1932

Abstract

Symmetry-adapted perturbation theory (SAPT) provides a unique set of advantages for parameterizing next-generation force fields from first principles. SAPT provides a direct, basis-set superposition error free estimate of molecular interaction energies, a physically intuitive energy decomposition, and a seamless transition to an asymptotic picture of intermolecular interactions. These properties have been exploited throughout the literature to develop next-generation force fields for a variety of applications, including classical molecular dynamics simulations, crystal structure prediction, and quantum dynamics/spectroscopy. This review provides a brief overview of the formalism and theory of SAPT, along with a practical discussion of the various methodologies utilized to parameterize force fields from SAPT calculations. It also highlights a number of applications of SAPT-based force fields for chemical systems of particular interest. Finally, the review ends with a brief outlook on the future opportunities and challenges that remain for next-generation force fields based on SAPT.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040215-112047
2016-05-27
2024-05-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/67/1/annurev-physchem-040215-112047.html?itemId=/content/journals/10.1146/annurev-physchem-040215-112047&mimeType=html&fmt=ahah

Literature Cited

  1. Engkvist O, Åstrand P-O, Karlström G. 1.  2000. Accurate intermolecular potentials obtained from molecular wave functions: bridging the gap between quantum chemistry and molecular simulations. Chem. Rev. 100:4087–108 [Google Scholar]
  2. Gordon MS, Smith QA, Xu P, Slipchenko LV. 2.  2013. Accurate first principles model potentials for intermolecular interactions. Annu. Rev. Phys. Chem. 64:553–78 [Google Scholar]
  3. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD. 3.  et al. 2010. Current status of the amoeba polarizable force field. J. Phys. Chem. B 114:2549–64 [Google Scholar]
  4. Gresh N, Cisneros GA, Darden TA, Piquemal J-P. 4.  2007. Anisotropic, polarizable molecular mechanics studies of inter- and intramolecular interactions and ligand-macromolecule complexes. A bottom-up strategy. J. Chem. Theory Comput. 3:1960–86 [Google Scholar]
  5. Donchev AG, Ozrin VD, Subbotin MV, Tarasov OV, Tarasov VI. 5.  2005. A quantum mechanical polarizable force field for biomolecular interactions. PNAS 102:7829–34 [Google Scholar]
  6. Duke RE, Starovoytov ON, Piquemal J-P, Cisneros GA. 6.  2014. GEM*: a molecular electronic density-based force field for molecular dynamics simulations. J. Chem. Theory Comput. 10:1361–65 [Google Scholar]
  7. Wen S, Nanda K, Huang Y, Beran GJO. 7.  2012. Practical quantum mechanics-based fragment methods for predicting molecular crystal properties. Phys. Chem. Chem. Phys. 14:7578–90 [Google Scholar]
  8. Mitchell JBO, Price SL. 8.  2000. A systematic nonempirical method of deriving model intermolecular potentials for organic molecules: application to amides. J. Phys. Chem. A 104:10958–71 [Google Scholar]
  9. Wheatley RJ, Lillestolen TC. 9.  2007. Calculating intermolecular potentials with simper: the water–nitrogen and water–oxygen interactions, dispersion energy coefficients, and preliminary results for larger molecules. Int. Rev. Phys. Chem. 26:449–85 [Google Scholar]
  10. Oakley MT, Do H, Hirst JD, Wheatley RJ. 10.  2011. First principles predictions of thermophysical properties of refrigerant mixtures. J. Chem. Phys. 134:114518 [Google Scholar]
