Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Khundkar LR, Zewail AH. 1.  1990. Ultrafast molecular reaction dynamics in real-time: progress over a decade. Annu. Rev. Phys. Chem. 41:15–60 [Google Scholar]
  2. Ashcroft NW, Mermin ND. 2.  1976. Solid State Physics. Philadelphia, PA: Saunders [Google Scholar]
  3. Schweigert I, Mukamel S. 3.  2007. Coherent ultrafast core-hole correlation spectroscopy: X-ray analogues of multidimensional NMR. Phys. Rev. Lett. 99:163001 [Google Scholar]
  4. Remacle F, Levine RD. 4.  2007. Probing ultrafast purely electronic charge migration in small peptides. Z. Phys. Chem. 221:647–61 [Google Scholar]
  5. Muskatel BH, Remacle F, Levine RD. 5.  2009. The post-Born-Oppenheimer regime: dynamics of electronic motion in molecules by attosecond few-cycle spectroscopy. Phys. Scr. 80:048101 [Google Scholar]
  6. Goulielmakis E, Loh Z-H, Wirth A, Santra R, Rohringer N. 6.  et al. 2010. Real-time observation of valence electron motion. Nature 466:739–43 [Google Scholar]
  7. Santra R, Yakovlev VS, Pfeifer T, Loh Z-H. 7.  2011. Theory of attosecond transient absorption spectroscopy of strong-field-generated ions. Phys. Rev. A 83:033405 [Google Scholar]
  8. Dutoi AD, Wormit M, Cederbaum LS. 8.  2011. Ultrafast charge separation driven by differential particle and hole mobilities. J. Chem. Phys. 134:024303 [Google Scholar]
  9. Beck AR, Bernhardt B, Warrick ER, Wu M, Chen S. 9.  et al. 2014. Attosecond transient absorption probing of electronic superpositions of bound states in neon: detection quantum beats. New J. Phys. 16:113016 [Google Scholar]
  10. Corkum PB, Krausz F. 10.  2007. Attosecond science. Nat. Phys. 3:381–87 [Google Scholar]
  11. Leone SR, McCurdy CW, Burgdörfer J, Cederbaum LS, Chang Z. 11.  et al. 2014. What will it take to observe processes in “real time”?. Nat. Photonics 8:162–66 [Google Scholar]
  12. Hentschel M, Kienberger R, Spielmann C, Reider GA, Milosevic N. 12.  et al. 2001. Attosecond metrology. Nature 414:509–13 [Google Scholar]
  13. Krause J, Schafer K, Kulander K. 13.  1992. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68:3535–38 [Google Scholar]
  14. Corkum PB. 14.  1993. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71:1994–97 [Google Scholar]
  15. Christov I, Murnane M, Kapteyn HC. 15.  1997. High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 78:1251–54 [Google Scholar]
  16. Rundquist A, Durfee CG III, Chang Z, Herne C, Backus S. 16.  et al. 1998. Phase-matched generation of coherent soft X-rays. Science 280:1412–15 [Google Scholar]
  17. Ghimire S, DiChiara AD, Sistrunk E, DiMauro LF, Agostini P, Reis DA. 17.  2011. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7:138–41 [Google Scholar]
  18. Vampa G, McDonald CR, Orlando G, Klug DD, Corkum PB, Brabec T. 18.  2014. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113:073901 [Google Scholar]
  19. Higuchi T, Stockman MI, Hommelhoff P. 19.  2014. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113:213901 [Google Scholar]
  20. Lewenstein M, Balcou P, Ivanov MY, L’Huillier A, Corkum PB. 20.  1994. Theory of high-harmonic generation of low-frequency laser fields. Phys. Rev. A 49:2117 [Google Scholar]
  21. Colosimo P, Doumy G, Blaga CI, Wheeler J, Hauri C. 21.  et al. 2008. Scaling strong-field interactions towards the classical limit. Nat. Phys. 4:386–89 [Google Scholar]
  22. Doumy G, Wheeler J, Roedig C, Chirla R, Agostini P, DiMauro L. 22.  2009. Attosecond synchronization of high-order harmonics from midinfrared drivers. Phys. Rev. Lett. 102:093002 [Google Scholar]
