1932

Abstract

In this review, we survey the latest advances in theoretical understanding of bimolecular reaction dynamics in the past decade. The remarkable recent progress in this field has been driven by more accurate and efficient ab initio electronic structure theory, effective potential-energy surface fitting techniques, and novel quantum scattering algorithms. Quantum mechanical characterization of bimolecular reactions continues to uncover interesting dynamical phenomena in atom-diatom reactions and beyond, reaching an unprecedented level of sophistication. In tandem with experimental explorations, these theoretical developments have greatly advanced our understanding of key issues in reaction dynamics, such as microscopic reaction mechanisms, mode specificity, product energy disposal, influence of reactive resonances, and nonadiabatic effects.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112016
2016-05-27
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112016.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112016&mimeType=html&fmt=ahah

Literature Cited

  1. Levine RD. 1.  2005. Molecular Reaction Dynamics Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  2. Hu W, Schatz GC. 2.  2006. Theories of reactive scattering. J. Chem. Phys. 125:132301 [Google Scholar]
  3. Schatz GC. 3.  2000. Reaction dynamics: detecting resonances. Science 288:1599–600 [Google Scholar]
  4. Liu K. 4.  2001. Crossed-beam studies of neutral reactions: state-specific differential cross sections. Annu. Rev. Phys. Chem. 52:139–64 [Google Scholar]
  5. Fernandez-Alonso F, Zare RN. 5.  2002. Scattering resonances in the simplest chemical reaction. Annu. Rev. Phys. Chem. 53:67–99 [Google Scholar]
  6. Brouard M, O’Keeffe P, Vallance C. 6.  2002. Product state resolved dynamics of elementary reactions. J. Phys. Chem. A 106:3629–41 [Google Scholar]
  7. Balucani N, Capozza G, Leonori F, Segoloni E, Casavecchia P. 7.  2006. Crossed molecular beam reactive scattering: from simple triatomic to multichannel polyatomic reactions. Int. Rev. Phys. Chem. 25:109–63 [Google Scholar]
  8. Yang X. 8.  2007. State-to-state dynamics of elementary bimolecular reactions. Annu. Rev. Phys. Chem. 58:433–59 [Google Scholar]
  9. Crim FF. 9.  2008. Chemical dynamics of vibrationally excited molecules: controlling reactions in gases and on surfaces. PNAS 105:12654–61 [Google Scholar]
  10. Liu K. 10.  2012. Quantum dynamical resonances in chemical reactions: from A + BC to polyatomic systems. Adv. Chem. Phys. 149:1–46 [Google Scholar]
  11. Schatz GC, Kuppermann A. 11.  1976. Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H+H2. J. Chem. Phys. 65:4668–92 [Google Scholar]
  12. Mladenovic M, Zhao M, Truhlar DG, Schwenke DW, Sun Y, Kouri DJ. 12.  1988. Converged quantum mechanical calculation of the product vibration-rotation state distribution of the hydrogen atom + para-hydrogen reaction. J. Phys. Chem. 92:7035–38 [Google Scholar]
  13. Bowman JM, Schatz GC. 13.  1995. Theoretical studies of polyatomic bimolecular reaction dynamics. Annu. Rev. Phys. Chem. 46:169–95 [Google Scholar]
  14. Zhang DH, Zhang JZH. 14.  1996. Time-dependent quantum dynamics for gas-phase and gas-surface reactions. Dynamics of Molecules and Chemical Reactions RE Wyatt, JZH Zhang 231–76 New York: Marcel Dekker [Google Scholar]
  15. Zhang JZH, Dai J, Zhu W. 15.  1997. Development of accurate quantum dynamical methods for tetraatomic reactions. J. Phys. Chem. A 101:2746–54 [Google Scholar]
  16. Miller WH. 16.  1997. Quantum and semiclassical Green's functions in chemical reaction dynamics. J. Chem. Soc. Faraday Trans. 93:685–90 [Google Scholar]
  17. Balakrishnan N, Kalyanaraman C, Sathyamurthy N. 17.  1997. Time-dependent quantum mechanical approach to reactive scattering and related processes. Phys. Rep. 280:79–144 [Google Scholar]
