1932

Abstract

Now routine is the ability to investigate soluble and membrane protein complexes in the gas phase of a mass spectrometer while preserving folded structure and ligand-binding properties. Several recent transformative developments have occurred to arrive at this point. These include advances in mass spectrometry instrumentation, particularly with respect to resolution; the ability to study intact membrane protein complexes released from detergent micelles; and the use of protein unfolding in the gas phase to obtain stability parameters. Together, these discoveries are providing unprecedented information on the compositional heterogeneity of biomacromolecules, the unfolding trajectories of multidomain proteins, and the stability imparted by ligand binding to both soluble and membrane-embedded protein complexes. We review these recent breakthroughs, highlighting the challenges that had to be overcome and the physicochemical insight that can now be gained from studying proteins and their assemblies in the gas phase.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040214-121732
2015-04-01
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/physchem/66/1/annurev-physchem-040214-121732.html?itemId=/content/journals/10.1146/annurev-physchem-040214-121732&mimeType=html&fmt=ahah

Literature Cited

  1. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS. 1.  et al. 2014. A draft map of the human proteome. Nature 509:575–81 [Google Scholar]
  2. Hernández H, Dziembowski A, Taverner T, Seraphin B, Robinson CV. 2.  2006. Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep. 7:605–10 [Google Scholar]
  3. Taverner T, Hernández H, Sharon M, Ruotolo BT, Matak-Vinkovic D. 3.  et al. 2008. Subunit architecture of intact protein complexes from mass spectrometry and homology modeling. Acc. Chem. Res. 41:617–27 [Google Scholar]
  4. Hernández H, Makarova OV, Makarov EM, Morgner N, Muto Y. 4.  et al. 2009. Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP. PLoS ONE 4:e7202 [Google Scholar]
  5. Politis A, Stengel F, Hall Z, Hernández H, Leitner A. 5.  et al. 2014. A mass spectrometry–based hybrid method for structural modeling of protein complexes. Nat. Methods 11:403–6 [Google Scholar]
  6. Marcoux J, Wang SC, Politis A, Reading E, Ma J. 6.  et al. 2013. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. Proc. Natl. Acad. Sci. USA 110:9704–9 [Google Scholar]
  7. Sobott F, Robinson CV. 7.  2002. Protein complexes gain momentum. Curr. Opin. Struct. Biol. 12:729–34 [Google Scholar]
  8. Sobott F, McCammon MG, Hernández H, Robinson CV. 8.  2005. The flight of macromolecular complexes in a mass spectrometer. Philos. Trans. R. Soc. A 363:379–89 Discussion. 2005 Philos. Trans. R. Soc. A 363:389–91 [Google Scholar]
  9. Robinson CV. 9.  2002. Protein complexes take flight. Nat. Struct. Biol. 9:505–6 [Google Scholar]
  10. Rose RJ, Damoc E, Denisov E, Makarov A, Heck AJR. 10.  2012. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9:1084–86 [Google Scholar]
  11. Thompson NJ, Rosati S, Heck AJ. 11.  2014. Performing native mass spectrometry analysis on therapeutic antibodies. Methods 65:11–17 [Google Scholar]
  12. Snijder J, van de Waterbeemd M, Damoc E, Denisov E, Grinfeld D. 12.  et al. 2014. Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by Orbitrap mass spectrometry. J. Am. Chem. Soc. 136:7295–99 [Google Scholar]
  13. Laganowsky A, Reading E, Hopper JT, Robinson CV. 13.  2013. Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8:639–51 [Google Scholar]
