We review studies of molecular interactions and chemical reactions at metal surfaces, emphasizing progress toward a predictive theory of surface chemistry and catalysis. For chemistry at metal surfaces, a small number of central approximations are typically made: () the Born-Oppenheimer approximation of electronic adiabaticity, () the use of density functional theory at the generalized gradient approximation level, () the classical approximation for nuclear motion, and () various reduced-dimensionality approximations. Together, these approximations constitute a provisional model for surface chemical reactivity. We review work on some carefully studied examples of molecules interacting at metal surfaces that probe the validity of various aspects of the provisional model.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dirac PAM. 1.  1929. Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123:714–33 [Google Scholar]
  2. Born M, Oppenheimer R. 2.  1927. Quantum theory of molecules. Ann. Phys. 84:457–84 [Google Scholar]
  3. Eyring H, Polanyi M. 3.  2013. On simple gas reactions. Z. Phys. Chem. 227:1221–45 [Google Scholar]
  4. Skouteris D, Castillo JF, Manolopoulos DE. 4.  2000. ABC: a quantum reactive scattering program. Comput. Phys. Commun. 133:128–35 [Google Scholar]
  5. Yang XM, Zhang DH. 5.  2013. Probing quantum dynamics of elementary chemical reactions via accurate potential energy surfaces. Z. Phys. Chem. 227:1247–65 [Google Scholar]
  6. Ren ZF, Che L, Qiu MH, Wang XA, Dong WR. 6.  et al. 2008. Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy. Proc. Natl. Acad. Sci. USA 105:12662–66 [Google Scholar]
  7. Chao SD, Harich SA, Dai DX, Wang CC, Yang XM, Skodje RT. 7.  2002. A fully state- and angle-resolved study of the H + HD → D + H2 reaction: comparison of a molecular beam experiment to ab initio quantum reaction dynamics. J. Chem. Phys. 117:8341–61 [Google Scholar]
  8. Xiao CL, Xu X, Liu S, Wang T, Dong WR. 8.  et al. 2011. Experimental and theoretical differential cross sections for a four-atom reaction: HD + OH → H2O + D. Science 333:440–42 [Google Scholar]
  9. Diaz C, Olsen RA, Auerbach DJ, Kroes GJ. 9.  2010. Six-dimensional dynamics study of reactive and non reactive scattering of H2 from Cu(111) using a chemically accurate potential energy surface. Phys. Chem. Chem. Phys. 12:6499–519 [Google Scholar]
  10. Jackson B, Nave S. 10.  2011. The dissociative chemisorption of methane on Ni(100): reaction path description of mode-selective chemistry. J. Chem. Phys. 135:114701 [Google Scholar]
  11. Darling GR, Holloway S. 11.  1994. Rotational motion and the dissociation of H2 on Cu(111). J. Chem. Phys. 101:3268–81 [Google Scholar]
  12. Hohenberg P, Kohn W. 12.  1964. Inhomogeneous electron gas. Phys. Rev. 136:B864–71 [Google Scholar]
  13. Kohn W, Sham LJ. 13.  1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140:A1133–38 [Google Scholar]
  14. Kohn W. 14.  1999. Nobel Lecture: electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71:1253–66 [Google Scholar]
  15. Pople JA. 15.  1999. Nobel Lecture: quantum chemical models. Rev. Mod. Phys. 71:1267–74 [Google Scholar]
  16. Reuter K, Scheffler M. 16.  2006. First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: application to the CO oxidation at RuO2(110). Phys. Rev. B 73:045433 [Google Scholar]
  17. Reuter K, Frenkel D, Scheffler M. 17.  2004. The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys. Rev. Lett. 93:116105 [Google Scholar]
  18. Reuter K, Scheffler M. 18.  2003. First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys. Rev. Lett. 90:046103 [Google Scholar]
  19. Jones G, Bligaard T, Abild-Pedersen F, Nørskov JK. 19.  2008. Using scaling relations to understand trends in the catalytic activity of transition metals. J. Phys. Condens. Matter 20:064239 [Google Scholar]
  20. Ferrin P, Simonetti D, Kandoi S, Kunkes E, Dumesic JA. 20.  et al. 2009. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations. J. Am. Chem. Soc. 131:5809–15 [Google Scholar]