  18. Clary DC. 18.  1998. Quantum theory of chemical reaction dynamics. Science 279:1879–82 [Google Scholar]
  19. Balint-Kurti GG. 19.  2008. Time-dependent and time-independent wave packet approaches to reactive scattering and photodissociation dynamics. Int. Rev. Phys. Chem. 27:507–39 [Google Scholar]
  20. Nyman G, Yu H-G. 20.  2013. Quantum approaches to polyatomic reaction dynamics. Int. Rev. Phys. Chem. 32:39–95 [Google Scholar]
  21. Althorpe SC, Clary DC. 21.  2003. Quantum scattering calculations on chemical reactions. Annu. Rev. Phys. Chem. 54:493–529 [Google Scholar]
  22. Guo H. 22.  2012. Quantum dynamics of complex-forming bimolecular reactions. Int. Rev. Phys. Chem. 31:1–68 [Google Scholar]
  23. Yarkony DR. 23.  2012. Nonadiabatic quantum chemistry: past, present and future. Chem. Rev. 112:481–98 [Google Scholar]
  24. Qiu M, Ren Z, Che L, Dai DX, Harich S. 24.  et al. 2006. Observation of Feshbach resonances in the F+H2 → HF+H reaction. Science 311:1440–43Provides a definitive experimental observation of reactive resonances with quantitative theoretical support. [Google Scholar]
  25. Che L, Ren Z, Wang X, Dong W, Dai D. 25.  et al. 2007. Breakdown of the Born-Oppenheimer approximation in the F+o-D2 → DF+D reaction. Science 317:1061–64Thoroughly elucidates non-BO dynamics in a prototypical bimolecular reaction. [Google Scholar]
  26. Xiao C, Xu X, Liu S, Wang T, Dong W. 26.  et al. 2011. Experimental and theoretical differential cross sections for a four-atom reaction: HD+OH → H2O+D. Science 333:440–42Provides the first full-dimensional quantum scattering determination of the DCS for a tetratomic reaction. [Google Scholar]
  27. Wang T, Chen J, Yang T, Xiao C, Sun Z. 27.  et al. 2013. Dynamical resonances accessible only by reagent vibrational excitation in the F + HD → HF + D reaction. Science 342:1499–502 [Google Scholar]
  28. Otto R, Ma J, Ray AW, Daluz JS, Li J. 28.  et al. 2014. Imaging dynamics on the F+H2O → HF+ OH potential energy surfaces from wells to barriers. Science 343:396–99 [Google Scholar]
  29. Yang T, Chen J, Huang L, Wang T, Xiao C. 29.  et al. 2015. Extremely short-lived reaction resonances in Cl+HD (v=1) → DCl + H due to chemical bond softening. Science 347:60–63 [Google Scholar]
  30. Bartlett RJ, Musiał M. 30.  2007. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79:291–352 [Google Scholar]
  31. Werner H-J. 31.  1987. Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration reference configuration-interaction methods. Adv. Chem. Phys. 69:1–62 [Google Scholar]
  32. Shiozaki T, Werner H-J. 32.  2013. Multireference explicitly correlated F12 theories. Mol. Phys. 111:607–30 [Google Scholar]
  33. Hollebeek T, Ho T-S, Rabitz H. 33.  1999. Constructing multidimensional molecular potential energy surfaces from ab initio data. Annu. Rev. Phys. Chem. 50:537–70 [Google Scholar]
  34. Dawes R, Thompson DL, Guo Y, Wagner AF, Minkoff M. 34.  2007. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points. J. Chem. Phys. 126:184108 [Google Scholar]
  35. Dawes R, Thompson DL, Wagner AF, Minkoff M. 35.  2008. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions. J. Chem. Phys. 128:084107 [Google Scholar]
  36. Collins MA. 36.  2002. Molecular potential-energy surfaces for chemical reaction dynamics. Theor. Chem. Acc. 108:313–24 [Google Scholar]
  37. Zhou Y, Fu B, Wang C, Collins MA, Zhang DH. 37.  2011. Ab initio potential energy surface and quantum dynamics for the H + CH4 → H2 + CH3 reaction. J. Chem. Phys. 134:064323 [Google Scholar]
  38. Murrell JN, Carter S, Farantos SC, Huxley P, Varandas AJC. 38.  1984. Molecular Potential Energy Functions Chichester, UK: Wiley [Google Scholar]