  11. Jeziorski B, Moszynski R, Szalewicz K. 11.  1994. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev. 94:1887–930 [Google Scholar]
  12. Szalewicz K, Patkowski K, Jeziorski B. 12.  2005. Intermolecular interactions via perturbation theory: from diatoms to biomolecules. Intermolecular Forces and Clusters II DJ Wales 43–117 Berlin: Springer-VerlagThis reference presents a comprehensive overview of the theoretical framework of SAPT. [Google Scholar]
  13. Szalewicz K. 13.  2012. Symmetry-adapted perturbation theory of intermolecular forces. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2:254–72 [Google Scholar]
  14. Patkowski K, Szalewicz K, Jeziorski B. 14.  2006. Third-order interactions in symmetry-adapted perturbation theory. J. Chem. Phys. 125:154107 [Google Scholar]
  15. Parker TM, Burns LA, Parrish RM, Ryno AG, Sherrill CD. 15.  2014. Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. J. Chem. Phys. 140:094106This reference provides a thorough benchmarking study on the accuracy of different SAPT approaches. [Google Scholar]
  16. Lotrich VF, Szalewicz K. 16.  1997. Symmetry-adapted perturbation theory of three-body nonadditivity in Ar trimer. J. Chem. Phys. 106:9688–702 [Google Scholar]
  17. Misquitta AJ, Stone AJ. 17.  2008. Accurate induction energies for small organic molecules: 1. Theory. J. Chem. Theory Comput. 4:7–18 [Google Scholar]
  18. Misquitta AJ, Stone AJ. 18.  2008. Dispersion energies for small organic molecules: first row atoms. Mol. Phys. 106:1631–43 [Google Scholar]
  19. Hesselmann A, Jansen G. 19.  2002. Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn-Sham density functional theory. Chem. Phys. Lett. 362:319–25 [Google Scholar]
  20. Hesselmann A, Jansen G. 20.  2002. First-order intermolecular interaction energies from Kohn-Sham orbitals. Chem. Phys. Lett. 357:464–70 [Google Scholar]
  21. Hesselmann A, Jansen G. 21.  2003. Intermolecular dispersion energies from time-dependent density functional theory. Chem. Phys. Lett. 367:778–84 [Google Scholar]
  22. Hesselmann A, Jansen G. 22.  2003. The helium dimer potential from a combined density functional theory and symmetry-adapted perturbation theory approach using an exact exchange-correlation potential. Phys. Chem. Chem. Phys. 5:5010–14 [Google Scholar]
  23. Hesselmann A, Jansen G, Schutz M. 23.  2005. Density-functional theory-symmetry-adapted intermolecular perturbation theory with density fitting: a new efficient method to study intermolecular interaction energies. J. Chem. Phys. 122:14103–19 [Google Scholar]
  24. Williams HL, Chabalowski CF. 24.  2001. Using Kohn-Sham orbitals in symmetry-adapted perturbation theory to investigate intermolecular interactions. J. Phys. Chem. A 105:646–59 [Google Scholar]
  25. Misquitta AJ, Szalewicz K. 25.  2002. Intermolecular forces from asymptotically corrected density functional description of monomers. Chem. Phys. Lett. 357:301–6 [Google Scholar]
  26. Misquitta AJ, Jeziorski B, Szalewicz K. 26.  2003. Dispersion energy from density-functional theory description of monomers. Phys. Rev. Lett. 91:33201–4 [Google Scholar]
  27. Misquitta AJ, Podeszwa R, Jeziorski B, Szalewicz K. 27.  2005. Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. J. Chem. Phys. 123:214103 [Google Scholar]
  28. Misquitta AJ, Szalewicz K. 28.  2005. Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. J. Chem. Phys. 122:214109 [Google Scholar]
  29. Stone AJ. 29.  1996. The Theory of Intermolecular Forces Oxford: ClarendonThis reference presents a pedagogical formalism of the theory of intermolecular interactions.