  21. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR. 21.  et al. 2007. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 90:016105 [Google Scholar]
  22. Wang SG, Temel B, Shen JA, Jones G, Grabow LC. 22.  et al. 2011. Universal Brønsted-Evans-Polanyi relations for C–C, C–O, C–N, N–O, N–N, and O–O dissociation reactions. Catal. Lett. 141:370–73 [Google Scholar]
  23. Studt F, Abild-Pedersen F, Wu QX, Jensen AD, Temel B. 23.  et al. 2012. CO hydrogenation to methanol on Cu-Ni catalysts: theory and experiment. J. Catal. 293:51–60 [Google Scholar]
  24. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Nørskov JK. 24.  2001. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123:8404–5 [Google Scholar]
  25. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH. 25.  2009. Towards the computational design of solid catalysts. Nat. Chem. 1:37–46 [Google Scholar]
  26. Frischkorn C, Wolf M. 26.  2006. Femtochemistry at metal surfaces: nonadiabatic reaction dynamics. Chem. Rev. 106:4207–33 [Google Scholar]
  27. Kroes GJ, Gross A, Baerends EJ, Scheffler M, McCormack DA. 27.  2002. Quantum theory of dissociative chemisorption on metal surfaces. Acc. Chem. Res. 35:193–200 [Google Scholar]
  28. Nienhaus H. 28.  2002. Electronic excitations by chemical reactions on metal surfaces. Surf. Sci. Rep. 45:3–78 [Google Scholar]
  29. Utz AL. 29.  2009. Mode selective chemistry at surfaces. Curr. Opin. Solid State Mater. Sci. 13:4–12 [Google Scholar]
  30. Kroes GJ. 30.  1999. Six-dimensional quantum dynamics of dissociative chemisorption of H2 on metal surfaces. Prog. Surf. Sci. 60:1–85 [Google Scholar]
  31. Wodtke AM, Matsiev D, Auerbach DJ. 31.  2008. Energy transfer and chemical dynamics at solid surfaces: the special role of charge transfer. Prog. Surf. Sci. 83:167–214 [Google Scholar]
  32. Sitz GO. 32.  2002. Gas surface interactions studied with state-prepared molecules. Rep. Prog. Phys. 65:1165–93 [Google Scholar]
  33. Arnolds H, Bonn M. 33.  2010. Ultrafast surface vibrational dynamics. Surf. Sci. Rep. 65:45–66 [Google Scholar]
  34. Hasselbrink E. 34.  2006. How non-adiabatic are surface dynamical processes?. Curr. Opin. Solid State Mater. Sci. 10:192–204 [Google Scholar]
  35. Ertl G. 35.  2000. Dynamics of reactions at surfaces. Adv. Catal. 45:1–69 [Google Scholar]
  36. Kroes GJ, Somers MF. 36.  2005. Six-dimensional dynamics of dissociative chemisorption of H2 on metal surfaces. J. Theor. Comput. Chem. 4:493–581 [Google Scholar]
  37. Kroes GJ. 37.  2012. Towards chemically accurate simulation of molecule-surface reactions. Phys. Chem. Chem. Phys. 14:14966–81 [Google Scholar]
  38. Michelsen HA, Rettner CT, Auerbach DJ. 38.  1994. The adsorption of hydrogen at copper surfaces: a model system for the study of activated adsorption. Surface Reactions RJ Madix 185–237 Berlin: Springer-Verlag [Google Scholar]
  39. Hayden BE, Lamont CL. 39.  1989. Coupled translational-vibrational activation in dissociative hydrogen adsorption on Cu(110). Phys. Rev. Lett. 63:1823–25 [Google Scholar]
  40. Rettner CT, Auerbach DJ, Michelsen HA. 40.  1992. Role of vibrational and translational energy in the activated dissociative adsorption of D2 on Cu(111). Phys. Rev. Lett. 68:1164–67 [Google Scholar]
  41. Rettner CT, Michelsen HA, Auerbach DJ. 41.  1995. Quantum-state-specific dynamics of the dissociative adsorption and associative desorption of H2 at a Cu(111) surface. J. Chem. Phys. 102:4625–41 [Google Scholar]
  42. Rettner CT, Michelsen HA, Auerbach DJ, Mullins CB. 42.  1991. Dynamics of recombinative desorption: angular distributions of H2, HD, and D2 desorbing from Cu(111). J. Chem. Phys. 94:7499–501 [Google Scholar]
  43. Michelsen HA, Rettner CT, Auerbach DJ. 43.  1992. State-specific dynamics of D2 desorption from Cu(111): the role of molecular rotational motion in activated adsorption-desorption dynamics. Phys. Rev. Lett. 69:2678–81 [Google Scholar]