  14. Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT. 14.  et al. 2014. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:172–75 [Google Scholar]
  15. Uetrecht C, Rose RJ, van Duijn E, Lorenzen K, Heck AJR. 15.  2010. Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 39:1633–55 [Google Scholar]
  16. Zhou M, Politis A, Davies RB, Liko I, Wu K-J. 16.  et al. 2014. Ion mobility–mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nat. Chem. 6:208–15 [Google Scholar]
  17. Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM. 17.  et al. 2009. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nat. Chem. 1:326–31 [Google Scholar]
  18. Bleiholder C, Dupuis NF, Wyttenbach T, Bowers MT. 18.  2011. Ion mobility–mass spectrometry reveals a conformational conversion from random assembly to β-sheet in amyloid fibril formation. Nat. Chem. 3:172–77 [Google Scholar]
  19. Knapman TW, Valette NM, Warriner SL, Ashcroft AE. 19.  2013. Ion mobility spectrometry–mass spectrometry of intrinsically unfolded proteins: trying to put order into disorder. Curr. Anal. Chem. 9:181–91 [Google Scholar]
  20. Pagel K, Natan E, Hall Z, Fersht AR, Robinson CV. 20.  2013. Intrinsically disordered p53 and its complexes populate compact conformations in the gas phase. Angew. Chem. Int. Ed. Engl. 52:361–65 [Google Scholar]
  21. Hopper JT, Oldham NJ. 21.  2009. Collision induced unfolding of protein ions in the gas phase studied by ion mobility–mass spectrometry: the effect of ligand binding on conformational stability. J. Am. Soc. Mass. Spectrom. 20:1851–58 [Google Scholar]
  22. Hyung SJ, Robinson CV, Ruotolo BT. 22.  2009. Gas-phase unfolding and disassembly reveals stability differences in ligand-bound multiprotein complexes. Chem. Biol. 16:382–90 [Google Scholar]
  23. Barber M, Bordoli RS, Sedgwick RD, Tyler AN. 23.  1981. Fast atom bombardment of solids (F.A.B.): a new ion source for mass spectrometry. J. Chem. Soc. Chem. Commun. 1981:325–27 [Google Scholar]
  24. Devienne FM, Roustan JC. 24.  1982. “Fast atom bombardment”: a rediscovered method for mass spectrometry. Org. Mass Spectrom. 17:173–81 [Google Scholar]
  25. Macfarlane RD, Torgerson DF. 25.  1976. Californium-252 plasma desorption mass spectroscopy. Science 191:920–25 [Google Scholar]
  26. Zenobi R, Knochenmuss R. 26.  1998. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 17:337–66 [Google Scholar]
  27. Miliotis T, Kjellstrom S, Nilsson J, Laurell T, Edholm LE, Marko-Varga G. 27.  2000. Capillary liquid chromatography interfaced to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using an on-line coupled piezoelectric flow-through microdispenser. J. Mass Spectrom. 35:369–77 [Google Scholar]
  28. Kebarle P, Verkerk UH. 28.  2009. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev. 28:898–917 [Google Scholar]
  29. Benesch JL, Ruotolo BT, Simmons DA, Robinson CV. 29.  2007. Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem. Rev. 107:3544–67 [Google Scholar]
  30. Konermann L, Ahadi E, Rodriguez AD, Vahidi S. 30.  2013. Unraveling the mechanism of electrospray ionization. Anal. Chem. 85:2–9 [Google Scholar]
  31. Thomson BA, Iribarne JV. 31.  1979. Field induced ion evaporation from liquid surfaces at atmospheric pressure. J. Chem. Phys. 71:4451–63 [Google Scholar]
  32. Iribarne JV, Thomson BA. 32.  1976. On the evaporation of small ions from charged droplets. J. Chem. Phys. 64:2287–94 [Google Scholar]
  33. Nguyen S, Fenn JB. 33.  2007. Gas-phase ions of solute species from charged droplets of solutions. Proc. Natl. Acad. Sci. USA 104:1111–17 [Google Scholar]
