After my acceptance of the kind invitation from Todd Martínez and Mark Johnson, Co-Editors of this journal, to write this article, I had to decide just how to actually do this, given the existence of a fairly personal and extended autobiographical account of recent vintage detailing my youth, education, and assorted experiences and activities at the University of Colorado, Boulder, and later also at Ecole Normale Supérieure in Paris (1). In the end, I settled on a differently styled recounting of the adventures with my students, postdocs, collaborators, and colleagues in trying to unravel, comprehend, describe, and occasionally even predict the manifestations and consequences of the myriad assortment of molecular dances that contribute to and govern the rates and mechanisms of chemical reactions in solution (and elsewhere). The result follows.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hynes JT. 1.  2008. Autobiography of James T. (Casey) Hynes. J. Phys. Chem. B 112:191–94 [Google Scholar]
  2. Hynes JT, Kapral R, Weinberg M. 2.  1977. Microscopic boundary layer effects and rough sphere rotation. J. Chem. Phys. 67:3256–67 [Google Scholar]
  3. Hynes JT, Kapral R, Weinberg M. 3.  1978. Molecular rotation and reorientation: microscopic and hydrodynamic contributions. J. Chem. Phys. 69:2725–33 [Google Scholar]
  4. Hynes JT, Kapral R, Weinberg M. 4.  1979. Molecular theory of translational diffusion: microscopic generalization of the normal velocity boundary condition. J. Chem. Phys. 70:871–83 [Google Scholar]
  5. Okamura T, Sumitani M, Yoshihara K. 5.  1983. Picosecond dynamic Stokes shift of α-naphthylamine. Chem. Phys. Lett. 94:339–43 [Google Scholar]
  6. Bagchi B, Oxtoby DW, Fleming GR. 6.  1984. Theory of the time development of the Stokes shift in polar media. Chem. Phys. 86:257–67 [Google Scholar]
  7. van der Zwan G, Hynes JT. 7.  1984. A simple dipole isomerization model for nonequilibrium solvation dynamics in reactions in polar solvents. Chem. Phys. 90:21–35 [Google Scholar]
  8. Calef DF, Wolynes PG. 8.  1983. Classical solvent dynamics and electron transfer. 1. Continuum theory. J. Phys. Chem. 873387–400 [Google Scholar]
  9. Maroncelli M, Fleming GR. 9.  1987. Picosecond solvation dynamics of coumarin 153: the importance of molecular aspects of solvation. J. Chem. Phys. 86:622l–39 [Google Scholar]
  10. Carter EA, Hynes JT. 10.  1991. Solvation dynamics for an ion pair in a polar solvent: time dependent fluorescence and photochemical charge transfer. J. Chem. Phys. 94:5961–79 [Google Scholar]
  11. Eisenberg D, Kauzmann W. 11.  1969. The Structure and Properties of Water London: Clarendon [Google Scholar]
  12. Laage D, Hynes JT. 12.  2006. A molecular jump mechanism of water reorientation. Science 311:832–35 [Google Scholar]
  13. Laage D, Hynes JT. 13.  2008. On the molecular mechanism of water reorientation. J. Phys. Chem. B 112:1430–42 [Google Scholar]
  14. Laage D, Stirnemann G, Hynes JT. 14.  2009. Why water reorientation slows down without iceberg formation around hydrophobic solutes. J. Phys. Chem. B 113:2428–35 [Google Scholar]
  15. Stirnemann G, Hynes JT, Laage D. 15.  2010. Water hydrogen bond dynamics in aqueous solutions of amphiphiles. J. Phys. Chem. B 114:3052–59 [Google Scholar]
  16. Laage D, Hynes JT. 16.  2007. Reorientational dynamics of water molecules in anionic hydration shells. Proc. Natl. Acad. Sci. USA 104:11167–72 [Google Scholar]