  23. Schmidt BE, Shiner AD, Giguère M, Lassonde P, Trallero-Herrero CA. 23.  et al. 2012. High harmonic generation with long-wavelength few-cycle laser pulses. J. Phys. B 45:074008 [Google Scholar]
  24. Popmintchev T, Chen M-C, Popmintchev D, Arpin P, Brown S. 24.  et al. 2012. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336:1287–91 [Google Scholar]
  25. Chen M-C, Mancuso C, Hernández-García C, Dollar F, Galloway B. 25.  et al. 2014. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers. PNAS 111:E2361–67 [Google Scholar]
  26. Papadogiannis NA, Witzel B, Kalpouzos C, Charalambidis D. 26.  1999. Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 83:4289–92 [Google Scholar]
  27. Paul PM, Toma ES, Breger P, Mullot G, Auge F. 27.  et al. 2001. Observation of a train of attosecond pulses from high harmonic generation. Science 292:1689–92 [Google Scholar]
  28. López-Martens R, Varjú K, Johnsson P, Mauritsson J, Mairesse Y. 28.  et al. 2005. Amplitude and phase control of attosecond light pulses. Phys. Rev. Lett. 94:033001 [Google Scholar]
  29. Jones DJ. 29.  2000. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288:635–39 [Google Scholar]
  30. Goulielmakis E, Schultze M, Hofstetter M, Yakovlev VS, Gagnon J. 30.  et al. 2008. Single-cycle nonlinear optics. Science 320:1614 [Google Scholar]
  31. Kovačev M, Mairesse Y, Priori E, Merdji H, Tcherbakoff O. 31.  et al. 2003. Temporal confinement of the harmonic emission through polarization gating. Eur. Phys. J. D 26:79–82 [Google Scholar]
  32. Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L. 32.  et al. 2006. Isolated single-cycle attosecond pulses. Science 314:443–46 [Google Scholar]
  33. Chini M, Zhao K, Chang Z. 33.  2014. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photonics 8:178–86 [Google Scholar]
  34. Pfeifer T, Gallmann L, Abel MJ, Neumark DM, Leone SR. 34.  2006. Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field. Opt. Lett. 31:975 [Google Scholar]
  35. Chang Z. 35.  2007. Controlling attosecond pulse generation with a double optical gating. Phys. Rev. A 76:051403 [Google Scholar]
  36. Mashiko H, Gilbertson S, Li C, Khan SD, Shakya MM. 36.  et al. 2008. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100:103906 [Google Scholar]
  37. Feng X, Gilbertson S, Mashiko H, Wang H, Khan SD. 37.  et al. 2009. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103:28–31 [Google Scholar]
  38. Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z. 38.  2012. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett. 37:3891–93 [Google Scholar]
  39. Pfeifer T, Jullien A, Abel MJ, Nagel PM, Gallmann L. 39.  et al. 2007. Generating coherent broadband continuum soft-X-ray radiation by attosecond ionization gating. Opt. Express 15:17120 [Google Scholar]
  40. Abel MJ, Pfeifer T, Nagel PM, Boutu W, Bell MJ. 40.  et al. 2009. Isolated attosecond pulses from ionization gating of high-harmonic emission. Chem. Phys. 366:9–14 [Google Scholar]
  41. Vincenti H, Quéré F. 41.  2012. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett. 108:113904 [Google Scholar]
  42. Pfeiffer AN, Cirelli C, Smolarski M, Dörner R, Keller U. 42.  2011. Timing the release in sequential double ionization. Nat. Phys. 7:428–33 [Google Scholar]
  43. Pfeiffer AN, Cirelli C, Smolarski M, Keller U. 43.  2013. Recent attoclock measurements of strong field ionization. Chem. Phys. 414:84–91 [Google Scholar]