  44. Michelsen HA, Rettner CT, Auerbach DJ, Zare RN. 44.  1993. Effect of rotation on the translational and vibrational energy dependence of the dissociative adsorption of D2 on Cu(111). J. Chem. Phys. 98:8294–307 [Google Scholar]
  45. Rettner CT, Michelsen HA, Auerbach DJ. 45.  1993. Determination of quantum-state-specific gas-surface energy transfer and adsorption probabilities as a function of kinetic energy. Chem. Phys. 175:157–69 [Google Scholar]
  46. Gulding SJ, Wodtke AM, Hou H, Rettner CT, Michelsen HA, Auerbach DJ. 46.  1996. Alignment of D2(v, J) desorbed from Cu(111): low sensitivity of activated dissociative chemisorption to approach geometry. J. Chem. Phys. 105:9702–5 [Google Scholar]
  47. Hou H, Gulding SJ, Rettner CT, Wodtke AM, Auerbach DJ. 47.  1997. The stereodynamics of a gas-surface reaction. Science 277:80–82 [Google Scholar]
  48. Rettner CT, Auerbach DJ, Michelsen HA. 48.  1992. Observation of direct vibrational excitation in collisions of H2 and D2 with a Cu(111) surface. Phys. Rev. Lett. 68:2547–50 [Google Scholar]
  49. Hodgson A, Moryl J, Traversaro P, Zhao H. 49.  1992. Energy transfer and vibrational effects in the dissociation and scattering of D2 from Cu(111). Nature 356:501–4 [Google Scholar]
  50. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR. 50.  et al. 1992. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46:6671–87 [Google Scholar]
  51. Murphy MJ, Skelly JF, Hodgson A, Hammer B. 51.  1999. Inverted vibrational distributions from N2 recombination at Ru(001): evidence for a metastable molecular chemisorption well. J. Chem. Phys. 110:6954–62 [Google Scholar]
  52. Diaz C, Pijper E, Olsen RA, Busnengo HF, Auerbach DJ, Kroes GJ. 52.  2009. Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111). Science 326:832–34 [Google Scholar]
  53. Chuang YY, Radhakrishnan ML, Fast PL, Cramer CJ, Truhlar DG. 53.  1999. Direct dynamics for free radical kinetics in solution: solvent effect on the rate constant for the reaction of methanol with atomic hydrogen. J. Phys. Chem. A 103:4893–909 [Google Scholar]
  54. Marx D, Hutter J. 54.  2009. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  55. Car R, Parrinello M. 55.  1985. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55:2471–74 [Google Scholar]
  56. Nattino F, Diaz C, Jackson B, Kroes GJ. 56.  2012. Effect of surface motion on the rotational quadrupole alignment parameter of D2 reacting on Cu(111). Phys. Rev. Lett. 108:236104 [Google Scholar]
  57. Kroes G-J, Diaz C, Pijper E, Olsen RA, Auerbach DJ. 57.  2010. Apparent failure of the Born-Oppenheimer static surface model for vibrational excitation of molecular hydrogen on copper. Proc. Natl. Acad. Sci. USA 107:20881–86 [Google Scholar]
  58. Luntz AC, Persson M, Sitz GO. 58.  2006. Theoretical evidence for nonadiabatic vibrational deexcitation in H2(D2) state-to-state scattering from Cu(100). J. Chem. Phys. 124:091101 [Google Scholar]
  59. Watts E, Sitz GO. 59.  2001. State-to-state scattering in a reactive system: H2(v = 1, J = 1) from Cu(100). J. Chem. Phys. 114:4171–79 [Google Scholar]
  60. Shackman LC, Sitz GO. 60.  2005. State-to-state scattering of D2 from Cu(100) and Pd(111). J. Chem. Phys. 123:064712 [Google Scholar]
  61. Muzas AS, Juaristi JI, Alducin M, Díez Muiño R, Kroes G, Díaz C. 61.  2012. Vibrational deexcitation and rotational excitation of H2 and D2 scattered from Cu(111): adiabatic versus non-adiabatic dynamics. J. Chem. Phys. 137:064707 [Google Scholar]
  62. Blanco-Rey M, Juaristi JI, Díez Muiño R, Busnengo HF, Kroes GJ, Alducin M. 62.  2014. Electronic friction dominates hydrogen hot-atom relaxation on Pd(100). Phys. Rev. Lett. 112:103203 [Google Scholar]
  63. Nave S, Tiwari AK, Jackson B. 63.  2010. Methane dissociation and adsorption on Ni(111), Pt(111), Ni(100), Pt(100), and Pt(110)-(1×2): energetic study. J. Chem. Phys. 132:054705 [Google Scholar]
  64. Schmid MP, Maroni P, Beck RD, Rizzo TR. 64.  2002. Surface reactivity of highly vibrationally excited molecules prepared by pulsed laser excitation: CH4 (2ν3) on Ni(100). J. Chem. Phys. 117:8603–6 [Google Scholar]