  17. Sterpone F, Stirnemann G, Hynes JT, Laage D. 17.  2010. Water hydrogen bond dynamics around amino acids: the key role of hydrophilic hydrogen-bond acceptor groups. J. Phys. Chem. B 114:2083–89 [Google Scholar]
  18. Laage D, Stirnemann G, Sterpone F, Rey R, Hynes JT. 18.  2011. Reorientation and allied dynamics in water and aqueous solutions. Annu. Rev. Phys. Chem. 62:395–416 [Google Scholar]
  19. Laage D, Stirnemann G, Sterpone F, Hynes JT. 19.  2012. Water jump reorientation: from theoretical prediction to experimental observation. Acc. Chem. Res. 45:53–62 [Google Scholar]
  20. Laage D, Hynes JT. 20.  2013. Water reorientation and ultrafast infrared spectroscopy. Ultrafast Infrared Vibrational Spectroscopy MD Fayer 77–98 Boca Raton, FL: CRC [Google Scholar]
  21. Fogarty AC, Dubou é-Dijon E. Sterpone F. Hynes JT. Laage D. 21.  2013. Biomolecular hydration dynamics: a jump model perspective. Chem. Soc. Rev. 42 5672–83 [Google Scholar]
  22. Chuang TJ, Hofman GW, Eisenthal KB. 22.  1974. Picosecond studies of the cage effect and collision induced predissociation of iodine in liquids. Chem. Phys. Lett. 25:201–5 [Google Scholar]
  23. Nesbitt DJ, Hynes JT. 23.  1981. Vibrational-translational energy transfer from highly excited anharmonic oscillators. Chem. Phys. Lett. 82:252–54 [Google Scholar]
  24. Nesbitt DJ, Hynes JT. 24.  1982. Vibrational energy transfer from highly excited anharmonic oscillators: dependence on quantum state and interaction potential. J. Chem. Phys. 76:6002–14 [Google Scholar]
  25. Nesbitt DJ, Hynes JT. 25.  1982. Slow vibrational relaxation in picosecond iodine recombination in liquids. J. Chem. Phys. 77:2130–43 [Google Scholar]
  26. Harris AL, Berg M, Harris CB. 26.  1986. Studies of chemical reactivity in the condensed phase. I. The dynamics of iodine photodissociation and recombination on a picosecond time scale and comparison to theories for chemical reactions in solution. J. Chem. Phys. 84:788–806 [Google Scholar]
  27. Lawton RT, Child MS. 27.  1979. Local mode vibrations of water. Mol. Phys. 37:1799–807 [Google Scholar]
  28. Sibert EL III, Reinhardt WP, Hynes JT. 28.  1982. Classical dynamics of energy transfer between bonds in ABA triatomics. J. Chem. Phys. 77:3583–94 [Google Scholar]
  29. Sibert EL III, Hynes JT, Reinhardt WP. 29.  1982. Quantum mechanics of local mode ABA triatomic molecules. J. Chem. Phys. 77:3595–604 [Google Scholar]
  30. Hutchinson JS, Sibert EL III, Hynes JT. 30.  1982. Quantum dynamics of energy transfer in coupled Morse oscillator systems. J. Chem. Phys. 81:1314–26 [Google Scholar]
  31. Davis MJ, Heller EJ. 31.  1981. Quantum dynamical tunneling in bound states. J. Chem. Phys. 75:246–54 [Google Scholar]
  32. Sibert EL III, Reinhardt WP, Hynes JT. 32.  1984. Intramolecular vibrational relaxation and spectra of CH and CD overtones in benzene and perdeuterobenzene. J. Chem. Phys. 81:1115–34 [Google Scholar]
  33. Reddy KV, Heller DF, Berry MJ. 33.  1982. Highly vibrationally excited benzene: overtone spectroscopy and intramolecular dynamics of C6H6, C6D6, and partially deuterated or substituted benzenes. J. Chem. Phys. 76:2814–37 [Google Scholar]
  34. Fermi E. 34.  1931. Über den Ramaneffekt des Kohlendioxyds. Z. Phys. 71:250–59 [Google Scholar]
  35. Sibert EL III, Reinhardt WP, Hynes JT. 35.  1984. Classical dynamics of highly excited CH and CD overtones in benzene and perdeuterobenzene. J. Chem. Phys. 81:1135–44 [Google Scholar]
  36. Rizzo TR, Hayden CC, Crim FF. 36.  1984. State-resolved product detection in the overtone vibration initiated unimolecular decomposition of HOOH(6νOH). J. Chem. Phys. 81:4501–9 [Google Scholar]