  44. Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A. 44.  et al. 2008. Attosecond angular streaking. Nat. Phys. 4:565–70 [Google Scholar]
  45. Gallmann L, Cirelli C, Keller U. 45.  2012. Attosecond science: recent highlights and future trends. Annu. Rev. Phys. Chem. 63:447–69 [Google Scholar]
  46. Föhlisch A, Feulner P, Hennies F, Fink A, Menzel D. 46.  et al. 2005. Direct observation of electron dynamics in the attosecond domain. Nature 436:373–76 [Google Scholar]
  47. Wang L, Chen W, Wee ATS. 47.  2008. Charge transfer across the molecule/metal interface using the core hole clock technique. Surf. Sci. Rep. 63:465–86 [Google Scholar]
  48. Friedlein R, Braun S, de Jong MP, Osikowicz W, Fahlman M, Salaneck WR. 48.  2011. Ultra-fast charge transfer in organic electronic materials and at hybrid interfaces studied using the core-hole clock technique. J. Electron Spectrosc. Relat. Phenom. 183:101–6 [Google Scholar]
  49. Nabekawa Y, Shimizu T, Okino T, Furusawa K, Hasegawa H. 49.  et al. 2006. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. Phys. Rev. Lett. 97:153904 [Google Scholar]
  50. Remetter T, Johnsson P, Mauritsson J, Varjú K, Ni Y. 50.  et al. 2006. Attosecond electron wave packet interferometry. Nat. Phys. 2:323–26 [Google Scholar]
  51. Johnsson P, Mauritsson J, Remetter T, L’Huillier A, Schafer KJ. 51.  2007. Attosecond control of ionization by wave-packet interference. Phys. Rev. Lett. 99:233001 [Google Scholar]
  52. Holler M, Schapper F, Gallmann L, Keller U. 52.  2011. Attosecond electron wave-packet interference observed by transient absorption. Phys. Rev. Lett. 106:123601 [Google Scholar]
  53. Lucchini M, Herrmann J, Ludwig A, Locher R, Sabbar M. 53.  et al. 2013. Role of electron wavepacket interference in the optical response of helium atoms. New J. Phys. 15:103010 [Google Scholar]
  54. Ott C, Kaldun A, Argenti L, Raith P, Meyer K. 54.  et al. 2014. Reconstruction and control of a time-dependent two-electron wave packet. Nature 516:374–78 [Google Scholar]
  55. Agostini P, DiMauro LF. 55.  2004. The physics of attosecond light pulses. Rep. Prog. Phys. 67:813–55 [Google Scholar]
  56. Kling MF, Vrakking MJJ. 56.  2008. Attosecond electron dynamics. Annu. Rev. Phys. Chem. 59:463–92 [Google Scholar]
  57. Pfeifer T, Abel MJ, Nagel PM, Jullien A, Loh Z-H. 57.  et al. 2008. Time-resolved spectroscopy of attosecond quantum dynamics. Chem. Phys. Lett. 463:11–24 [Google Scholar]
  58. Krausz F, Ivanov M. 58.  2009. Attosecond physics. Rev. Mod. Phys. 81:163–234 [Google Scholar]
  59. Lépine F, Ivanov MY, Vrakking MJJ. 59.  2014. Attosecond molecular dynamics: fact or fiction?. Nat. Photonics 8:195–204 [Google Scholar]
  60. Krausz F, Stockman MI. 60.  2014. Attosecond metrology: from electron capture to future signal processing. Nat. Photonics 8:205–13 [Google Scholar]
  61. Ghimire S, Ndabashimiye G, DiChiara AD, Sistrunk E, Stockman MI. 61.  et al. 2014. Strong-field and attosecond physics in solids. J. Phys. B 47:204030 [Google Scholar]
  62. Kim KT, Villeneuve DM, Corkum PB. 62.  2014. Manipulating quantum paths for novel attosecond measurement methods. Nat. Photonics 8:187–94 [Google Scholar]
  63. Uiberacker M, Uphues T, Schultze M, Verhoef AJ, Yakovlev V. 63.  et al. 2007. Attosecond real-time observation of electron tunnelling in atoms. Nature 446:627–32 [Google Scholar]
  64. Schultze M, Fiess M, Karpowicz N, Gagnon J, Korbman M. 64.  et al. 2010. Delay in photoemission. Science 328:1658–62 [Google Scholar]