  39. Varandas AJC. 39.  1988. Intermolecular and intramolecular potentials: topographical aspects, calculation, and functional representation via a double many-body expansion method. Adv. Chem. Phys. 74:255–338 [Google Scholar]
  40. Braams BJ, Bowman JM. 40.  2009. Permutationally invariant potential energy surfaces in high dimensionality. Int. Rev. Phys. Chem. 28:577–606Thoroughly discusses the PIP approach to PES fitting. [Google Scholar]
  41. Bowman JM, Czakó G, Fu B. 41.  2011. High-dimensional ab initio potential energy surfaces for reaction dynamics calculations. Phys. Chem. Chem. Phys. 13:8094–111 [Google Scholar]
  42. Raff LM, Komanduri R, Hagan M, Bukkapatnam STS. 42.  2012. Neural Networks in Chemical Reaction Dynamics Oxford: Oxford Univ. Press [Google Scholar]
  43. Beale MH, Hagan MT, Demuth HB. 43.  2010. Neural Network Toolbox7 User's Guide Natick, MA: MathWorks [Google Scholar]
  44. Chen J, Xu X, Zhang DH. 44.  2013. A global potential energy surface for the H2+OH ↔ H2O+H reaction using neural networks. J. Chem. Phys. 138:154301Selectively adds new ab initio points via a systematic procedure to improve the quality of NN fitting. [Google Scholar]
  45. Chen J, Xu X, Xu X, Zhang DH. 45.  2013. Communication: an accurate global potential energy surface for the OH + CO → H + CO2 reaction using neural networks. J. Chem. Phys. 138:221104 [Google Scholar]
  46. Jiang B, Guo H. 46.  2013. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. J. Chem. Phys. 139:054112Along with Reference 47, introduces the PIP-NN method for fitting PESs. [Google Scholar]
  47. Li J, Jiang B, Guo H. 47.  2013. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems. J. Chem. Phys. 139:204103 [Google Scholar]
  48. Li A, Guo H. 48.  2014. A full-dimensional ab initio global potential energy surface of H3O+3A) for the OH+(3Σ) + H2(1Σg+) → H(2S) + H2O+(2B1) reaction. J. Phys. Chem. A 118:11168–76 [Google Scholar]
  49. Li J, Guo H. 49.  2014. A nine-dimensional global potential energy surface for NH4(X2A1) and kinetics studies on the H + NH3 ↔ H2 + NH2 reaction. Phys. Chem. Chem. Phys. 16:6753–63 [Google Scholar]
  50. Li J, Chen J, Zhang DH, Guo H. 50.  2014. Quantum and quasi-classical dynamics of the OH + CO → H + CO2 reaction on a new permutationally invariant neural network potential energy surface. J. Chem. Phys. 140:044327 [Google Scholar]
  51. Li J, Chen J, Zhao Z, Xie D, Zhang DH, Guo H. 51.  2015. A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system. J. Chem. Phys. 142:204302 [Google Scholar]
  52. Li J, Guo H. 52.  2015. Communication: an accurate full 15 dimensional permutationally invariant potential energy surface for the OH + CH4 → H2O + CH3 reaction. J. Chem. Phys. 143:221103 [Google Scholar]
  53. Sun Z, Yang W, Zhang DH. 53.  2012. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations. Phys. Chem. Chem. Phys. 14:1827–45 [Google Scholar]
  54. Mandelshtam VA, Taylor HS. 54.  1995. A simple recursion polynomial expansion of the Green's function with absorbing boundary conditions. Application to the reactive scattering. J. Chem. Phys. 103:2903–7 [Google Scholar]
  55. Chen R, Guo H. 55.  1996. Evolution of quantum system in order domain of Chebychev operator. J. Chem. Phys. 105:3569–78 [Google Scholar]
  56. Gray SK, Balint-Kurti GG. 56.  1998. Quantum dynamics with real wave packets, including application to three-dimensional (J=0) D + H2 → HD + H reactive scattering. J. Chem. Phys. 108:950–62 [Google Scholar]
  57. Sun Z, Lee S-Y, Guo H, Zhang DH. 57.  2009. Comparison of second-order split operator and Chebyshev propagator in wave packet based state-to-state reactive scattering calculations. J. Chem. Phys. 130:174102 [Google Scholar]
  58. Fu B, Zhang DH. 58.  2012. Full-dimensional quantum dynamics study of exchange processes for the D + H2O and D + HOD reactions. J. Chem. Phys. 136:194301 [Google Scholar]