  37. Uzer T, Hynes JT, Reinhardt WP. 37.  1986. Classical dynamics of intramolecular energy flow and overtone-induced dissociation in HOOH and HOOD. J. Chem. Phys. 85:5791–804 [Google Scholar]
  38. Graener H, Seifert G, Laubereau A. 38.  1991. New spectroscopy of water using tunable picosecond pulses in the infrared. Phys. Rev. Lett. 66:2092–95 [Google Scholar]
  39. Rey R, Hynes JT. 39.  1996. Energy relaxation time and pathway for HOD in liquid D2O. J. Chem. Phys. 104:2356–68 [Google Scholar]
  40. Staib A, Hynes JT. 40.  1993. Vibrational predissociation in hydrogen-bonded OH…O complexes via OH stretch–OO stretch energy transfer. Chem. Phys. Lett. 204:197–203 [Google Scholar]
  41. Lawrence CP, Skinner JL. 41.  2002. Vibrational spectroscopy of HOD in liquid D2O. I. Vibrational energy relaxation. J. Chem. Phys. 117:5827–38 [Google Scholar]
  42. Bergsma JP, Gertner BJ, Wilson KR, Hynes JT. 42.  1987. Molecular dynamics of a model SN2 reaction in water. J. Chem. Phys. 86:1356–76 [Google Scholar]
  43. Gertner BJ, Whitnell RM, Wilson KR, Hynes JT. 43.  1991. Activation to the transition state: reactant and solvent energy flow for a model SN2 reaction in water. J. Am. Chem. Soc. 113:74–87 [Google Scholar]
  44. Bergsma JP, Reimers JR, Wilson KR, Hynes JT. 44.  1986. Molecular dynamics of the A + BC reaction in rare gas solution. J. Chem. Phys. 85:5625–43 [Google Scholar]
  45. Rey R, Hynes JT. 45.  2001. Coulomb force and intramolecular energy flow effects for vibrational energy transfer for small molecules in polar solvents. Ultrafast Infrared and Raman Spectroscopy MD Fayer 593–624 New York: Marcel Dekker [Google Scholar]
  46. Gertner BJ, Ando K, Bianco R, Hynes JT. 46.  1994. Bihalide ion combination reactions in solution: electronic structure and solvation effects. Chem. Phys. 183:309–23 [Google Scholar]
  47. Benjamin I, Barbara P, Gertner BJ, Hynes JT. 47.  1995. Nonequilibrium free energy functions, recombination dynamics and vibrational relaxation of I2in acetonitrile: molecular dynamics of charge flow in the electronically adiabatic limit. J. Phys. Chem. 99:7557–67 [Google Scholar]
  48. Laage D, Thompson WH, Blanchard-Desce M, Hynes JT. 48.  2003. Charged push-pull polyenes in solution: anomalous solvatochromism and nonlinear optical properties. J. Phys. Chem. A 107:6032–46 [Google Scholar]
  49. Whitnell RM, Wilson KR, Hynes JT. 49.  1992. Vibrational relaxation of a dipolar molecule in water. J. Chem. Phys. 96:5354–69 [Google Scholar]
  50. Rey R, Ingrosso F, Elsaesser T, Hynes JT. 50.  2009. Pathways for H2O bend vibrational relaxation in liquid water. J. Phys. Chem. A 113:8949–62 [Google Scholar]
  51. Rey R, Hynes JT. 51.  2012. Tracking energy transfer from excited to accepting modes: application to water bend vibrational relaxation. Phys. Chem. Chem. Phys. 14:6332–42 [Google Scholar]
  52. Ashihara S, Huse N, Espagne A, Nibbering ETJ, Elsaesser T. 52.  2006. Vibrational couplings and ultrafast relaxation of the O–H bending mode in liquid H2O. Chem. Phys. Lett. 424:66–70 [Google Scholar]
  53. Petersen J, Moller K, Rey R, Hynes JT. 53.  2013. Ultrafast librational relaxation of H2O in liquid water. J. Phys. Chem. B 117:4541–52 [Google Scholar]
  54. Kandratsenka A, Schroeder J, Schwarzer D, Vikhrenko VS. 54.  2009. Nonequilibrium molecular dynamics simulations of vibrational energy relaxation of HOD in D2O. J. Chem. Phys. 130:174507 [Google Scholar]