  65. Beck RD, Maroni P, Papageorgopoulos DC, Dang TT, Schmid MP, Rizzo TR. 65.  2003. Vibrational mode-specific reaction of methane on a nickel surface. Science 302:98–100 [Google Scholar]
  66. Maroni P, Papageorgopoulos DC, Sacchi M, Dang TT, Beck RD, Rizzo TR. 66.  2005. State-resolved gas-surface reactivity of methane in the symmetric C-H stretch vibration on Ni(100). Phys. Rev. Lett. 94:246104 [Google Scholar]
  67. Bisson R, Sacchi M, Dang TT, Yoder B, Maroni P, Beck RD. 67.  2007. State-resolved reactivity of CH4(2ν3) on Pt(111) and Ni(111): effects of barrier height and transition state location. J. Phys. Chem. A 111:12679–83 [Google Scholar]
  68. Bisson R, Sacchi M, Beck RD. 68.  2010. Mode-specific reactivity of CH4 on Pt(110)-(1 × 2): the concerted role of stretch and bend excitation. Phys. Rev. B 82:121404 [Google Scholar]
  69. Juurlink LBF, McCabe PR, Smith RR, DiCologero CL, Utz AL. 69.  1999. Eigenstate-resolved studies of gas-surface reactivity: CH4 (ν3) dissociation on Ni(100). Phys. Rev. Lett. 83:868–71 [Google Scholar]
  70. Smith RR, Killelea DR, DelSesto DF, Utz AL. 70.  2004. Preference for vibrational over translational energy in a gas-surface reaction. Science 304:992–95 [Google Scholar]
  71. Juurlink LBF, Smith RR, Killelea DR, Utz AL. 71.  2005. Comparative study of C-H stretch and bend vibrations in methane activation on Ni(100) and Ni(111). Phys. Rev. Lett. 94:208303 [Google Scholar]
  72. Killelea DR, Campbell VL, Shuman NS, Utz AL. 72.  2008. Bond-selective control of a heterogeneously catalyzed reaction. Science 319:790–93 [Google Scholar]
  73. Chen L, Ueta H, Bisson R, Beck RD. 73.  2012. Vibrationally bond-selected chemisorption of methane isotopologues on Pt(111) studied by reflection absorption infrared spectroscopy. Faraday Discuss. 157:285–95 [Google Scholar]
  74. Chen L, Ueta H, Bisson R, Beck RD. 74.  2013. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy. Rev. Sci. Instrum. 84:053902 [Google Scholar]
  75. Yoder BL, Bisson R, Beck RD. 75.  2010. Steric effects in the chemisorption of vibrationally excited methane on Ni(100). Science 329:553–56 [Google Scholar]
  76. Ueta H, Chen L, Beck RD, Colon-Diaz I, Jackson B. 76.  2013. Quantum state-resolved CH4 dissociation on Pt(111): coverage dependent barrier heights from experiment and density functional theory. Phys. Chem. Chem. Phys. 15:20526–35 [Google Scholar]
  77. Killelea DR, Campbell VL, Shuman NS, Smith RR, Utz AL. 77.  2009. Surface temperature dependence of methane activation on Ni(111). J. Phys. Chem. C 113:20618–22 [Google Scholar]
  78. Killelea DR, Utz AL. 78.  2013. On the origin of mode and bond selectivity in vibrationally mediated reactions on surfaces. Phys. Chem. Chem. Phys. 15:20545–54 [Google Scholar]
  79. Chen N, Huang YL, Utz AL. 79.  2013. State-resolved reactivity of methane (ν2 + ν4) on Ni(111). J. Phys. Chem. A 117:6250–55 [Google Scholar]
  80. Krishnamohan GP, Olsen RA, Kroes GJ, Gatti F, Woittequand S. 80.  2010. Quantum dynamics of dissociative chemisorption of CH4 on Ni(111): influence of the bending vibration. J. Chem. Phys. 133:144308 [Google Scholar]
  81. Jiang B, Liu R, Li J, Xie DQ, Yang MH, Guo H. 81.  2013. Mode selectivity in methane dissociative chemisorption on Ni(111). Chem. Sci. 4:3249–54 [Google Scholar]
  82. Shen XJ, Lozano A, Dong W, Busnengo HF, Yan XH. 82.  2014. Towards bond selective chemistry from first principles: methane on metal surfaces. Phys. Rev. Lett. 112:046101 [Google Scholar]
  83. Jackson B, Nave S. 83.  2013. The dissociative chemisorption of methane on Ni(111): the effects of molecular vibration and lattice motion. J. Chem. Phys. 138:174705 [Google Scholar]
  84. Mastromatteo M, Jackson B. 84.  2013. The dissociative chemisorption of methane on Ni(100) and Ni(111): classical and quantum studies based on the reaction path Hamiltonian. J. Chem. Phys. 139:194701 [Google Scholar]