  59. Ma J, Li J, Guo H. 59.  2012. Quantum dynamics of the HO + CO → H + CO2 reaction on an accurate potential energy surface. J. Phys. Chem. Lett. 3:2482–86 [Google Scholar]
  60. Wang D. 60.  2006. A full dimensional, nine-degree-of-freedom, time-dependent quantum dynamics study for the H2 + C2H reaction. J. Chem. Phys. 124:201105 [Google Scholar]
  61. Yang M. 61.  2008. Full dimensional time-dependent quantum dynamics study of the H + NH3 → H2 + NH2 reaction. J. Chem. Phys. 129:064315 [Google Scholar]
  62. Song H, Li J, Yang M, Lu Y, Guo H. 62.  2014. Nine-dimensional quantum dynamics study of the H2 + NH2 → H+NH3 reaction: a rigorous test of the sudden vector projection model. Phys. Chem. Chem. Phys. 16:17770–76 [Google Scholar]
  63. Palma J, Clary DC. 63.  2000. A quantum model Hamiltonian to treat reactions of the type X + YCZ3 → XY + CZ3: application to O(3P) + CH4 → OH+ CH3. J. Chem. Phys. 112:1859–67 [Google Scholar]
  64. Yang M, Lee S-Y, Zhang DH. 64.  2007. Seven-dimensional quantum dynamics study of the O(3P) + CH4 reaction. J. Chem. Phys. 126:064303 [Google Scholar]
  65. Liu R, Xiong H, Yang M. 65.  2012. An eight-dimensional quantum mechanical Hamiltonian for X + YCZ3 system and its applications to H + CH4 reaction. J. Chem. Phys. 137:174113 [Google Scholar]
  66. Zhang W, Zhou Y, Wu G, Lu Y, Pan H. 66.  et al. 2010. Depression of reactivity by the collision energy in the single barrier H + CD4 → HD + CD3 reaction. PNAS 107:12782–85 [Google Scholar]
  67. Liu R, Yang M, Czakó G, Bowman JM, Li J, Guo H. 67.  2012. Mode selectivity for a “central” barrier reaction: eight-dimensional quantum studies of the O(3P) + CH4 → OH+CH3 reaction on an ab initio potential energy surface. J. Phys. Chem. Lett. 3:3776–80 [Google Scholar]
  68. Althorpe SC. 68.  2001. Quantum wave packet method for state-to-state reactive cross-sections. J. Chem. Phys. 114:1601–16 [Google Scholar]
  69. Yuan K, Cheng Y, Liu X, Harich S, Yang X, Zhang DH. 69.  2006. Experimental and quantum dynamical study on an asymmetric insertion reaction: state-to-state dynamics of O(1D) + HD (1Σ+g, v′ = 0, j′ = 0) → OH(2Π, v′′, j′′) + D(2S). Phys. Rev. Lett. 96:103202 [Google Scholar]
  70. Lin SY, Guo H. 70.  2006. Quantum state-to-state cross sections for atom-diatom reactions: a Chebyshev real wave packet approach. Phys. Rev. A 74:022703 [Google Scholar]
  71. Hankel M, Smith SC, Allan RJ, Gray SK, Balint-Kurti GG. 71.  2006. State-to-state reactive differential cross sections for the H + H2 → H2 + H reaction on five different potential energy surfaces employing a new quantum wave packet computer code: DIFFREALWAVE. J. Chem. Phys. 125:164303 [Google Scholar]
  72. Gómez-Carrasco S, Roncero O. 72.  2006. Coordinate transformation methods to calculate state-to-state reaction probabilities with wave packet treatments. J. Chem. Phys. 125:054102 [Google Scholar]
  73. Sun Z, Guo H, Zhang DH. 73.  2010. Extraction of state-to-state reactive scattering attributes from wave packet in reactant Jacobi coordinates. J. Chem. Phys. 132:084112 [Google Scholar]
  74. Peng T, Zhang JZH. 74.  1996. A reactant-product decoupling method for state-to-state reactive scattering. J. Chem. Phys. 105:6072–74Introduces the reactant-product decoupling method for state-to-state quantum reactive scattering. [Google Scholar]
  75. Althorpe SC, Kouri DJ, Hoffman DK. 75.  1997. State-to-state reaction probabilities from the time-independent wave packet reactant-product decoupling equations: application to the three-dimensional H + H2 reaction (J = 0). Chem. Phys. Lett. 275:173–80 [Google Scholar]
  76. Liu S, Xu X, Zhang DH. 76.  2012. Time-dependent wave packet theory for state-to-state differential cross sections of four-atom reactions in full dimensions: application to the HD + OH → H2O + D reaction. J. Chem. Phys. 136:144302 [Google Scholar]