  30. Stone AJ, Misquitta AJ. 30.  2007. Atom-atom potentials from ab initio calculations. Int. Rev. Phys. Chem. 26:193–222This reference reviews the methodology for developing force fields based on SAPT and monomer properties. [Google Scholar]
  31. Li X, Volkov AV, Szalewicz K, Coppens P. 31.  2006. Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X-ray crystallography: application of a theoretical databank of aspherical atoms and a symmetry-adapted perturbation theory-based set of interatomic potentials. Acta Crystallogr. D 62:639–47 [Google Scholar]
  32. Murdachaew G, Szalewicz K, Bukowski R. 32.  2002. Efficient generation of flexible-monomer intermolecular potential energy surfaces. Phys. Rev. Lett. 88:123202 [Google Scholar]
  33. Torheyden M, Jansen G. 33.  2006. A new potential energy surface for the water dimer obtained from separate fits of ab initio electrostatic, induction, dispersion and exchange energy contributions. Mol. Phys. 104:2101–38 [Google Scholar]
  34. Stone AJ, Alderton M. 34.  1985. Distributed multipole analysis: methods and applications. Mol. Phys. 56:1047–64 [Google Scholar]
  35. Stone AJ. 35.  2005. Distributed multipole analysis: stability for large basis sets. J. Chem. Theory Comput. 1:1128–32 [Google Scholar]
  36. Millot C, Stone AJ. 36.  1992. Towards an accurate intermolecular potential for water. Mol. Phys. 77:439–62 [Google Scholar]
  37. Misquitta AJ, Welch GWA, Stone AJ, Price SL. 37.  2008. A first principles prediction of the crystal structure of C6Br2ClFH2. Chem. Phys. Lett. 456:105–9 [Google Scholar]
  38. Day GM, Price SL. 38.  2003. A nonempirical anisotropic atom–atom model potential for chlorobenzene crystals. J. Am. Chem. Soc. 125:16434–43 [Google Scholar]
  39. Totton TS, Misquitta AJ, Kraft M. 39.  2011. Assessing the polycyclic aromatic hydrocarbon anisotropic potential with application to the exfoliation energy of graphite. J. Phys. Chem. A 115:13684–93 [Google Scholar]
  40. Mitchell JBO, Price SL. 40.  1990. The nature of the N–H…O=C hydrogen bond: an intermolecular perturbation theory study of the formamide/formaldehyde complex. J. Comput. Chem. 11:1217–33 [Google Scholar]
  41. Wheatley RJ, Price SL. 41.  1990. A systematic intermolecular potential method applied to chlorine. Mol. Phys. 71:1381–404 [Google Scholar]
  42. Hodges MP, Stone AJ, Cabaleiro Lago E. 42.  1998. Analytical potentials for HF dimer and larger HF clusters from ab initio calculations. J. Phys. Chem. A 102:2455–65 [Google Scholar]
  43. Bukowski R, Sadlej J, Jeziorski B, Jankowski P, Szalewicz K. 43.  1999. Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory. J. Chem. Phys. 110:3785–803 [Google Scholar]
  44. Bukowski R, Szalewicz K, Chabalowski CF. 44.  1999. Ab initio interaction potentials for simulations of dimethylnitramine solutions in supercritical carbon dioxide with cosolvents. J. Phys. Chem. A 103:7322–40 [Google Scholar]
  45. Akin-Ojo O, Szalewicz K. 45.  2005. Potential energy surface and second virial coefficient of methane-water from ab initio calculations. J. Chem. Phys. 123:134311 [Google Scholar]
  46. Podeszwa R, Bukowski R, Szalewicz K. 46.  2006. Potential energy surface for the benzene dimer and perturbational analysis of π-π interactions. J. Phys. Chem. A 110:10345–54 [Google Scholar]
  47. Ferenczy GG. 47.  1991. Charges derived from distributed multipole series. J. Comput. Chem. 12:913–17 [Google Scholar]
  48. Chipot C, Angyan JG, Ferenczy GG, Scheraga HA. 48.  1993. Transferable net atomic charges from a distributed multipole analysis for the description of electrostatic properties: a case study of saturated hydrocarbons. J. Phys. Chem. 97:6628–36 [Google Scholar]