  85. Nave S, Jackson B. 85.  2010. Vibrational mode-selective chemistry: methane dissociation on Ni(100). Phys. Rev. B 81:233408 [Google Scholar]
  86. Miller WH. 86.  2005. Quantum dynamics of complex molecular systems. Proc. Natl. Acad. Sci. USA 102:6660–64 [Google Scholar]
  87. Sacchi M, Wales DJ, Jenkins SJ. 87.  2011. Mode-specific chemisorption of CH4 on Pt{110}-(1 × 2) explored by first-principles molecular dynamics. J. Phys. Chem. C 115:21832–42 [Google Scholar]
  88. Sacchi M, Wales DJ, Jenkins SJ. 88.  2012. Mode-specificity and transition state-specific energy redistribution in the chemisorption of CH4 on Ni{100}. Phys. Chem. Chem. Phys. 14:15879–87 [Google Scholar]
  89. Nattino F, Ueta H, Chadwick H, van Reijzen ME, Beck RD. 89.  et al. 2014. Ab initio molecular dynamics calculations versus quantum-state-resolved experiments on CHD3 + Pt(111): new insights into a prototypical gas-surface reaction. J. Phys. Chem. Lett. 5:1294–99 [Google Scholar]
  90. Pijper E, Kroes GJ, Olsen RA, Baerends EJ. 90.  2002. Reactive and diffractive scattering of H2 from Pt(111) studied using a six-dimensional wave packet method. J. Chem. Phys. 117:5885–98 [Google Scholar]
  91. Juaristi JI, Alducin M, Díez Muiño R, Busnengo HF, Salin A. 91.  2008. Role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces. Phys. Rev. Lett. 100:116102 [Google Scholar]
  92. Diekhöner L, Hornekaer L, Mortensen H, Jensen E, Baurichter A. 92.  et al. 2001. Indirect evidence for strong nonadiabatic coupling in N2 associative desorption from and dissociative adsorption on Ru(0001). J. Chem. Phys. 117:5018–30 [Google Scholar]
  93. Diekhöner L, Mortensen H, Baurichter A, Jensen E, Petrunin VV, Luntz AC. 93.  2001. N2 dissociative adsorption on Ru(0001): the role of energy loss. J. Chem. Phys. 115:9028–35 [Google Scholar]
  94. Diekhöner L, Mortensen H, Baurichter A, Luntz AC, Hammer B. 94.  2000. Dynamics of high-barrier surface reactions: laser-assisted associative desorption of N2 from Ru(0001). Phys. Rev. Lett. 84:4906–9 [Google Scholar]
  95. Díaz C, Vincent JK, Krishnamohan GP, Olsen RA, Kroes GJ. 95.  et al. 2006. Reactive and nonreactive scattering of N2 from Ru(0001): a six-dimensional adiabatic study. J. Chem. Phys. 125:114706 [Google Scholar]
  96. Morin M, Levinos NJ, Harris AL. 96.  1992. Vibrational energy transfer of CO/Cu(100): nonadiabatic vibration/electron coupling. J. Chem. Phys. 96:3950–56 [Google Scholar]
  97. Chang H-C, Ewing GE. 97.  1990. Infrared fluorescence from a monolayer of CO on NaCl(100). Phys. Rev. Lett. 65:2125–28 [Google Scholar]
  98. Forsblom M, Persson M. 98.  2007. Vibrational lifetimes of cyanide and carbon monoxide on noble and transition metal surfaces. J. Chem. Phys. 127:154303 [Google Scholar]
  99. Head-Gordon M, Tully JC. 99.  1992. Molecular-orbital calculations of the lifetimes of the vibrational modes of CO on Cu(100). Phys. Rev. B 46:1853–56 [Google Scholar]
  100. Krishna V, Tully JC. 100.  2006. Vibrational lifetimes of molecular adsorbates on metal surfaces. J. Chem. Phys. 125:054706 [Google Scholar]
  101. Dell'Angela M, Anniyev T, Beye M, Coffee R, Fohlisch A. 101.  et al. 2013. Real-time observation of surface bond breaking with an X-ray laser. Science 339:1302–5 [Google Scholar]
  102. Schäfer T, Bartels N, Golibrzuch K, Bartels C, Koeckert H. 102.  et al. 2013. Observation of direct vibrational excitation in gas-surface collisions of CO with Au(111): a new model system for surface dynamics. Phys. Chem. Chem. Phys. 15:1863–67 [Google Scholar]
  103. Shirhatti P, Werdecker J, Golibrzuch K, Wodtke AM, Bartels C. 103.  2014. Electron hole pair mediated vibrational excitation in CO scattering from Au(111): incidence energy and surface temperature dependence. J. Chem. Phys. 141:124704 [Google Scholar]
  104. Rahinov I, Cooper R, Matsiev D, Bartels C, Auerbach DJ, Wodtke AM. 104.  2011. Quantifying the breakdown of the Born-Oppenheimer approximation in surface chemistry. Phys. Chem. Chem. Phys. 13:12680–92 [Google Scholar]