  77. Cvitaš MT, Althorpe SC. 77.  2011. State-to-state reactive scattering in six dimensions using reactant-product decoupling: OH + H2 → H2O + H (J = 0). J. Chem. Phys. 134:024309 [Google Scholar]
  78. Cvitaš MT, Althorpe SC. 78.  2013. A Chebyshev method for state-to-state reactive scattering using reactant-product decoupling: OH + H2 → H2O + H. J. Chem. Phys. 139:064307 [Google Scholar]
  79. Liu S, Xu X, Zhang DH. 79.  2011. Communication: state-to-state quantum dynamics study of the OH + CO → H+CO2 reaction in full dimensions (J = 0). J. Chem. Phys. 135:141108 [Google Scholar]
  80. Miller WH. 80.  1974. Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J. Chem. Phys. 61:1823–34 [Google Scholar]
  81. Welsch R, Huarte-Larrañaga F, Manthe U. 81.  2012. State-to-state reaction probabilities within the quantum transition state framework. J. Chem. Phys. 136:064117Introduces the TSWP method for state-to-state quantum reactive scattering. [Google Scholar]
  82. Manthe U, Welsch R. 82.  2014. Correlation functions for fully or partially state-resolved reactive scattering calculations. J. Chem. Phys. 140:244113 [Google Scholar]
  83. Welsch R, Manthe U. 83.  2012. Thermal flux based analysis of state-to-state reaction probabilities. Mol. Phys. 110:703–15 [Google Scholar]
  84. Welsch R, Manthe U. 84.  2015. Loss of memory in H +CH4 → H2 +CH3 state-to-state reactive scattering. J. Phys. Chem. Lett. 6:338–42 [Google Scholar]
  85. Zhao B, Sun Z, Guo H. 85.  2014. Calculation of state-to-state differential and integral cross sections for atom-diatom reactions with transition-state wave packets. J. Chem. Phys. 140:234110 [Google Scholar]
  86. Zhao B, Sun Z, Guo H. 86.  2015. State-to-state mode specificity: energy sequestration and flow gated by transition state. J. Am. Chem. Soc. 137:15964–70 [Google Scholar]
  87. Zhao B, Sun Z, Guo H. 87.  2014. Calculation of the state-to-state S-matrix for tetra-atomic reactions with transition-state wave packets: H2/D2 + OH → H/D + H2O/HOD. J. Chem. Phys. 141:154112 [Google Scholar]
  88. Zhao B, Guo H. 88.  2015. Modulations of transition-state control of state-to-state dynamics in the F +H2O → HF +OH reaction. J. Phys. Chem. Lett. 6:676–80 [Google Scholar]
  89. Zhao B, Sun Z, Guo H. 89.  2015. Communication: state-to-state dynamics of the Cl +H2O → HCl +OH reaction: energy flow into reaction coordinate and transition-state control of product energy disposal. J. Chem. Phys. 142:241101 [Google Scholar]
  90. Czakó G, Bowman JM. 90.  2014. Reaction dynamics of methane with F, O, Cl, and Br on ab initio potential energy surfaces. J. Phys. Chem. A 118:2839–64 [Google Scholar]
  91. Li J, Jiang B, Song H, Ma J, Zhao B. 91.  et al. 2015. From ab initio potential energy surfaces to state-resolved reactivities: the X +H2O ↔ HX +OH (X = F, Cl, and O(3P)) reactions. J. Phys. Chem. A 119:4667–87 [Google Scholar]
  92. Yan S, Wu YT, Zhang B, Yue X-F, Liu K. 92.  2007. Do vibrational excitations of CHD3 preferentially promote reactivity toward the chlorine atom?. Science 316:1723–26 [Google Scholar]
  93. Polanyi JC. 93.  1972. Concepts in reaction dynamics. Acc. Chem. Res. 5:161–68Summarizes the Polanyi rules for predicting mode specificity in atom-diatom reactions. [Google Scholar]
  94. Zhang Z, Zhou Y, Zhang DH, Czakó G, Bowman JM. 94.  2012. Theoretical study of the validity of the Polanyi rules for the late-barrier Cl +CHD3 reaction. J. Phys. Chem. Lett. 3:3416–19 [Google Scholar]
  95. Wang F, Lin J-S, Cheng Y, Liu K. 95.  2013. Vibrational enhancement factor of the Cl + CHD3 (v1 = 1) reaction: rotational-probe effects. J. Phys. Chem. Lett. 4:323–27 [Google Scholar]
  96. Li J, Jiang B, Guo H. 96.  2013. Reactant vibrational excitations of reactant are more effective than translational energy in promoting an early-barrier reaction F + H2O → HF + OH. J. Am. Chem. Soc. 135:982–85 [Google Scholar]