  49. Totton TS, Misquitta AJ, Kraft M. 49.  2011. A transferable electrostatic model for intermolecular interactions between polycyclic aromatic hydrocarbons. Chem. Phys. Lett. 510:154–60 [Google Scholar]
  50. McDaniel JG, Schmidt JR. 50.  2013. Physically-motivated force fields from symmetry-adapted perturbation theory. J. Phys. Chem. A 117:2053–66 [Google Scholar]
  51. Taylor DE, Rob F, Rice BM, Podeszwa R, Szalewicz K. 51.  2011. A molecular dynamics study of 1,1-diamino-2,2-dinitroethylene (FOX-7) crystal using a symmetry adapted perturbation theory-based intermolecular force field. Phys. Chem. Chem. Phys. 13:16629–36 [Google Scholar]
  52. Podeszwa R, Rice BM, Szalewicz K. 52.  2009. Crystal structure prediction for cyclotrimethylene trinitramine (RDX) from first principles. Phys. Chem. Chem. Phys. 11:5512–18 [Google Scholar]
  53. Choi E, McDaniel JG, Schmidt JR, Yethiraj A. 53.  2014. First-principles, physically motivated force field for the ionic liquid [BMIM][BF4]. J. Phys. Chem. Lett. 5:2670–74 [Google Scholar]
  54. Totton TS, Misquitta AJ, Kraft M. 54.  2012. A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. Phys. Chem. Chem. Phys. 14:4081–94 [Google Scholar]
  55. Bukowski R, Szalewicz K, Groenenboom G, van der Avoird A. 55.  2006. Interaction potential for water dimer from symmetry-adapted perturbation theory based on density functional description of monomers. J. Chem. Phys. 125:044301 [Google Scholar]
  56. Groenenboom GC, Mas EM, Bukowski R, Szalewicz K, Wormer PES, van der Avoird A. 56.  2000. Water pair and three-body potential of spectroscopic quality from ab initio calculations. Phys. Rev. Lett. 84:4072–75 [Google Scholar]
  57. Mas EM, Bukowski R, Szalewicz K, Groenenboom GC, Wormer PES, van der Avoird A. 57.  2000. Water pair potential of near spectroscopic accuracy. I. Analysis of potential surface and virial coefficients. J. Chem. Phys. 113:6687–701 [Google Scholar]
  58. Wang F-F, Kumar R, Jordan K. 58.  2012. A distributed point polarizable force field for carbon dioxide. Theor. Chem. Acc. 131:1132 [Google Scholar]
  59. Mas EM, Szalewicz K, Bukowski R, Jeziorski B. 59.  1997. Pair potential for water from symmetry-adapted perturbation theory. J. Chem. Phys. 107:4207–18 [Google Scholar]
  60. Heijmen TGA, Korona T, Moszynski R, Wormer PES, van der Avoird A. 60.  1997. Ab initio potential-energy surface and rotationally inelastic integral cross sections of the Ar-CH4 complex. J. Chem. Phys. 107:902–13 [Google Scholar]
  61. Jankowski P, Szalewicz K. 61.  1998. Ab initio potential energy surface and infrared spectra of H2-CO and D2-CO van der Waals complexes. J. Chem. Phys. 108:3554–65 [Google Scholar]
  62. Jankowski P, Tsang SN, Klemperer W, Szalewicz K. 62.  2001. Spectra of N2-HF from symmetry-adapted perturbation theory potential. J. Chem. Phys. 114:8948–63 [Google Scholar]
  63. Lotrich VF, Williams HL, Szalewicz K, Jeziorski B, Moszynski R. 63.  et al. 1995. Intermolecular potential and rovibrational levels of Ar-HF from symmetry-adapted perturbation theory. J. Chem. Phys. 103:6076–92 [Google Scholar]
  64. Millot C, Soetens J-C, Martins Costa MTC, Hodges MP, Stone AJ. 64.  1998. Revised anisotropic site potentials for the water dimer and calculated properties. J. Phys. Chem. A 102:754–70 [Google Scholar]
  65. Misquitta AJ, Bukowski R, Szalewicz K. 65.  2000. Spectra of Ar-CO2 from ab initio potential energy surfaces. J. Chem. Phys. 112:5308–19 [Google Scholar]
  66. Rijks W, Wormer PES. 66.  1989. Correlated van der Waals coefficients. II. Dimers consisting of CO, HF, H2O, and NH3. J. Chem. Phys. 90:6507–19 [Google Scholar]