  105. Bartels C, Cooper R, Auerbach DJ, Wodtke AM. 105.  2011. Energy transfer at metal surfaces: the need to go beyond the electronic friction picture. Chem. Sci. 2:1647–55 [Google Scholar]
  106. Yang XM, Kim EH, Wodtke AM. 106.  1990. The vibrational quantum number dependence of the collisional lifetime in nitric-oxide self-relaxation up to v″ = 25. J. Chem. Phys. 93:4483–84 [Google Scholar]
  107. Yang XM, Kim EH, Wodtke AM. 107.  1992. Vibrational-energy transfer of very highly vibrationally excited NO. J. Chem. Phys. 96:5111–22 [Google Scholar]
  108. Yang XM, Wodtke AM. 108.  1992. State-to-state spin orbit and rotational energy transfer of very highly vibrationally excited nitric oxide. J. Chem. Phys. 96:5123–28 [Google Scholar]
  109. Yang X, Wodtke AM. 109.  1990. Efficient state-specific preparation of highly vibrationally excited NO(X2Π). J. Chem. Phys. 92:116–20 [Google Scholar]
  110. Yang XM, McGuire D, Wodtke AM. 110.  1992. Efficient state-specific preparation of highly vibrationally excited 15N18O. J. Mol. Spectrosc. 154:361–71 [Google Scholar]
  111. Drabbels M, Wodtke AM, Yang M, Alexander MH. 111.  1997. Parity-resolved state-to-state cross sections for inelastic scattering of NO X2Π1/2 (v = 20, J = 0.5, e/f) from He: a comparison between crossed molecular beams experiments and ab initio theory. J. Phys. Chem. A 101:6463–74 [Google Scholar]
  112. Bartels N, Krüger BC, Meyer S, Wodtke AM, Schäfer T. 112.  2013. Suppression of spontaneous emission in the optical pumping of molecules: pump-dump-sweep-probe. J. Phys. Chem. Lett. 4:2367–70 [Google Scholar]
  113. Schäfer T, Bartels N, Hocke N, Yang XM, Wodtke AM. 113.  2012. Orienting polar molecules without hexapoles: optical state selection with adiabatic orientation. Chem. Phys. Lett. 535:1–11 [Google Scholar]
  114. Huang YH, Rettner CT, Auerbach DJ, Wodtke AM. 114.  2000. Vibrational promotion of electron transfer. Science 290:111–14 [Google Scholar]
  115. Wodtke AM, Huang YH, Auerbach DJ. 115.  2003. Interaction of NO(v = 12) with LiF(001): evidence for anomalously large vibrational relaxation rates. J. Chem. Phys. 118:8033–41 [Google Scholar]
  116. LaRue J, Schäfer T, Matsiev D, Velarde L, Nahler NH. 116.  et al. 2011. Vibrationally promoted electron emission at a metal surface: electron kinetic energy distributions. Phys. Chem. Chem. Phys. 13:97–99 [Google Scholar]
  117. LaRue JL, Schäfer T, Matsiev D, Velarde L, Nahler NH. 117.  et al. 2011. Electron kinetic energies from vibrationally promoted surface exoemission: evidence for a vibrational autodetachment mechanism. J. Phys. Chem. A 115:14306–14 [Google Scholar]
  118. Nahler NH, White JD, LaRue J, Auerbach DJ, Wodtke AM. 118.  2008. Inverse velocity dependence of vibrationally promoted electron emission from a metal surface. Science 321:1191–94 [Google Scholar]
  119. Nahler NH, Wodtke AM. 119.  2008. Dynamics of molecule-induced electron emission from surfaces. Mol. Phys. 106:2227–44 [Google Scholar]
  120. Head-Gordon M, Tully JC. 120.  1995. Molecular dynamics with electronic frictions. J. Chem. Phys. 103:10137–45 [Google Scholar]
  121. Monturet S, Saalfrank P. 121.  2010. Role of electronic friction during the scattering of vibrationally excited nitric oxide molecules from Au(111). Phys. Rev. B 82:075404 [Google Scholar]
  122. Shenvi N, Roy S, Tully JC. 122.  2009. Nonadiabatic dynamics at metal surfaces: independent-electron surface hopping. J. Chem. Phys. 130:174107 [Google Scholar]
  123. Shenvi N, Roy S, Tully JC. 123.  2009. Dynamical steering and electronic excitation in NO scattering from a gold surface. Science 326:829–32 [Google Scholar]
  124. Roy S, Shenvi NA, Tully JC. 124.  2009. Model Hamiltonian for the interaction of NO with the Au(111) surface. J. Chem. Phys. 130:174716 [Google Scholar]
  125. Bartels N, Golibrzuch K, Bartels C, Chen L, Auerbach DJ. 125.  et al. 2013. Observation of orientation-dependent electron transfer in molecule-surface collisions. Proc. Natl. Acad. Sci. USA 110:17738–43 [Google Scholar]