  97. Song H, Guo H. 97.  2015. Mode specificity in the HCl +OH → Cl +H2O reaction: Polanyi's rules versus sudden vector projection model. J. Phys. Chem. A 119:826–31 [Google Scholar]
  98. Jiang B, Guo H. 98.  2013. Relative efficacy of vibrational vs. translational excitation in promoting atom-diatom reactivity: rigorous examination of Polanyi's rules and proposition of sudden vector projection (SVP) model. J. Chem. Phys. 138:234104Rigorously tests the Polanyi rules in atom-diatom reactions and the proposition of the SVP model. [Google Scholar]
  99. Jiang B, Li J, Guo H. 99.  2014. Effects of reactant rotational excitation on reactivity: perspectives from the sudden limit. J. Chem. Phys. 140:034112 [Google Scholar]
  100. Jiang B, Guo H. 100.  2014. Mode specificity, bond selectivity, and product energy disposal in X +CH4/CHD3 (X = H, F, O(3P), Cl, and OH) hydrogen abstraction reactions: perspective from sudden vector projection model. J. Chin. Chem. Soc. 61:847–59 [Google Scholar]
  101. Jiang B, Guo H. 101.  2013. Control of mode/bond selectivity and product energy disposal by the transition state: the X +H2O (X = H, F, O(3P), and Cl) reactions. J. Am. Chem. Soc. 135:15251–56 [Google Scholar]
  102. Guo H, Jiang B. 102.  2014. The sudden vector projection model for reactivity: mode specificity and bond selectivity made simple. Acc. Chem. Res. 47:3679–85 [Google Scholar]
  103. Li J, Guo H. 103.  2013. Quasi-classical trajectory study of the F +H2O → HF + OH reaction: influence of barrier height, reactant rotational excitation, and isotopic substitution. Chin. J. Chem. Phys. 26:627–34 [Google Scholar]
  104. Liu R, Wang F, Jiang B, Czakó G, Yang M. 104.  et al. 2014. Rotational mode specificity in the Cl +CHD3 → HCl +CD3 reaction. J. Chem. Phys. 141:074310 [Google Scholar]
  105. Song H, Guo H. 105.  2014. Effects of reactant rotational excitations on H2 + NH2 → H + NH3 reactivity. J. Chem. Phys. 141:244311 [Google Scholar]
  106. Liu S, Xiao C, Wang T, Chen J, Yang T. 106.  et al. 2012. The dynamics of the D2 + OH → HOD + D reaction: a combined theoretical and experimental study. Faraday Discuss 157:101–11 [Google Scholar]
  107. Levine RD, Wu SF. 107.  1971. Resonances in reactive collisions: computational study of the H +H2 collision. Chem. Phys. Lett. 11:557–61 [Google Scholar]
  108. Schatz GC, Bowman JM, Kuppermann A. 108.  1973. Large quantum effects in the collinear F +H2 → FH +H reaction. J. Chem. Phys. 58:4023–25 [Google Scholar]
  109. Neumark DM, Wodtke AM, Robinson GN, Hayden CC, Lee YT. 109.  1984. Experimental investigation of resonances in reactive scattering: the F + H2 reaction. Phys. Rev. Lett. 53:226–29 [Google Scholar]
  110. Stark K, Werner HJ. 110.  1996. An accurate multireference configuration interaction calculation of the potential energy surface for the F +H2 → HF +H reaction. J. Chem. Phys. 104:6515–30 [Google Scholar]
  111. Manolopoulos DE, Stark K, Werner HJ, Arnold DW, Bradforth SE, Neumark DM. 111.  1993. The transition state of the F + H2 reaction. Science 262:1852–55 [Google Scholar]
  112. Skodje RT, Skouteris D, Manolopoulos DE, Lee S-H, Dong F, Liu K. 112.  2000. Resonance-mediated chemical reaction: F + HD → HF + D. Phys. Rev. Lett. 85:1206–9 [Google Scholar]
  113. Ren Z, Che L, Qiu M, Wang X, Dong W. 113.  et al. 2008. Probing the resonance potential in the F atom reaction with hydrogen deuteride with spectroscopic accuracy. PNAS 105:12662–66 [Google Scholar]
  114. Xu CX, Xie DQ, Zhang DH. 114.  2006. A global ab initio potential energy surface for F + H2 → HF + H. Chin. J. Chem. Phys. 19:96–98 [Google Scholar]