  65. Schultze M, Bothschafter EM, Sommer A, Holzner S, Schweinberger W. 65.  et al. 2013. Controlling dielectrics with the electric field of light. Nature 493:75–78 [Google Scholar]
  66. Schultze M, Ramasesha K, Pemmaraju CD, Sato SA, Whitmore D. 66.  et al. 2014. Ultrafast dynamics. Attosecond band-gap dynamics in silicon. Science 346:1348–52 [Google Scholar]
  67. Itatani J, Quéré F, Yudin GL, Ivanov MY, Krausz F, Corkum PB. 67.  2002. Attosecond streak camera. Phys. Rev. Lett. 88:173903 [Google Scholar]
  68. Kienberger R, Goulielmakis E, Uiberacker M, Baltuška A, Yakovlev VS. 68.  et al. 2004. Atomic transient recorder. Nature 427:817–21 [Google Scholar]
  69. Mairesse Y, Quéré F. 69.  2005. Frequency-resolved optical gating for complete reconstruction of attosecond bursts. Phys. Rev. A 71:011401 [Google Scholar]
  70. Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V. 70.  et al. 2002. Time-resolved atomic inner-shell spectroscopy. Nature 419:803–7 [Google Scholar]
  71. Cavalieri AL, Müller N, Uphues T, Yakovlev VS, Baltuška A. 71.  et al. 2007. Attosecond spectroscopy in condensed matter. Nature 449:1029–32 [Google Scholar]
  72. Neppl S, Ernstorfer R, Bothschafter EM, Cavalieri AL, Menzel D. 72.  et al. 2012. Attosecond time-resolved photoemission from core and valence states of magnesium. Phys. Rev. Lett. 109:87401 [Google Scholar]
  73. Kheifets AS, Ivanov IA. 73.  2010. Delay in atomic photoionization. Phys. Rev. Lett. 105:233002 [Google Scholar]
  74. Baggesen JC, Madsen LB. 74.  2010. Polarization effects in attosecond photoelectron spectroscopy. Phys. Rev. Lett. 104:043602 [Google Scholar]
  75. Moore LR, Lysaght MA, Parker JS, van der Hart HW, Taylor KT. 75.  2011. Time delay between photoemission from the 2p and 2s subshells of neon. Phys. Rev. A 84:061404 [Google Scholar]
  76. Nagele S, Pazourek R, Feist J, Doblhoff-Dier K, Lemell C. 76.  et al. 2011. Time-resolved photoemission by attosecond streaking: extraction of time information. J. Phys. B 44:081001 [Google Scholar]
  77. Pazourek R, Feist J, Nagele S, Burgdörfer J. 77.  2012. Attosecond streaking of correlated two-electron transitions in helium. Phys. Rev. Lett. 108:163001 [Google Scholar]
  78. Feist J, Zatsarinny O, Nagele S, Pazourek R, Burgdörfer J. 78.  et al. 2014. Time delays for attosecond streaking in photoionization of neon. Phys. Rev. A 89:033417 [Google Scholar]
  79. Mauritsson J, Remetter T, Swoboda M, Klünder K, L’Huillier A. 79.  et al. 2010. Attosecond electron spectroscopy using a novel interferometric pump-probe technique. Phys. Rev. Lett. 105:053001 [Google Scholar]
  80. Sansone G, Kelkensberg F, Pérez-Torres JF, Morales F, Kling MF. 80.  et al. 2010. Electron localization following attosecond molecular photoionization. Nature 465:763–66 [Google Scholar]
  81. Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S. 81.  et al. 2014. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346:336–39 [Google Scholar]
  82. Beck AR, Neumark DM, Leone SR. 82.  2014. Probing ultrafast dynamics with attosecond transient absorption. Chem. Phys. Lett. 624:119–30 [Google Scholar]
  83. Pollard WT, Mathies RA. 83.  1992. Analysis of femtosecond dynamic absorption spectra of nonstationary states. Annu. Rev. Phys. Chem. 43:497–523 [Google Scholar]
  84. Mukamel S. 84.  1995. Principles of Nonlinear Optical Spectroscopy New York: Oxford Univ. Press [Google Scholar]
  85. Gaarde MB, Buth C, Tate JL, Schafer KJ. 85.  2011. Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium. Phys. Rev. A 83:013419 [Google Scholar]
