J. Phys. Chem. A 110:9793–800 [Google Scholar]
  100. Jonas DM, Bradforth SE, Passino SA, Fleming GR. 100.  1995. Femtosecond wavepacket spectroscopy: influence of temperature, wavelength, and pulse duration. J. Phys. Chem. 99:2594–608 [Google Scholar]
  101. Yuen-Zhou J, Krich JJ, Aspuru-Guzik A. 101.  2012. A witness for coherent electronic versus vibronic-only oscillations in ultrafast spectroscopy. J. Chem. Phys. 136:234501 [Google Scholar]
  102. Tanimura Y, Mukamel S. 102.  1993. Temperature dependence and non-Condon effects in pump-probe spectroscopy in the condensed phase. J. Opt. Soc. Am. B 10:2263–68 [Google Scholar]
  103. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE, Fleming GR. 103.  2005. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434:625–28 [Google Scholar]
  104. Ginsberg NS, Cheng Y-C, Fleming GR. 104.  2009. Two-dimensional electronic spectroscopy of molecular aggregates. Acc. Chem. Res. 42:1352–63 [Google Scholar]
  105. Cundiff ST, Zhang TH, Bristow AD, Karaiskaj D, Dai XC. 105.  2009. Optical two-dimensional Fourier transform spectroscopy of semiconductor quantum wells. Acc. Chem. Res. 42:1423–32 [Google Scholar]
  106. Hochstrasser RM. 106.  2007. Two-dimensional spectroscopy at infrared and optical frequencies. Proc. Natl. Acad. Sci. USA 104:14190–96 [Google Scholar]
  107. Turner DB, Dinshaw R, Lee K, Belsley MS, Wilk KE. 107.  et al. 2012. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14:4857–74 [Google Scholar]
  108. Cheng YC, Fleming GR. 108.  2008. Coherence quantum beats in two-dimensional electronic spectroscopy. J. Phys. Chem. A 112:4254–60 [Google Scholar]
  109. Turner DB, Wilk KE, Curmi PMG, Scholes GD. 109.  2011. Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy. J. Phys. Chem. Lett. 2:1904–11 [Google Scholar]
  110. Butkus V, Zigmantas D, Abramavicius D, Valkunas L. 110.  2013. Distinctive character of electronic and vibrational coherences in disordered molecular aggregates. Chem. Phys. Lett. 587:93–98 [Google Scholar]
  111. Perlik V, Lincoln C, Sanda F, Hauer J. 111.  2014. Distinguishing electronic and vibronic coherence in 2D spectra by their temperature dependence. J. Phys. Chem. Lett. 5:404–7 [Google Scholar]
  112. Halpin A, Johnson PJM, Tempelaar R, Murphy RS, Knoester J. 112.  et al. 2014. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6:196–201 [Google Scholar]
  113. Plenio MB, Almeida J, Huelga SF. 113.  2013. Origin of long-lived oscillations in 2D spectra of a quantum vibronic model: electronic versus vibrational coherence. J. Chem. Phys. 139:235102 [Google Scholar]
  114. Christensson N, Milota F, Hauer J, Sperling J, Bixner O. 114.  et al. 2011. High frequency vibrational modulations in two-dimensional electronic spectra and their resemblance to electronic coherence signatures. J. Phys. Chem. B 115:5383–91 [Google Scholar]
  115. Marin A, Doust AB, Scholes GD, Wilk KE, Curmi PMG. 115.  et al. 2011. Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645. Biophys. J. 101:1004–13 [Google Scholar]
  116. Mirkovic T, Doust AB, Kim J, Wilk KE, Curutchet C. 116.  et al. 2007. Ultrafast light harvesting dynamics in the cryptophyte phycocyanin 645. Photochem. Photobiol. Sci. 6:964–75 [Google Scholar]
  117. Turner DB, Dinshaw R, Lee KK, Belsley MS, Wilk KE. 117.  et al. 2012. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14:4857–74 [Google Scholar]
  118. Wong CY, Alvey RM, Turner DB, Wilk KE, Bryant DA. 118.  et al. 2012. Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nat. Chem. 4:396–404 [Google Scholar]
  119. Chin AW, Prior J, Rosenbach R, Caycedo-Soler F, Huelga SF, Plenio MB. 119.  2012. The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9:113–18 [Google Scholar]
  120. Tiwari V, Peters WK, Jonas DM. 120.  2013. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl. Acad. Sci. USA 110:1203–8 [Google Scholar]
  121. Chenu A, Christensson N, Kauffmann HF, Mančal T. 121.  2013. Enhancement of vibronic and ground-state vibrational coherences in 2D spectra of photosynthetic complexes. Sci. Rep. 3:2029 [Google Scholar]
  122. Christensson N, Kauffmann HF, Pullerits T, Mančal T. 122.  2012. Origin of long-lived coherences in light-harvesting complexes. J. Phys. Chem. B 116:7449–54 [Google Scholar]
  123. Schulze J, Torbjornsson M, Kühn O, Pullerits T. 123.  2014. Exciton coupling induces vibronic hyperchromism in light-harvesting complexes. New J. Phys. 16:045010 [Google Scholar]
  124. O'Reilly EJ, Olaya-Castro A. 124.  2014. Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat. Commun. 5:3012 [Google Scholar]
  125. Jaynes ET, Cummings FW. 125.  1962. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51:89–109 [Google Scholar]
  126. Fulton RL, Gouterman M. 126.  1961. Vibronic coupling. I. Mathematical treatment for two electronic states. J. Chem. Phys. 35:1059–71 [Google Scholar]
  127. Rivas AH, Susana F, Plenio Martin B. 127.  2014. Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77:094001 [Google Scholar]