  115. Fu B, Xu X, Zhang DH. 115.  2008. A hierarchical construction scheme for accurate potential energy surface generation: an application to the F +H2 reaction. J. Chem. Phys. 129:011103 [Google Scholar]
  116. Wang X, Dong W, Qiu M, Ren Z, Che L. 116.  et al. 2008. HF(v′ = 3) forward scattering in the F +H2 reaction: shape resonance and slow-down mechanism. PNAS 105:6227–31 [Google Scholar]
  117. Dong W, Xiao C, Wang T, Dai D, Yang X, Zhang DH. 117.  2010. Transition-state spectroscopy of partial wave resonances in the F +HD reaction. Science 327:1501–2 [Google Scholar]
  118. Ren Z, Che L, Qiu M, Wang X, Dai D. 118.  et al. 2006. Probing Feshbach resonances in F + H2 (j = 1) → HF + H: dynamical effect of single quantum H2 rotation. J. Chem. Phys. 125:151102 [Google Scholar]
  119. Wang T, Yang T, Xiao C, Dai D, Yang X. 119.  2013. Highly efficient pumping of vibrationally excited HD molecules via Stark-induced adiabatic Raman passage. J. Phys. Chem. Lett. 4:368–71 [Google Scholar]
  120. Chen J, Sun Z, Zhang DH. 120.  2015. An accurate potential energy surface for the F + H2 → HF + H reaction by the coupled-cluster method. J. Chem. Phys. 142:024303 [Google Scholar]
  121. Fu B, Zhou Y, Zhang DH. 121.  2012. Shape resonance in the H + D2O → D + HOD reaction: a full-dimensional quantum dynamics study. Chem. Sci. 3:270–74 [Google Scholar]
  122. Alexander MH, Manolopoulos DE, Werner H-J. 122.  2000. An investigation of the F +H2 reaction based on a full ab initio description of the open-shell character of the F(2P) atom. J. Chem. Phys. 113:11084–100 [Google Scholar]
  123. Alexander MH, Capecchi G, Werner H-J. 123.  2002. Theoretical study of the validity of the Born-Oppenheimer approximation in the Cl + H2 → HCl + H reaction. Science 296:715–18 [Google Scholar]
  124. Lee S-H, Lai L-H, Liu K, Chang H. 124.  1999. State-specific excitation function for Cl(2P) + H2(v = 0, j): effects of spin-orbit and rotational states. J. Chem. Phys. 110:8229–32 [Google Scholar]
  125. Li G, Werner H-J, Lique F, Alexander MH. 125.  2007. New ab initio potential energy surfaces for the F +H2 reaction. J. Chem. Phys. 127:174302 [Google Scholar]
  126. Wang X, Dong W, Xiao C, Che L, Ren Z. 126.  et al. 2008. The extent of non-Born-Oppenheimer coupling in the reaction of Cl(2P) with para-H2. Science 322:573–76 [Google Scholar]
  127. Sun Z, Zhang DH, Alexander MH. 127.  2010. Time-dependent wave packet investigation of state-to-state reactive scattering of Cl with para-H2 including the open-shell character of the Cl atom. J. Chem. Phys. 132:034308 [Google Scholar]
  128. Jiang B, Xie C, Xie D. 128.  2011. New ab initio coupled potential energy surfaces for the Br(2P3/2, 2P1/2) +H2 reaction. J. Chem. Phys. 135:164311 [Google Scholar]
  129. Xie C, Jiang B, Xie D, Sun Z. 129.  2012. Quantum state-to-state dynamics for the quenching process of Br(2P1/2) +H2 (vi = 0, 1, ji = 0). J. Chem. Phys. 136:114310 [Google Scholar]
  130. Kendrick BK. 130.  2003. Geometric phase effects in chemical reaction dynamics and molecular spectra. J. Phys. Chem. A 107:6739–56 [Google Scholar]
  131. Mead CA, Truhlar DG. 131.  1979. On the determination of Born-Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys. 70:2284–96 [Google Scholar]
  132. Kendrick BK. 132.  2000. Geometric phase effects in the H + D2 → HD + D reaction. J. Chem. Phys. 112:5679–704 [Google Scholar]
  133. Juanes-Marcos JC, Althorpe SC, Wrede E. 133.  2005. Theoretical study of geometric phase effects in the hydrogen-exchange reaction. Science 309:1227–30 [Google Scholar]
  134. Bouakline F, Althorpe SC, Peláez Ruiz D. 134.  2008. Strong geometric-phase effects in the hydrogen-exchange reaction at high collision energies. J. Chem. Phys. 128:124322 [Google Scholar]
  135. Fu B, Kamarchik E, Bowman JM. 135.  2010. Quasiclassical trajectory study of the postquenching dynamics of OH A2Σ+ by H2/D2 on a global potential energy surface. J. Chem. Phys. 133:164306 [Google Scholar]