  86. Chu W-C, Lin CD. 86.  2012. Photoabsorption of attosecond XUV light pulses by two strongly laser-coupled autoionizing states. Phys. Rev. A 85:013409 [Google Scholar]
  87. Pfeiffer AN, Leone SR. 87.  2012. Transmission of an isolated attosecond pulse in a strong-field dressed atom. Phys. Rev. A 85:053422 [Google Scholar]
  88. Pabst S, Sytcheva A, Moulet A, Wirth A, Goulielmakis E, Santra R. 88.  2012. Theory of attosecond transient-absorption spectroscopy of krypton for overlapping pump and probe pulses. Phys. Rev. A 86:063411 [Google Scholar]
  89. Wirth A, Santra R, Goulielmakis E. 89.  2013. Real time tracing of valence-shell electronic coherences with attosecond transient absorption spectroscopy. Chem. Phys. 414:149–59 [Google Scholar]
  90. Chen S, Bell MJ, Beck AR, Mashiko H, Wu M. 90.  et al. 2012. Light-induced states in attosecond transient absorption spectra of laser-dressed helium. Phys. Rev. A 86:063408 [Google Scholar]
  91. Bell MJ, Beck AR, Mashiko H, Neumark DM, Leone SR. 91.  2013. Intensity dependence of light-induced states in transient absorption of laser-dressed helium measured with isolated attosecond pulses. J. Mod. Opt. 60:1506–16 [Google Scholar]
  92. Wu M, Chen S, Gaarde MB, Schafer KJ. 92.  2013. Time-domain perspective on Autler-Townes splitting in attosecond transient absorption of laser-dressed helium atoms. Phys. Rev. A 88:043416 [Google Scholar]
  93. Chen S, Wu M, Gaarde MB, Schafer KJ. 93.  2013. Quantum interference in attosecond transient absorption of laser-dressed helium atoms. Phys. Rev. A 87:033408 [Google Scholar]
  94. Bernhardt B, Beck AR, Li X, Warrick ER, Bell MJ. 94.  et al. 2014. High-spectral-resolution attosecond absorption spectroscopy of autoionization in xenon. Phys. Rev. A 89:023408 [Google Scholar]
  95. Ott C, Kaldun A, Raith P, Meyer K, Laux M. 95.  et al. 2013. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340:716–20 [Google Scholar]
  96. Wang H, Chini M, Chen S, Zhang C-H, He F. 96.  et al. 2010. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105:3–6 [Google Scholar]
  97. Cheng Y, Chini M, Wang X, Wu Y, Chang Z. 97.  2014. Attosecond transient absorption in molecular hydrogen Work. Pap. FM2B.3, CLEO 2014, Tech. Dig., Opt. Soc. Am. [Google Scholar]
  98. Baker S, Robinson JS, Haworth CA, Teng H, Smith RA. 98.  et al. 2006. Probing proton dynamics in molecules on an attosecond time scale. Science 312:424–27 [Google Scholar]
  99. Kling MF, Siedschlag C, Verhoef AJ, Khan JI, Schultze M. 99.  et al. 2006. Control of electron localization in molecular dissociation. Science 312:246–48 [Google Scholar]
  100. Weinkauf R, Schanen P, Yang D, Soukara S, Schlag EW. 100.  1995. Elementary processes in peptides: electron mobility and dissociation in peptide cations in the gas phase. J. Phys. Chem. 99:11255–65 [Google Scholar]
  101. Weinkauf R, Schanen P, Metsala A, Schlag EW, Burgle M, Kessler H. 101.  1996. Highly efficient charge transfer in peptide cations in the gas phase: threshold effects and mechanism. J. Phys. Chem. 100:18567–85 [Google Scholar]
  102. Remacle F, Levine RD, Schlag EW, Weinkauf R. 102.  1999. Electronic control of site selective reactivity: a model combining charge migration and dissociation. J. Phys. Chem. 103:10149–58 [Google Scholar]
  103. Cederbaum LS, Zobeley J. 103.  1999. Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307:205–10 [Google Scholar]