  128. Simpson WT, Peterson DL. 128.  1957. Coupling strength for resonance force transfer of electronic energy in van der Waals solids. J. Chem. Phys. 26:588–93 [Google Scholar]
  129. McClure DS. 129.  1958. Energy transfer in molecular crystals and in double molecules. Can. J. Chem. 36:59–71 [Google Scholar]
  130. McRae EG. 130.  1961. Molecular vibrations in the exciton theory for molecular aggregates. I. General theory. Aust. J. Chem. 14:329–43 [Google Scholar]
  131. McRae EG. 131.  1963. Molecular vibrations in the exciton theory for molecular aggregates. IV. Excited states of weakly-coupled systems. Aust. J. Chem. 16:295–314 [Google Scholar]
  132. Philpott MR. 132.  1971. Theory of coupling of electronic and vibrational excitations in molecular crystals and helical polymers. J. Chem. Phys. 55:2039–54 [Google Scholar]
  133. Spano F. 133.  2010. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43:429–39 [Google Scholar]
  134. Basinskaite E, Butkus V, Abramavicius D, Valkunas L. 134.  2014. Vibronic models for nonlinear spectroscopy simulations. Photosynth. Res. 121:95–106 [Google Scholar]
  135. Meyer H-D, Manthe U, Cederbaum L. 135.  1990. The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165:73–78 [Google Scholar]
  136. Nakajima S. 136.  1958. On quantum theory of transport phenomena: steady diffusion. Prog. Theor. Phys. 20:948–59 [Google Scholar]
  137. Zwanzig R. 137.  1966. Approximate eigenfunctions of Liouville operator in classical many-body systems. Phys. Rev. 144:170–77 [Google Scholar]
  138. Yang M, Fleming GR. 138.  2002. Influence of phonons on exciton transfer dynamics: comparison of Redfield, Förster, and modified Redfield equations. Chem. Phys. 275:355–72 [Google Scholar]
  139. Zhang ML, Ka BJ, Geva E. 139.  2006. Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation. J. Chem. Phys. 125:044106 [Google Scholar]
  140. Makri N. 140.  1995. Numerical path integral techniques for long time dynamics of quantum dissipative systems. J. Math. Phys. 36:2430–57 [Google Scholar]
  141. Rackovsky S, Silbey R. 141.  1973. Electronic energy transfer in impure solids I. Two molecules embedded in a lattice. Mol. Phys. 25:61–72 [Google Scholar]
  142. Nazir A. 142.  2009. Correlation-dependent coherent to incoherent transitions in resonant energy transfer dynamics. Phys. Rev. Lett. 103:146404 [Google Scholar]
  143. Kolli A, O'Reilly EJ, Scholes GD, Olaya-Castro A. 143.  2012. The fundamental role of quantized vibrations in coherent light harvesting by cryptophyte algae. J. Chem. Phys. 137:174109 [Google Scholar]
  144. Feynman RP, Hibbs AR. 144.  1965. Quantum Mechanics and Path Integrals New York: McGraw-Hill [Google Scholar]
  145. Berne BJ, Thirumalai D. 145.  1986. On the simulation of quantum systems: path integral methods. Annu. Rev. Phys. Chem. 37:401–24 [Google Scholar]
  146. Makri N. 146.  1999. Time-dependent quantum methods for large systems. Annu. Rev. Phys. Chem. 50:167–91 [Google Scholar]
  147. Makri N. 147.  1992. Improved Feynman propagators on a grid and non-adiabatic corrections within the path integral framework. Chem. Phys. Lett. 193:435–45 [Google Scholar]
  148. Makri N, Thompson K. 148.  1998. Semiclassical influence functionals for quantum systems in anharmonic environments. Chem. Phys. Lett. 291:101–9 [Google Scholar]
  149. Segal D, Millis A, Reichman D. 149.  2010. Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation. Phys. Rev. B 82:205323 [Google Scholar]
  150. Kapral R. 150.  2006. Progress in the theory of mixed quantum-classical dynamics. Annu. Rev. Phys. Chem. 57:129–57 [Google Scholar]
  151. Huo P, Bonella S, Chen L, Coker DF. 151.  2010. Linearized approximations for condensed phase non-adiabatic dynamics: multi-layered baths and Brownian dynamics implementation. Chem. Phys. 370:87–97 [Google Scholar]
  152. Tully JC. 152.  1990. Molecular dynamics with electronic transitions. J. Chem. Phys. 93:1061–71 [Google Scholar]
  153. Settels V, Schubert A, Tafipolski M, Liu WL, Stehr V. 153.  et al. 2014. Identification of ultrafast relaxation processes as a major reason for inefficient exciton diffusion in perylene-based organic semiconductors. J. Am. Chem. Soc. 136:932–37 [Google Scholar]
  154. Meyer H-D, Miller WH. 154.  1979. A classical analog for electronic degrees of freedom in nonadiabatic collision processes. J. Chem. Phys. 70:3214–23 [Google Scholar]
  155. Stock G, Thoss M. 155.  1997. Semiclassical description of nonadiabatic quantum dynamics. Phys. Rev. Lett. 78:578–81 [Google Scholar]
  156. Miller WH. 156.  2012. Perspective: quantum or classical coherence?. J. Chem. Phys. 136:210901 [Google Scholar]
  157. Lambert R, Makri N. 157.  2012. Quantum-classical path integral. I. Classical memory and weak quantum nonlocality. J. Chem. Phys. 137:22A552 [Google Scholar]
  158. Ben-Num B, Quenneville J, Martínez TJ. 158.  2000. Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104:5161–75 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121713
Loading
/content/journals/10.1146/annurev-physchem-040214-121713
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error