  34. Schmelzeisen-Redeker G, Bütfering L, Röllgen FW. 34.  1989. Desolvation of ions and molecules in thermospray mass spectrometry. Int. J. Mass Spectrom. Ion Process. 90:139–50 [Google Scholar]
  35. Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB. 35.  1968. Molecular beams of macroions. J. Chem. Phys. 49:2240–49 [Google Scholar]
  36. de la Mora JF. 36.  2000. Electrospray ionization of large multiply charged species proceeds via Dole's charged residue mechanism. Anal. Chim. Acta 406:93–104 [Google Scholar]
  37. Hogan CJ. Carroll JA, Rohrs HW, Biswas P, Gross ML. 37.  Jr, 2009. Combined charged residue-field emission model of macromolecular electrospray ionization. Anal. Chem. 81:369–77 [Google Scholar]
  38. Juraschek R, Dulcks T, Karas M. 38.  1999. Nanoelectrospray: more than just a minimized-flow electrospray ionization source. J. Am. Soc. Mass. Spectrom. 10:300–8 [Google Scholar]
  39. Konijnenberg A, Butterer A, Sobott F. 39.  2013. Native ion mobility–mass spectrometry and related methods in structural biology. Biochim. Biophys. Acta 1834:1239–56 [Google Scholar]
  40. Lossl P, Snijder J, Heck AJ. 40.  2014. Boundaries of mass resolution in native mass spectrometry. J. Am. Soc. Mass. Spectrom. 25:906–17 [Google Scholar]
  41. Chernushevich IV, Loboda AV, Thomson BA. 41.  2001. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 36:849–65 [Google Scholar]
  42. Wollnik H, Przewloka M. 42.  1990. Time-of-flight mass spectrometers with multiply reflected ion trajectories. Int. J. Mass Spectrom. Ion Process. 96:267–74 [Google Scholar]
  43. Tahallah N, Pinkse M, Maier CS, Heck AJR. 43.  2001. The effect of the source pressure on the abundance of ions of noncovalent protein assemblies in an electrospray ionization orthogonal time-of-flight instrument. Rapid Commun. Mass Spectrom. 15:596–601 [Google Scholar]
  44. Rostom AA, Robinson CV. 44.  1999. Detection of the intact GroEL chaperonin assembly by mass spectrometry. J. Am. Chem. Soc. 121:4718–19 [Google Scholar]
  45. Snijder J, Rose RJ, Veesler D, Johnson JE, Heck AJR. 45.  2013. Studying 18 MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Ed. Engl. 52:4020–23 [Google Scholar]
  46. Sobott F, Hernández H, McCammon MG, Tito MA, Robinson CV. 46.  2002. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74:1402–7 [Google Scholar]
  47. Politis A, Park AY, Hall Z, Ruotolo BT, Robinson CV. 47.  2013. Integrative modelling coupled with ion mobility mass spectrometry reveals structural features of the clamp loader in complex with single-stranded DNA binding protein. J. Mol. Biol. 425:4790–801 [Google Scholar]
  48. Ruotolo BT, Giles K, Campuzano I, Sandercock AM, Bateman RH, Robinson CV. 48.  2005. Evidence for macromolecular protein rings in the absence of bulk water. Science 310:1658–61 [Google Scholar]
  49. Marcoux J, Politis A, Rinehart D, Marshall DP, Wallace MI. 49.  et al. 2014. Mass spectrometry defines the C-terminal dimerization domain and enables modeling of the structure of full-length OmpA. Structure 22:781–90 [Google Scholar]
  50. Sharon M. 50.  2013. Biochemistry: Structural MS pulls its weight. Science 340:1059–60 [Google Scholar]
  51. Baldwin AJ, Lioe H, Robinson CV, Kay LE, Benesch JL. 51.  2011. αB-crystallin polydispersity is a consequence of unbiased quaternary dynamics. J. Mol. Biol. 413:297–309 [Google Scholar]
  52. Ebong IO, Morgner N, Zhou M, Saraiva MA, Daturpalli S. 52.  et al. 2011. Heterogeneity and dynamics in the assembly of the heat shock protein 90 chaperone complexes. Proc. Natl. Acad. Sci. USA 108:17939–44 [Google Scholar]