  104. Kuleff AI, Cederbaum LS. 104.  2007. Charge migration in different conformers of glycine: the role of nuclear geometry. Chem. Phys. 338:320–28 [Google Scholar]
  105. Lünnemann S, Kuleff AI, Cederbaum LS. 105.  2008. Ultrafast charge migration in 2-phenylethyl-N,N-dimethylamine. Chem. Phys. Lett. 450:232–35 [Google Scholar]
  106. Kuleff AI, Lünnemann S, Cederbaum LS. 106.  2010. Ultrafast charge migration following valence ionization of 4-methylphenol: jumping over the aromatic ring. J. Phys. Chem. A 114:8676–79 [Google Scholar]
  107. Dutoi AD, Wormit M, Cederbaum LS. 107.  2011. Ultrafast charge separation driven by differential particle and hole mobilities. J. Chem. Phys. 134:024303 [Google Scholar]
  108. Kuleff AI, Lünnemann S, Cederbaum LS. 108.  2012. Ultrafast reorganization of the hole charge created upon outer-valence ionization of porphyrins. Chem. Phys. 399:245–51 [Google Scholar]
  109. Kuleff AI, Lünnemann S, Cederbaum LS. 109.  2013. Electron-correlation-driven charge migration in oligopeptides. Chem. Phys. 414:100–5 [Google Scholar]
  110. Kuleff AI, Cederbaum LS. 110.  2014. Ultrafast correlation-driven electron dynamics. J. Phys. B 47:124002 [Google Scholar]
  111. Dutoi AD, Cederbaum LS. 111.  2014. Time-resolved pump-probe spectroscopy to follow valence electronic motion in molecules: application. Phys. Rev. A 90:023414 [Google Scholar]
  112. Remacle F, Levine RD. 112.  1999. Charge migration and control of site selective reactivity: the role of covalent and ionic states. J. Chem. Phys. 110:5089–99 [Google Scholar]
  113. Remacle F, Levine RD. 113.  2006. An electronic time scale in chemistry. PNAS 103:6793–98 [Google Scholar]
  114. Remacle F, Kienberger R, Krausz F, Levine RD. 114.  2007. On the feasibility of an ultrafast purely electronic reorganization in lithium hydride. Chem. Phys. 338:342–47 [Google Scholar]
  115. Periyasamy G, Levine RD, Remacle F. 115.  2009. Electronic wave packet motion in water dimer cation: a many electron description. Chem. Phys. 366:129–38 [Google Scholar]
  116. Mignolet B, Levine RD, Remacle F. 116.  2014. Charge migration in the bifunctional penna cation induced and probed by ultrafast ionization: a dynamical study. J. Phys. B 47:124011 [Google Scholar]
  117. Lehr L, Horneff T, Weinkauf R, Schlag EW. 117.  2005. Femtosecond dynamics after ionization: 2-phenylethyl-N,N-dimethylamine as a model system for nonresonant downhill charge transfer in peptides. J. Phys. Chem. A 109:8074–80 [Google Scholar]
  118. Kuleff AI, Breidbach J, Cederbaum LS. 118.  2005. Multielectron wave-packet propagation: general theory and application. J. Chem. Phys. 123:044111 [Google Scholar]
  119. Remacle F, Levine RD. 119.  2006. The time scale for electronic reorganization upon sudden ionization of the water and water-methanol hydrogen bonded dimers and of the weakly bound no dimer. J. Chem. Phys. 125:133321 [Google Scholar]
  120. Dutoi AD, Gokhberg K, Cederbaum LS. 120.  2013. Time-resolved pump-probe spectroscopy to follow valence electronic motion in molecules: theory. Phys. Rev. A 88:013419 [Google Scholar]
  121. Magerl E, Neppl S, Cavalieri AL, Bothschafter EM, Stanislawski M. 121.  et al. 2011. A flexible apparatus for attosecond photoelectron spectroscopy of solids and surfaces. Rev. Sci. Instrum. 82:063104 [Google Scholar]
  122. Ossiander M, Riemensberger J, Schäffer M, Gerl M, Schiffrin A. 122.  et al. 2014. Towards the absolute timing of photoemission from condensed matter systems. J. Chem. Phys. 141:144703 [Google Scholar]