  55. Klippenstein SK, Hynes JT. 55.  1991. Direct and indirect solvent coupling mechanisms for vibrational dephasing in hydrogen-bonded molecules. J. Phys. Chem. 95:4651–59 [Google Scholar]
  56. Bruehl M, Hynes JT. 56.  1993. Vibrational relaxation times for a model hydrogen-bonded complex in a polar solvent. Chem. Phys. 175:205–21 [Google Scholar]
  57. Thompson WH, Hynes JT. 57.  2000. Frequency shifts in the hydrogen-bonded OH stretch in water-halide clusters: the importance of charge transfer. J. Am. Chem. Soc. 122:6278–86 [Google Scholar]
  58. Rey R, Moller K, Hynes JT. 58.  2002. Hydrogen bond dynamics in water and ultrafast infrared spectroscopy. J. Phys. Chem. A 106:11993–96 [Google Scholar]
  59. Nigro B, Re S, Laage D, Rey R, Hynes JT. 59.  2006. On the ultrafast infrared spectroscopy of anion hydration shell hydrogen bond dynamics. J. Phys. Chem. A 110:11237–43 [Google Scholar]
  60. Ramesh SG, Re S, Boisson J, Hynes JT. 60.  2010. Vibrational symmetry breaking of NO-3in aqueous solution: NO asymmetric stretch frequency distribution and mean splitting. J. Phys. Chem. A 114:1255–69 [Google Scholar]
  61. Northrup SH, Hynes JT. 61.  1980. The stable states picture of chemical reactions. I. Formulation for rate constants and initial condition effects. J. Chem. Phys. 73:2700–14 [Google Scholar]
  62. Laage D, Hynes JT. 62.  2008. On the residence time for water in a solute hydration shell: application to aqueous halide solutions. J. Phys. Chem. B 112:7697–701 [Google Scholar]
  63. Grote RF, Hynes JT. 63.  1980. The stable states picture of chemical reactions. II. Rate constants for condensed and gas phase reaction models. J. Chem. Phys. 73:2715–32 [Google Scholar]
  64. Kramers HA. 64.  1940. Brownian motion in a field of force and the diffusion model of chemical kinetics. Physica 7:284–304 [Google Scholar]
  65. Wigner E. 65.  1938. The transition state method. Trans. Faraday Soc. 34:29–48 [Google Scholar]
  66. van der Zwan G, Hynes JT. 66.  1983. Nonequilibrium solvation dynamics in solution reactions. J. Chem. Phys. 78:4174–85 [Google Scholar]
  67. Mullen RG, Shea J-E, Peters B. 67.  2014. An existence test for dividing surfaces without recrossing. J. Chem. Phys. 140:041104 [Google Scholar]
  68. Mullen RG, Shea J-E, Peters B. 68.  2014. Transmission coefficients, commitors, and solvent coordinates in ion-pair dissociation. J. Chem. Theory Comput. 10:659–67 [Google Scholar]
  69. Gertner BJ, Bergsma JP, Wilson KR, Lee S, Hynes JT. 69.  1987. Nonadiabatic solvation model for SN2 reactions in polar solvents. J. Chem. Phys. 86:1377–86 [Google Scholar]
  70. Gertner BJ, Wilson KR, Hynes JT. 70.  1989. Nonequilibrium solvation effects on reaction rates for model SN2 reactions in water. J. Chem. Phys. 90:3537–58 [Google Scholar]
  71. Zichi DA, Ciccotti G, Hynes JT, Ferrario M. 71.  1989. Molecular dynamics simulation of electron transfer reactions in solution. J. Phys. Chem. 93:6261–65 [Google Scholar]
  72. Smith BB, Hynes JT. 72.  1993. Electronic friction and electron transfer rates at metallic electrodes. J. Chem. Phys. 99:6577–90 [Google Scholar]
  73. Smith BB, Staib A, Hynes JT. 73.  1993. Well and barrier dynamics and electron transfer rates: a molecular dynamics study. Chem. Phys. 176:521–37 [Google Scholar]
  74. Ciccotti G, Ferrario M, Hynes JT, Kapral R. 74.  1990. Dynamics of ion pair interconversion in a polar solvent. J. Chem. Phys. 93:7137–47 [Google Scholar]
  75. Carter EA, Ciccotti G, Hynes JT, Kapral R. 75.  1989. Constrained reaction coordinate ensemble for molecular dynamics simulation of rare events. Chem. Phys. Lett. 156:472–77 [Google Scholar]