  53. Levy ED, Boeri Erba E, Robinson CV, Teichmann SA. 53.  2008. Assembly reflects evolution of protein complexes. Nature 453:1262–65 [Google Scholar]
  54. Li H, Wolff JJ, Van Orden SL, Loo JA. 54.  2013. Native top-down electrospray ionization–mass spectrometry of 158 kDa protein complex by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 86:317–20 [Google Scholar]
  55. Zhang H, Cui W, Wen J, Blankenship RE, Gross ML. 55.  2011. Native electrospray and electron-capture dissociation FTICR mass spectrometry for top-down studies of protein assemblies. Anal. Chem. 83:5598–606 [Google Scholar]
  56. Yin S, Loo JA. 56.  2011. Top-down mass spectrometry of supercharged native protein–ligand complexes. Int. J. Mass Spectrom. 300:118–22 [Google Scholar]
  57. Clarke D, Murray E, Hupp T, Mackay CL, Langridge-Smith PR. 57.  2011. Mapping a noncovalent protein–peptide interface by top-down FTICR mass spectrometry using electron capture dissociation. J. Am. Soc. Mass Spectrom. 22:1432–40 [Google Scholar]
  58. Makarov A. 58.  2000. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem. 72:1156–62 [Google Scholar]
  59. Hardman M, Makarov AA. 59.  2003. Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem. 75:1699–705 [Google Scholar]
  60. Perry RH, Cooks RG, Noll RJ. 60.  2008. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrom. Rev. 27:661–99 [Google Scholar]
  61. Rose RJ, Damoc E, Denisov E, Makarov A, Heck AJ. 61.  2012. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 9:1084–86 [Google Scholar]
  62. Snijder J, Heck AJ. 62.  2014. Analytical approaches for size and mass analysis of large protein assemblies. Annu. Rev. Anal. Chem. 7:43–64 [Google Scholar]
  63. Benesch JLP. 63.  2009. Collisional activation of protein complexes: picking up the pieces. J. Am. Soc. Mass Spectrom. 20:341–48 [Google Scholar]
  64. Jennings KR. 64.  2000. The changing impact of the collision-induced decomposition of ions on mass spectrometry. Int. J. Mass Spectrom. 200:479–93 [Google Scholar]
  65. Shukla AK, Futrell JH. 65.  2000. Tandem mass spectrometry: dissociation of ions by collisional activation. J. Mass Spectrom. 35:1069–90 [Google Scholar]
  66. Sleno L, Volmer DA. 66.  2004. Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 39:1091–112 [Google Scholar]
  67. Zhou M, Sandercock AM, Fraser CS, Ridlova G, Stephens E. 67.  et al. 2008. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc. Natl. Acad. Sci. USA 105:18139–44 [Google Scholar]
  68. Zhou M, Wysocki VH. 68.  2014. Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase. Acc. Chem. Res. 47:1010–18 [Google Scholar]
  69. Zhou M, Dagan S, Wysocki VH. 69.  2012. Protein subunits released by surface collisions of noncovalent complexes: nativelike compact structures revealed by ion mobility mass spectrometry. Angew. Chem. Int. Ed. Engl. 51:4336–39 [Google Scholar]
  70. van den Heuvel RH, van Duijn E, Mazon H, Synowsky SA, Lorenzen K. 70.  et al. 2006. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 78:7473–83 [Google Scholar]
  71. Zhou M, Jones CM, Wysocki VH. 71.  2013. Dissecting the large noncovalent protein complex GroEL with surface-induced dissociation and ion mobility–mass spectrometry. Anal. Chem. 85:8262–67 [Google Scholar]
  72. von Helden G, Wyttenbach T, Bowers MT. 72.  1995. Conformation of macromolecules in the gas phase: use of matrix-assisted laser desorption methods in ion chromatography. Science 267:1483–85 [Google Scholar]