  123. Stockman MI, Kling MF, Kleineberg U, Krausz F. 123.  2007. Attosecond nanoplasmonic-field microscope. Nat. Photonics 1:539–44 [Google Scholar]
  124. Skopalová E, Lei DY, Witting T, Arrell C, Frank F. 124.  et al. 2011. Numerical simulation of attosecond nanoplasmonic streaking. New J. Phys. 13:083003 [Google Scholar]
  125. Prell JS, Borja LJ, Neumark DM, Leone SR. 125.  2013. Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles. Ann. Phys. 525:151–61 [Google Scholar]
  126. Lemell C, Solleder B, Tőkési K, Burgdörfer J. 126.  2009. Simulation of attosecond streaking of electrons emitted from a tungsten surface. Phys. Rev. A 79:062901 [Google Scholar]
  127. Zhang C-H, Thumm U. 127.  2009. Attosecond photoelectron spectroscopy of metal surfaces. Phys. Rev. Lett. 102:123601 [Google Scholar]
  128. Kazansky A, Echenique P. 128.  2009. One-electron model for the electronic response of metal surfaces to subfemtosecond photoexcitation. Phys. Rev. Lett. 102:177401 [Google Scholar]
  129. Zhang C-H, Thumm U. 129.  2011. Effect of wave-function localization on the time delay in photoemission from surfaces. Phys. Rev. A 84:065403 [Google Scholar]
  130. Borisov A, Sánchez-Portal D, Kazansky A, Echenique P. 130.  2013. Resonant and nonresonant processes in attosecond streaking from metals. Phys. Rev. B 87:121110 [Google Scholar]
  131. Schiffrin A, Paasch-Colberg T, Karpowicz N, Apalkov V, Gerster D. 131.  et al. 2013. Optical-field-induced current in dielectrics. Nature 493:70–74 [Google Scholar]
  132. Yabana K, Sugiyama T, Shinohara Y, Otobe T, Bertsch GF. 132.  2012. Time-dependent density functional theory for strong electromagnetic fields in crystalline solids. Phys. Rev. B 85:045134 [Google Scholar]
  133. Prendergast D, Galli G. 133.  2006. X-ray absorption spectra of water from first principles calculations. Phys. Rev. Lett. 96:215502 [Google Scholar]
  134. Shinohara Y, Yabana K, Kawashita Y, Iwata J-I, Otobe T, Bertsch GF. 134.  2010. Coherent phonon generation in time-dependent density functional theory. Phys. Rev. B 82:155110 [Google Scholar]
  135. Spielmann C. 135.  2014. Electrons take the fast track through silicon. Science 346:1293–94 [Google Scholar]
  136. Viña L, Cardona M. 136.  1984. Effect of heavy doping on the optical properties and the band structure of silicon. Phys. Rev. B 29:6739–51 [Google Scholar]
  137. Worth GA, Cederbaum LS. 137.  2004. Beyond born-oppenheimer: molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55:127–58 [Google Scholar]
  138. Tinkham M. 138.  1996. Introduction to Superconductivity Mineola, NY: Dover, 2nd ed.. [Google Scholar]
  139. Imada M, Fujimori A, Tokura Y. 139.  1998. Metal-insulator transitions. Rev. Mod. Phys. 70:1039–1263 [Google Scholar]
  140. Pergament A. 140.  2003. Metal-insulator transition: the Mott criterion and coherence length. J. Phys. Condens. Matter 15:3217 [Google Scholar]
  141. Cavalleri A, Rini M, Chong H, Fourmaux S, Glover T. 141.  et al. 2005. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95:067405 [Google Scholar]
  142. Takahashi EJ, Lan P, Mücke OD, Nabekawa Y, Midorikawa K. 142.  2013. Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses. Nat. Commun. 4:2691 [Google Scholar]
  143. Mukamel S, Healion D, Zhang Y, Biggs JD. 143.  2013. Multidimensional attosecond resonant X-ray spectroscopy of molecules: lessons from the optical regime. Annu. Rev. Phys. Chem. 64:101–27 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error