  76. Staib A, Hynes JT, Borgis D. 76.  1995. Proton transfer in hydrogen-bonded acid-base complexes in polar solvents. J. Chem. Phys. 102:2487–505 [Google Scholar]
  77. Kierstead WP, Wilson KR, Hynes JT. 77.  1991. Molecular dynamics of a model SN1 reaction in water. J. Chem. Phys. 95:5256–67 [Google Scholar]
  78. Borgis D, Hynes JT. 78.  1991. Molecular dynamics simulation for a model nonadiabatic proton transfer reaction in solution. J. Chem. Phys. 94:3619–28 [Google Scholar]
  79. Roca M, Moliner V, Tunon I, Hynes JT. 79.  2006. Coupling between protein and reaction dynamics in enzymatic processes: application of Grote-Hynes theory to catechol O-methyltransferase. J. Am. Chem. Soc. 128:6186–93 [Google Scholar]
  80. Ruiz-Pernía J, Tuñón I, Moliner V, Hynes JT, Roca M. 80.  2008. Dynamic effects on reaction rates in a Michael addition catalyzed by chalcone isomerase: beyond the frozen environment approach. J. Am. Chem. Soc. 130:7477–88 [Google Scholar]
  81. Rey R, Hynes JT. 81.  1996. Hydration shell exchange kinetics: an MD study for Na+(aq). J. Phys. Chem. 100:5611–15 [Google Scholar]
  82. Spangberg D, Rey R, Hynes JT, Hermannson K. 82.  2003. The rate and mechanisms for water exchange around Li+(aq) from MD simulations. J. Phys. Chem. B 107:4470–77 [Google Scholar]
  83. Bagchi B, Oxtoby DW. 83.  1983. The effect of frequency dependent friction on isomerization dynamics in solution. J. Chem. Phys. 78:2735–41 [Google Scholar]
  84. Ashcroft J, Besnard M, Aquada V, Jonas J. 84.  1984. High-pressure NMR study of dynamical solvent effects on the conformational isomerization of 1,1-difluorocyclohexane. Chem. Phys. Lett. 110:420–24 [Google Scholar]
  85. Zeglinski DM, Waldeck DH. 85.  1988. Evidence for dynamic solvent effects on the photoisomerization of 4,4′-dimethoxystilbene. J. Phys. Chem. 92:692–701 [Google Scholar]
  86. Sivakumar N, Hoburg EA, Waldeck DH. 86.  1989. Solvent dielectric effects on isomerization dynamics: investigation of the photoisomerization of 4,4′-dimethoxystilbene and t-stilbene in n-alkyl nitriles. J. Chem. Phys. 90:2305–16 [Google Scholar]
  87. Park NS, Waldeck DH. 87.  1989. Implications for multidimensional effects on isomerization dynamics: photoisomerization study of 4,4′-dimethylstilbene in n- alkane solvents. J. Chem. Phys. 91:943–52 [Google Scholar]
  88. McManis GE, Weaver MJ. 88.  1989. Solvent dynamical effects in electron transfer: numerical predictions of molecularity effects using the mean spherical approximation. J. Chem. Phys. 90:1720–29 [Google Scholar]
  89. Velsko SP, Waldeck DH, Fleming GR. 89.  1983. Breakdown of Kramers theory description of photochemical isomerization and the possible involvement of frequency dependent friction. J. Chem. Phys. 78:249–58 [Google Scholar]
  90. Kim HJ, Hynes JT. 90.  1997. Excited state intramolecular charge transfer rates for DMABN in solution: a two-dimensional dynamics perspective. J. Photochem. Photobiol. A 105:337–43 [Google Scholar]
  91. Grote RF, Hynes JT. 91.  1981. Reactive modes in condensed phase reactions. J. Chem. Phys. 74:4465–75 [Google Scholar]
  92. Grote RF, Hynes JT. 92.  1981. Saddle point model for atom transfer reactions in solution. J. Chem. Phys. 75:2191–98 [Google Scholar]
  93. Lee S, Hynes JT. 93.  1996. Intramolecular hydrogen atom transfer rates in solution. J. Chim. Phys. 99:7557–67 [Google Scholar]
  94. van der Zwan G, Hynes JT. 94.  1982. Dynamical polar solvent effects on solution reactions: a simple continuum model. J. Chem. Phys. 76:2993–3001 [Google Scholar]