  73. Jarrold MF. 73.  2000. Peptides and proteins in the vapor phase. Annu. Rev. Phys. Chem. 51:179–207 [Google Scholar]
  74. Hoaglund-Hyzer CS, Counterman AE, Clemmer DE. 74.  1999. Anhydrous protein ions. Chem. Rev. 99:3037–80 [Google Scholar]
  75. Loo J, Berhane B, Kaddis C, Wooding K, Xie Y. 75.  et al. 2005. Electrospray ionization mass spectrometry and ion mobility analysis of the 20S proteasome complex. J. Am. Soc. Mass. Spectrom. 16:998–1008 [Google Scholar]
  76. Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV. 76.  2008. Ion mobility–mass spectrometry analysis of large protein complexes. Nat. Protoc. 3:1139–52 [Google Scholar]
  77. Ruotolo BT, Robinson CV. 77.  2006. Aspects of native proteins are retained in vacuum. Curr. Opin. Chem. Biol. 10:402–8 [Google Scholar]
  78. Ruotolo BT, Hyung SJ, Robinson PM, Giles K, Bateman RH, Robinson CV. 78.  2007. Ion mobility–mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. Angew. Chem. Int. Ed. Engl. 46:8001–4 [Google Scholar]
  79. Snijder J, Uetrecht C, Rose RJ, Sanchez-Eugenia R, Marti GA. 79.  et al. 2013. Probing the biophysical interplay between a viral genome and its capsid. Nat. Chem. 5:502–9 [Google Scholar]
  80. Mason EA, Schamp HW. 80.  1958. Mobility of gaseous ions in weak electric fields. Ann. Phys. 4:233–70 [Google Scholar]
  81. Bush MF, Hall Z, Giles K, Hoyes J, Robinson CV, Ruotolo BT. 81.  2010. Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 82:9557–65 [Google Scholar]
  82. Shvartsburg AA, Jarrold MF. 82.  1996. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261:86–91 [Google Scholar]
  83. Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF. 83.  1996. Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100:16082–86 [Google Scholar]
  84. Benesch JLP, Ruotolo BT. 84.  2011. Mass spectrometry: come of age for structural and dynamical biology. Curr. Opin. Struct. Biol. 21:641–49 [Google Scholar]
  85. Seddon AM, Curnow P, Booth PJ. 85.  2004. Membrane proteins, lipids and detergents: not just a soap opera. Biochim. Biophys. Acta 1666:105–17 [Google Scholar]
  86. Morrison EA, Henzler-Wildman KA. 86.  2012. Reconstitution of integral membrane proteins into isotropic bicelles with improved sample stability and expanded lipid composition profile. Biochim. Biophys. Acta 1818:814–20 [Google Scholar]
  87. Rigaud J-L, Lévy D. 87.  2003. Reconstitution of membrane proteins into liposomes. Methods Enzymol. 372:65–86 [Google Scholar]
  88. Popot JL, Berry EA, Charvolin D, Creuzenet C, Ebel C. 88.  et al. 2003. Amphipols: polymeric surfactants for membrane biology research. Cell. Mol. Life Sci. 60:1559–74 [Google Scholar]
  89. Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK. 89.  et al. 2009. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol. 464:211–31 [Google Scholar]
  90. Morgner N, Kleinschroth T, Barth H-D, Ludwig B, Brutschy B. 90.  2007. A novel approach to analyze membrane proteins by laser mass spectrometry: from protein subunits to the integral complex. J. Am. Soc. Mass. Spectrom. 18:1429–38 [Google Scholar]
  91. Chen F, Gerber S, Heuser K, Korkhov VM, Lizak C. 91.  et al. 2013. High-mass matrix-assisted laser desorption ionization–mass spectrometry of integral membrane proteins and their complexes. Anal. Chem. 85:3483–88 [Google Scholar]
  92. Bechara C, Bolbach G, Bazzaco P, Sharma KS, Durand G. 92.  et al. 2012. MALDI-TOF mass spectrometry analysis of amphipol-trapped membrane proteins. Anal. Chem. 84:6128–35 [Google Scholar]