  126. Bartels N, Golibrzuch K, Bartels C, Chen L, Auerbach DJ. 126.  et al. 2014. Dynamical steering in an electron transfer surface reaction: oriented NO(v = 3, 0.08 < Ei < 0.89 eV) relaxation in collisions with a Au(111) surface. J. Chem. Phys. 140:054710 [Google Scholar]
  127. Cooper R, Bartels C, Kandratsenka A, Rahinov I, Shenvi N. 127.  et al. 2012. Multiquantum vibrational excitation of NO scattered from Au(111): quantitative comparison of benchmark data to ab initio theories of nonadiabatic molecule-surface interactions. Angew. Chem. Int. Ed. Engl. 51:4954–58 [Google Scholar]
  128. Golibrzuch K, Kandratsenka A, Rahinov I, Cooper R, Auerbach DJ. 128.  et al. 2013. Experimental and theoretical study of multi-quantum vibrational excitation: NO(v = 0 → 1, 2, 3) in collisions with Au(111). J. Phys. Chem. A 117:7091–101 [Google Scholar]
  129. Golibrzuch K, Shirhatti PR, Rahinov I, Kandratsenka A, Auerbach DJ. 129.  et al. 2014. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface. J. Chem. Phys. 140:044701 [Google Scholar]
  130. Golibrzuch K, Shirhatti PR, Rahinov I, Auerbach DJ, Wodtke AM, Bartels C. 130.  2014. Incidence energy dependent state-to-state time-of-flight measurements of NO(v = 3) collisions with Au(111): the fate of incidence vibrational and translational energy. Phys. Chem. Chem. Phys. 16:7602–10 [Google Scholar]
  131. Golibrzuch K, Shirhatti PR, Altschaffel J, Rahinov I, Auerbach DJ. 131.  et al. 2013. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer. J. Phys. Chem. A 117:8750–60 [Google Scholar]
  132. Bartels N, Krüger BC, Bartels C, Auerbach DJ, Wodtke AM, Schäfer T. 132.  2014. Controlling an electron transfer reaction at a metal surface by manipulating reactant motion and orientation. Angew. Chem. Int. Ed. Engl. 5313690–94 [Google Scholar]
  133. Osterlund L, Zoric I, Kasemo B. 133.  1997. Dissociative sticking of O2 on Al(111). Phys. Rev. B 55:15452–55 [Google Scholar]
  134. Brune H, Wintterlin J, Behm RJ, Ertl G. 134.  1992. Surface migration of “hot” adatoms in the course of dissociative chemisorption of oxygen on Al(111). Phys. Rev. Lett. 68:624–26 [Google Scholar]
  135. Brune H, Wintterlin J, Trost J, Ertl G, Wiechers J, Behm RJ. 135.  1993. Interaction of oxygen with Al(111) studied by scanning tunneling microscopy. J. Chem. Phys. 99:2128–48 [Google Scholar]
  136. Komrowski AJ, Sexton JZ, Kummel AC, Binetti M, Weisse O, Hasselbrink E. 136.  2001. Oxygen abstraction from dioxygen on the Al(111) surface. Phys. Rev. Lett. 87:246103 [Google Scholar]
  137. Yourdshahyan Y, Razaznejad B, Lundqvist BI. 137.  2002. Adiabatic potential-energy surfaces for oxygen on Al(111). Phys. Rev. B 65:075416 [Google Scholar]
  138. Yourdshahyan Y, Razaznejad B, Lundqvist BI. 138.  2001. Adiabatic potential-energy surface of O2/Al(111): rare entrance-channel barriers but molecularly chemisorbed state apt for abstraction. Solid State Commun. 117:531–35 [Google Scholar]
  139. Behler J, Delley B, Lorenz S, Reuter K, Scheffler M. 139.  2005. Dissociation of O2 at Al(111): the role of spin selection rules. Phys. Rev. Lett. 94:036104 [Google Scholar]
  140. Behler J, Delley B, Reuter K, Scheffler M. 140.  2007. Nonadiabatic potential-energy surfaces by constrained density-functional theory. Phys. Rev. B 75:115409 [Google Scholar]
  141. Carbogno C, Behler J, Reuter K, Gross A. 141.  2010. Signatures of nonadiabatic O2 dissociation at Al(111): first-principles fewest-switches study. Phys. Rev. B 81:035410 [Google Scholar]
  142. Katz G, Kosloff R, Zeiri Y. 142.  2004. Abstractive dissociation of oxygen over Al(111): a nonadiabatic quantum model. J. Chem. Phys. 120:3931–48 [Google Scholar]
  143. Hellman A, Razaznejad B, Lundqvist BI. 143.  2005. Trends in sticking and adsorption of diatomic molecules on the Al(111) surface. Phys. Rev. B 71:205424 [Google Scholar]