  95. Zichi DA, Hynes JT. 95.  1988. A dynamical theory of unimolecular dissociation reactions in polar solvents. J. Chem. Phys. 88:2513–25 [Google Scholar]
  96. Kim HJ, Hynes JT. 96.  1992. A theoretical model for SN1 ionic dissociation in solution. I. Activation free energetics and transition state structure. J. Am. Chem. Soc. 114:10508–28 [Google Scholar]
  97. Lee S, Hynes JT. 97.  1988. Solution phase reaction path Hamiltonian. I. Formulation. J. Chem. Phys. 88:6853–62 [Google Scholar]
  98. Zawadzki AG, Hynes JT. 98.  1989. Radical recombination rates from gas to liquid phase. J. Phys. Chem. 93:7031–36 [Google Scholar]
  99. Ladanyi B, Hynes JT. 99.  1982. Hydrodynamic interaction effects on isomerization rates in chain molecules. J. Chem. Phys. 77:4739–46 [Google Scholar]
  100. Hynes JT. 100.  1986. Outer sphere electron transfer reactions and frequency-dependent friction. J. Phys. Chem. 90:3701–6 [Google Scholar]
  101. Peslherbe GH, Bianco R, Ladanyi BM, Hynes JT. 101.  1997. On the photoionization of alkali-metal halides in solution. J. Chem. Soc. Faraday Trans. 93:977–88 [Google Scholar]
  102. van der Zwan G, Hynes JT. 102.  1991. Chemical reaction rates and solvation dynamics in electrolyte solutions: ion atmosphere friction. Chem. Phys. 152:169–83 [Google Scholar]
  103. Fonseca T, Kim HJ, Hynes JT. 103.  1994. TICT dynamics in polar solvents. J. Photochem. Photobiol. A 82:67–79 [Google Scholar]
  104. Laage D, Burghardt I, Sommerfeld T, Hynes JT. 104.  2003. On the dissociation of aromatic radical anions in solution. ChemPhysChem 4:61–66 [Google Scholar]
  105. Kiefer PM, Hynes JT. 105.  2007. Theoretical aspects of proton transfer reactions in a polar environment. Hydrogen-Transfer Reactions 1 JT Hynes, JP Klinman, HH Limbach, RL Schowen 303–48 Weinheim: Wiley-VCH [Google Scholar]
  106. Borgis DC, Lee S, Hynes JT. 106.  1989. A dynamical theory of nonadiabatic proton and hydrogen atom transfer reaction rates in solution. Chem. Phys. Lett. 162:19–26 [Google Scholar]
  107. Borgis D, Hynes JT. 107.  1993. Dynamical theory of proton tunneling transfer rates in solution: general formulation. Chem. Phys. 170:315–46 [Google Scholar]
  108. Borgis D, Hynes JT. 108.  1996. A curve crossing approach for proton transfer reactions in solution. J. Phys. Chem. 100:1118–28 [Google Scholar]
  109. Juanos-i-Timoneda J, Hynes JT. 109.  1991. Nonequilibrium free energy surfaces for hydrogen-bonded proton transfer complexes in solution. J. Phys. Chem. 95:10431–42 [Google Scholar]
  110. Ando K, Hynes JT. 110.  1995. HCl acid ionization in water: a theoretical molecular modeling. J. Mol. Liquids 64:25–34 [Google Scholar]
  111. Ando K, Hynes JT. 111.  1997. Molecular mechanism of HCl acid ionization in water: ab initio potential energy surfaces and Monte Carlo simulations. J. Phys. Chem. B 101:10464–78 [Google Scholar]
  112. Ando K, Hynes JT. 112.  1999. Acid ionization of HF in water: an electronic structure and Monte Carlo study. J. Phys. Chem. A 103:10398–408 [Google Scholar]
  113. Pines E, Pines D. 113.  2002. Proton dissociation and solute-solvent interactions following electronic excitation of photoacids. Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase T Elsaesser, HJ Bakker 115–84 Dordrecht: Kluwer [Google Scholar]
  114. Mulliken RS. 114.  1952. Molecular compounds and their spectra. III. The interaction of electron donors and acceptors. J. Phys. Chem. 56:801–22 [Google Scholar]