  93. Barrera NP, Di Bartolo N, Booth PJ, Robinson CV. 93.  2008. Micelles protect membrane complexes from solution to vacuum. Science 321:243–46 [Google Scholar]
  94. Barrera NP, Isaacson SC, Zhou M, Bavro VN, Welch A. 94.  et al. 2009. Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat. Methods 6:585–87 [Google Scholar]
  95. Borysik AJ, Hewitt DJ, Robinson CV. 95.  2013. Detergent release prolongs the lifetime of native-like membrane protein conformations in the gas phase. J. Am. Chem. Soc. 135:6078–83 [Google Scholar]
  96. Hall Z, Politis A, Bush MF, Smith LJ, Robinson CV. 96.  2012. Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J. Am. Chem. Soc. 134:3429–38 [Google Scholar]
  97. Hall Z, Robinson CV. 97.  2012. Do charge state signatures guarantee protein conformations?. J. Am. Soc. Mass. Spectrom. 23:1161–68 [Google Scholar]
  98. Mehmood S, Marcoux J, Hopper JTS, Allison TM, Liko I. 98.  et al. 2014. Charge reduction stabilizes intact membrane protein complexes for mass spectrometry. J. Am. Chem. Soc. 136:17010–12 [Google Scholar]
  99. Hopper JT, Yu YT, Li D, Raymond A, Bostock M. 99.  et al. 2013. Detergent-free mass spectrometry of membrane protein complexes. Nat. Methods 10:1206–8 [Google Scholar]
  100. Leney AC, McMorran LM, Radford SE, Ashcroft AE. 100.  2012. Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal. Chem. 84:9841–47 [Google Scholar]
  101. Niu S, Rabuck JN, Ruotolo BT. 101.  2013. Ion mobility–mass spectrometry of intact protein–ligand complexes for pharmaceutical drug discovery and development. Curr. Opin. Chem. Biol. 17:809–17 [Google Scholar]
  102. Zhong Y, Han L, Ruotolo BT. 102.  2014. Collisional and coulombic unfolding of gas-phase proteins: high correlation to their domain structures in solution. Angew. Chem. Int. Ed. Engl. 53:9209–12 [Google Scholar]
  103. Rabuck JN, Hyung S-J, Ko KS, Fox CC, Soellner MB, Ruotolo BT. 103.  2013. Activation state-selective kinase inhibitor assay based on ion mobility–mass spectrometry. Anal. Chem. 85:6995–7002 [Google Scholar]
  104. Vahidi S, Stocks BB, Konermann L. 104.  2013. Partially disordered proteins studied by ion mobility–mass spectrometry: implications for the preservation of solution phase structure in the gas phase. Anal. Chem. 85:10471–78 [Google Scholar]
  105. Robinson CV, Chung EW, Kragelund BB, Knudsen J, Aplin RT. 105.  et al. 1996. Probing the nature of noncovalent interactions by mass spectrometry: a study of protein–CoA ligand binding and assembly. J. Am. Chem. Soc. 118:8646–53 [Google Scholar]
  106. Liu L, Bagal D, Kitova EN, Schnier PD, Klassen JS. 106.  2009. Hydrophobic protein–ligand interactions preserved in the gas phase. J. Am. Chem. Soc. 131:15980–81 [Google Scholar]
  107. Cubrilovic D, Haap W, Barylyuk K, Ruf A, Badertscher M. 107.  et al. 2014. Determination of protein–ligand binding constants of a cooperatively regulated tetrameric enzyme using electrospray mass spectrometry. ACS Chem. Biol. 9:218–26 [Google Scholar]
  108. Housden NG, Hopper JT, Lukoyanova N, Rodriguez-Larrea D, Wojdyla JA. 108.  et al. 2013. Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. Science 340:1570–74 [Google Scholar]
  109. Mathavan I, Zirah S, Mehmood S, Choudhury HG, Goulard C. 109.  et al. 2014. Structural basis for hijacking siderophore receptors by antimicrobial lasso peptides. Nat. Chem. Biol. 10:340–42 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040214-121732
Loading
/content/journals/10.1146/annurev-physchem-040214-121732
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error