  144. Carbogno C, Behler J, Gross A, Reuter K. 144.  2008. Fingerprints for spin-selection rules in the interaction dynamics of O2 at Al(111). Phys. Rev. Lett. 101:096104 [Google Scholar]
  145. Behler J, Reuter K, Scheffler M. 145.  2008. Nonadiabatic effects in the dissociation of oxygen molecules at the Al(111) surface. Phys. Rev. B 77:115421 [Google Scholar]
  146. Libisch F, Huang C, Liao PL, Pavone M, Carter EA. 146.  2012. Origin of the energy barrier to chemical reactions of O2 on Al(111): evidence for charge transfer, not spin selection. Phys. Rev. Lett. 109:198303 [Google Scholar]
  147. Abedi A, Maitra NT, Gross EKU. 147.  2012. Correlated electron-nuclear dynamics: exact factorization of the molecular wavefunction. J. Chem. Phys. 137:22A530 [Google Scholar]
  148. Pavanello M, Auerbach DJ, Wodtke AM, Blanco-Rey M, Alducin M, Kroes GJ. 148.  2013. Adiabatic energy loss in hyperthermal H atom collisions with Cu and Au: a basis for testing the importance of nonadiabatic energy loss. J. Phys. Chem. Lett. 4:3735–40 [Google Scholar]
  149. Grüneis A, Shepherd JJ, Alavi A, Tew DP, Booth GH. 149.  2013. Explicitly correlated plane waves: accelerating convergence in periodic wavefunction expansions. J. Chem. Phys. 139:084112 [Google Scholar]
  150. Appelbaum JA, Hamann DR. 150.  1972. Variational calculation of the image potential near a metal surface. Phys. Rev. B 6:1122–30 [Google Scholar]
  151. Janke SM, Pavanello M, Kroes GJ, Auerbach D, Wodtke AM, Kandratsenka A. 151.  2013. Toward detection of electron-hole pair excitation in H-atom collisions with Au(111): adiabatic molecular dynamics with a semi-empirical full-dimensional potential energy surface. Z. Phys. Chem. 227:1467–90 [Google Scholar]
  152. Ben-Nun M, Quenneville J, Martínez TJ. 152.  2000. Ab initio multiple spawning: photochemistry from first principles quantum molecular dynamics. J. Phys. Chem. A 104:5161–75 [Google Scholar]
  153. Liu T, Fu B, Zhang DH. 153.  2013. Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface. J. Chem. Phys. 139:184705 [Google Scholar]
  154. Liu T, Fu B, Zhang DH. 154.  2014. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface. J. Chem. Phys. 140:144701 [Google Scholar]
  155. Ran Q, Matsiev D, Auerbach DJ, Wodtke AM. 155.  2007. Observation of a change of vibrational excitation mechanism with surface temperature: HCl collisions with Au(111). Phys. Rev. Lett. 98:237601 [Google Scholar]
  156. Ran Q, Matsiev D, Auerbach DJ, Wodtke AM. 156.  2007. Direct translation-to-vibrational energy transfer of HCl on gold: measurement of absolute vibrational excitation probabilities. Nucl. Instrum. Methods Phys. Res. B 258:1–6 [Google Scholar]
  157. Rahinov I, Cooper R, Yuan C, Yang XM, Auerbach DJ, Wodtke AM. 157.  2008. Efficient vibrational and translational excitations of a solid metal surface: state-to-state time-of-flight measurements of HCl(v = 2, J = 1) scattering from Au(111). J. Chem. Phys. 129:214708 [Google Scholar]
  158. Diaz C, Vincent JK, Krishnamohan GP, Olsen RA, Kroes GJ. 158.  et al. 2006. Multidimensional effects on dissociation of N2 on Ru(0001). Phys. Rev. Lett. 96:096102 [Google Scholar]
  159. Townsend D, Lahankar SA, Lee SK, Chambreau SD, Suits AG. 159.  et al. 2004. The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306:1158–61 [Google Scholar]
  160. Skriver HL, Rosengaard NM. 160.  1992. Surface energy and work function of elemental metals. Phys. Rev. B 46:7157–68 [Google Scholar]
  161. 161. Natl. Inst. Stand. Technol. (NIST) 2013. Computational Chemistry Comparison and Benchmark Database. Release 16a, August. NIST, Gaithersburg, MD. http://cccbdb.nist.gov/
  162. Botz FK, Glick RE. 162.  1975. Methane temporary negative-ion resonances. Chem. Phys. Lett. 33:279–83 [Google Scholar]
  163. White JD, Chen J, Matsiev D, Auerbach DJ, Wodtke AM. 163.  2005. Conversion of large-amplitude vibration to electron excitation at a metal surface. Nature 433:503–5 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error