  115. Granucci G, Hynes JT, Millié P, Tran-Thi T-H. 115.  2000. A theoretical investigation of excited state acidity of phenol and cyanophenols. J. Am. Chem. Soc. 122:12243–53 [Google Scholar]
  116. Hynes JT, Tran-Thi T-H, Granucci G. 116.  2002. Intermolecular photochemical proton transfer in solution: new insights and perspectives. J. Photochem. Photobiol. A 154:3–11 [Google Scholar]
  117. Salem L. 117.  1982. Electrons in Chemical Reactions: First Principles New York: Wiley [Google Scholar]
  118. Kiefer PM, Hynes JT. 118.  2003. Kinetic isotope effects for adiabatic proton transfer reactions in a polar environment. J. Phys. Chem. A 107:9022–39 [Google Scholar]
  119. Kiefer PM, Hynes JT. 119.  2004. Kinetic isotope effects for nonadiabatic proton transfer reactions in a polar environment. I. Interpretation of tunneling kinetic isotopic effects. J. Phys. Chem. A 108:11793–808 [Google Scholar]
  120. Kiefer PM, Hynes JT. 120.  2004. Kinetic isotope effects for nonadiabatic proton transfer reactions in a polar environment. II. Comparison with an electronically nonadiabatic perspective. J. Phys. Chem. A 108:11809–18 [Google Scholar]
  121. Kiefer PM, Hynes JT. 121.  2002. Free energy relationship for adiabatic proton transfer reactions in a polar environment. II. Inclusion of the hydrogen bond vibration. J. Phys. Chem. A 106:1850–61 [Google Scholar]
  122. Burghardt I, Cederbaum LS, Hynes JT. 122.  2004. Environmental effects on a conical intersection: a model study. Faraday Discuss. 127:395–411 [Google Scholar]
  123. Burghardt I, Hynes JT. 123.  2006. Excited-state charge transfer at conical intersections: effect of an environment. J. Phys. Chem. A 110:11411–23 [Google Scholar]
  124. Michl J, Bonačić-Koutecký V. 124.  1990. Electronic Aspects of Organic Photochemistry New York: Wiley [Google Scholar]
  125. Garavelli M, Celani P, Bernardi F, Robb MA, Olivucci M. 125.  1997. The C5H6NH2+ protonated Schiff base: an ab initio minimal model for retinal photoisomerization. J. Am. Chem. Soc. 119:6891–901 [Google Scholar]
  126. González-Luque R, Garavelli M, Bernardi F, Merchán M, Robb MA, Olivucci M. 126.  2000. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc. Natl. Acad. Sci. USA 97:9379–84 [Google Scholar]
  127. Garavelli M, Bernardi F, Robb MA, Olivucci M. 127.  1999. The short-chain acroleiniminium and pentadieniminium cations: towards a model for retinal photoisomerization. A CASSCF/PT2 study. J. Mol. Struct. 463:59–64 [Google Scholar]
  128. Molnar F, Ben-Nun M, Martínez TJ, Schulten K. 128.  2000. Characterization of a conical intersection between the ground and first excited state for a retinal analog. J. Mol. Struct. 506:169–78 [Google Scholar]
  129. Ben-Nun M, Molnar F, Schulten K, Mart ínez TJ. 129.  2002. The role of intersection topography in bond selectivity of cis-trans photoisomerization. Proc. Natl. Acad. Sci. USA 99:1769–73 [Google Scholar]
  130. Malhado JP, Spezia R, Hynes JT. 130.  2011. Dynamical friction effects on the photoisomerization of a model protonated Schiff base in solution. J. Phys. Chem. A 115:3720–35 [Google Scholar]
  131. Toniolo A, Grannucci G, Martínez TJ. 131.  2003. Conical intersections in solution: a QM/MM study using floating occupation semiempirical configuration interaction wave functions. J. Phys. Chem. A 107:3822–30 [Google Scholar]
  132. Malhado JP, Hynes JT. 132.  2012. Photoisomerization for a model protonated Schiff base in solution: sloped/peaked conical intersection perspective. J. Chem. Phys. 137:22A543 [Google Scholar]