  136. Dillon J, Yarkony DR. 136.  2013. On the mechanism for the nonadiabatic reactive quenching of OH(A2Σ+) by H2(1Σg+): the role of the 22A state. J. Chem. Phys. 139:064314 [Google Scholar]
  137. Zhang P-Y, Lu R-F, Chu T-S, Han K-L. 137.  2010. Quenching of OH(A2Σ+) by H2 through conical intersections: highly excited products in nonreactive channel. J. Phys. Chem. A 114:6565–68 [Google Scholar]
  138. Collins MA, Godsi O, Liu S, Zhang DH. 138.  2011. An ab initio quasi-diabatic potential energy matrix for OH(2Σ) + H2. J. Chem. Phys. 135:234307 [Google Scholar]
  139. Lin SY, Guo H, Jiang B, Zhou S, Xie D. 139.  2010. Non-Born-Oppenheimer state-to-state dynamics of the N(2D) + H2 → NH(3Σ) + H reaction: influence of the Renner-Teller coupling. J. Phys. Chem. A 114:9655–61 [Google Scholar]
  140. Defazio P, Bussery-Honvault B, Honvault P, Petrongolo C. 140.  2011. Nonadiabatic quantum dynamics of C(1D) + H2 → CH + H: coupled-channel calculations including Renner-Teller and Coriolis terms. J. Chem. Phys. 135:114308 [Google Scholar]
  141. Suits AG. 141.  2008. Roaming atoms and radicals: a new mechanism in molecular dissociation. Acc. Chem. Res. 41:873–81 [Google Scholar]
  142. Bowman JM, Shepler BC. 142.  2011. Roaming radicals. Annu. Rev. Phys. Chem. 62:531–53 [Google Scholar]
  143. Townsend D, Lahankar SA, Lee SK, Chambreau SD, Suits AG. 143.  et al. 2004. The roaming atom: straying from the reaction path in formaldehyde decomposition. Science 306:1158–61 [Google Scholar]
  144. Li A, Li J, Guo H. 144.  2013. Quantum manifestation of roaming in H +MgH → Mg + H2: the birth of roaming resonances. J. Phys. Chem. A 117:5052–60 [Google Scholar]
  145. Manthe U, Meyer H-D, Cederbaum LS. 145.  1992. Wave-packet dynamics within the multiconfiguration Hartree framework: general aspects and application to NOCl. J. Chem. Phys. 97:3199–213 [Google Scholar]
  146. Welsch R, Manthe U. 146.  2014. Communication: ro-vibrational control of chemical reactivity in H + CH4 → H2 + CH3: full-dimensional quantum dynamics calculations and a sudden model. J. Chem. Phys. 141:051102 [Google Scholar]
  147. Welsch R, Manthe U. 147.  2014. The role of the transition state in polyatomic reactions: initial state-selected reaction probabilities of the H + CH4 → H2 +CH3 reaction. J. Chem. Phys. 141:174313 [Google Scholar]
  148. Shan X, Remmert SM, Clary DC, Zhang B, Liu K. 148.  2013. Crossed-beam and reduced dimensionality studies of the state-to-state integral cross sections of the Cl + HCD3(v) → HCl(v′) + CD3 reaction. Chem. Phys. Lett. 587:88–92 [Google Scholar]
  149. Banks ST, Tautermann CS, Remmert SM, Clary DC. 149.  2009. An improved treatment of spectator mode vibrations in reduced dimensional quantum dynamics: application to the hydrogen abstraction reactions μ + CH4, H + CH4, D + CH4, and CH3 + CH4. J. Chem. Phys. 131:044111 [Google Scholar]
  150. Zhu X, Ma J, Yarkony DR, Guo H. 150.  2012. Computational determination of the à state absorption spectrum of NH3 and of ND3 using a new quasi-diabatic representation of the and à states and full six-dimensional quantum dynamics. J. Chem. Phys. 136:234301 [Google Scholar]
  151. Xie C, Zhu X, Ma J, Yarkony DR, Xie D, Guo H. 151.  2015. Communication: on the competition between adiabatic and nonadiabatic dynamics in vibrationally mediated ammonia photodissociation in its A band. J. Chem. Phys. 142:091101 [Google Scholar]
  152. Zhou L, Xie D, Guo H. 152.  2015. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH(/Ã) products in the B-band photodissociation of H2O. J. Chem. Phys. 142:124317 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112016
Loading
/content/journals/10.1146/annurev-physchem-040215-112016
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error