  133. Atchity GJ, Xantheas SS, Ruedenberg K. 133.  1991. Potential energy surfaces near intersections. J. Chem. Phys. 95:1862–76 [Google Scholar]
  134. Yarkony DR. 134.  2001. Nuclear dynamics near conical intersections in the adiabatic representation: I. The effects of local topography on interstate transitions. J. Chem. Phys. 114:2601–13 [Google Scholar]
  135. Lasorne B, Bearpark MJ, Robb MA, Worth GA. 135.  2008. Controlling S1/S0 decay and the balance between photochemistry and photostability in benzene: a direct quantum dynamics study. J. Phys. Chem. A 112:13017–20 [Google Scholar]
  136. Solomon S. 136.  1988. The mystery of the Antarctic ozone hole. Rev. Geophys. 26:131–48 [Google Scholar]
  137. Gertner BJ, Hynes JT. 137.  1996. Molecular dynamics simulation of hydrochloric acid ionization at the surface of stratospheric ice. Science 271:1563–66 [Google Scholar]
  138. Gertner BJ, Hynes JT. 138.  1998. Model molecular dynamics simulation of hydrochloric acid ionization at the surface of stratospheric ice. Faraday Discuss. 110:301–22 [Google Scholar]
  139. Bianco R, Hynes JT. 139.  1998. Ab initio model study of the mechanism of chlorine nitrate hydrolysis on ice. J. Phys. Chem. A 102:309–14 [Google Scholar]
  140. Bianco R, Hynes JT. 140.  1999. A theoretical study of the reaction of ClONO2 with HCl on ice. J. Phys. Chem. A 103:3797–801 [Google Scholar]
  141. Bianco R, Hynes JT. 141.  2006. Heterogeneous reactions important in atmospheric ozone depletion: a theoretical perspective. Acc. Chem. Res. 39:150–65 [Google Scholar]
  142. Morita A, Hynes JT. 142.  2002. A theoretical analysis of the sum frequency generation spectrum of the water surface. II. Time-dependent approach. J. Phys. Chem. B 106:673–85 [Google Scholar]
  143. Bianco R, Wang S, Hynes JT. 143.  2007. Theoretical study of the dissociation of nitric acid at a model aqueous surface. J. Phys. Chem. A 111:11033–42 [Google Scholar]
  144. Wang S, Bianco R, Hynes JT. 144.  2009. Depth-dependent dissociation of nitric acid at an aqueous surface: Car-Parrinello dynamics. J. Phys. Chem. A 113:1295–307 [Google Scholar]
  145. Koch DM, Toubin C, Peslherbe GH, Hynes JT. 145.  2008. Theoretical study of the formation of the aminoacetonitrile precursor of glycine on icy grain mantles in the interstellar medium. J. Phys. Chem. C 112:12972–80 [Google Scholar]
  146. Mukherjee A, Lavery R, Bagchi B, Hynes JT. 146.  2008. On the molecular mechanism of drug intercalation into DNA: a simulation study of the intercalation pathway, free energy and DNA structural changes. J. Am. Chem. Soc. 130:9747–55 [Google Scholar]
  147. Wilhelm M, Mukherjee A, Bouvier B, Zakrzewska K, Hynes JT, Lavery R. 147.  2012. Multistep drug intercalation: molecular dynamics and free energy studies of daunomycin binding to DNA. J. Am. Chem. Soc. 134:8588–96 [Google Scholar]
  148. Lim C-H, Holder AM, Hynes JT, Musgrave CB. 148.  2013. Lewis acids and base in the chemical reduction of CO2 catalyzed by frustrated Lewis pairs. Inorg. Chem. 52:10062–66 [Google Scholar]
  149. Bianco R, Hay PJ, Hynes JT. 149.  2011. Theoretical study of O–O single bond formation in the oxidation of water by the ruthenium blue dimer. J. Phys. Chem. A 115:8003–16 [Google Scholar]
  150. Bianco R, Hay PJ, Hynes JT. 150.  2013. Theoretical study of water oxidation by the ruthenium blue dimer. II. Proton relay chain mechanism for the step [bpy2(HOO)RuIVORuIV(OH)bpy2]4+ → [bpy2(O2)RuIVORuIII(OH2)bpy2]4+. J. Phys. Chem. B 117:15761–63 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error