  67. Le Sueur CR, Stone AJ. 67.  1993. Practical schemes for distributed polarizabilities. Mol. Phys. 78:1267–91 [Google Scholar]
  68. Ángyán JG, Jansen G, Loss M, Hättig C, Heß BA. 68.  1994. Distributed polarizabilities using the topological theory of atoms in molecules. Chem. Phys. Lett. 219:267–73 [Google Scholar]
  69. Garmer DR, Stevens WJ. 69.  1989. Transferability of molecular distributed polarizabilities from a simple localized orbital based method. J. Phys. Chem. 93:8263–70 [Google Scholar]
  70. Misquitta AJ, Stone AJ. 70.  2006. Distributed polarizabilities obtained using a constrained density-fitting algorithm. J. Chem. Phys. 124:024111 [Google Scholar]
  71. Rob F, Szalewicz K. 71.  2013. Asymptotic dispersion energies from distributed polarizabilities. Chem. Phys. Lett. 572:146–49 [Google Scholar]
  72. Lillestolen TC, Wheatley RJ. 72.  2007. First-principles calculation of local atomic polarizabilities. J. Phys. Chem. A 111:11141–46 [Google Scholar]
  73. Le Sueur CR, Stone AJ. 73.  1994. Localization methods for distributed polarizabilities. Mol. Phys. 83:293–307 [Google Scholar]
  74. Williams GJ, Stone AJ. 74.  2003. Distributed dispersion: a new approach. J. Chem. Phys. 119:4620–28 [Google Scholar]
  75. Kumar R, Wang F-F, Jenness GR, Jordan KD. 75.  2010. A second generation distributed point polarizable water model. J. Chem. Phys. 132:014309 [Google Scholar]
  76. Totton TS, Misquitta AJ, Kraft M. 76.  2010. A first principles development of a general anisotropic potential for polycyclic aromatic hydrocarbons. J. Chem. Theory Comput. 6:683–95 [Google Scholar]
  77. Misquitta AJ. 77.  2013. Charge transfer from regularized symmetry-adapted perturbation theory. J. Chem. Theory Comput. 9:5313–26 [Google Scholar]
  78. Jeziorska M, Jankowski P, Szalewicz K, Jeziorski B. 78.  2000. On the optimal choice of monomer geometry in calculations of intermolecular interaction energies: rovibrational spectrum of Ar-HF from two- and three-dimensional potentials. J. Chem. Phys. 113:2957–68 [Google Scholar]
  79. Jankowski P, Murdachaew G, Bukowski R, Akin-Ojo O, Leforestier C, Szalewicz K. 79.  2015. Ab initio water pair potential with flexible monomers. J. Phys. Chem. A 119:2940–64 [Google Scholar]
  80. Murdachaew G, Szalewicz K. 80.  2001. Intermolecular potentials with flexible monomers. Faraday Discuss. 118:121–42 [Google Scholar]
  81. Bukowski R, Szalewicz K. 81.  2001. Complete ab initio three-body nonadditive potential in Monte Carlo simulations of vapor-liquid equilibria and pure phases of argon. J. Chem. Phys. 114:9518–31 [Google Scholar]
  82. Lotrich VF, Szalewicz K. 82.  1997. Three-body contribution to binding energy of solid argon and analysis of crystal structure. Phys. Rev. Lett. 79:1301–4 [Google Scholar]
  83. McDaniel JG, Schmidt JR. 83.  2014. First-principles many-body force fields from the gas phase to liquid: a “universal” approach. J. Phys. Chem. B 118:8042–53 [Google Scholar]
  84. Yu K, Schmidt JR. 84.  2012. Many-body effects are essential in a physically motivated CO2 force field. J. Chem. Phys. 136:34503–9 [Google Scholar]
  85. Cencek W, Jeziorska M, Akin-Ojo O, Szalewicz K. 85.  2007. Three-body contribution to the helium interaction potential. J. Phys. Chem. A 111:11311–19 [Google Scholar]
  86. Szalewicz K. 86.  2008. Interplay between theory and experiment in investigations of molecules embedded in superfluid helium nanodroplets. Int. Rev. Phys. Chem. 27:273–316This reference reviews helium nanodroplet spectroscopy, discussing the theoretical predictions of many SAPT-based potentials. [Google Scholar]
  87. Jeziorska M, Cencek W, Patkowski K, Jeziorski B, Szalewicz K. 87.  2007. Pair potential for helium from symmetry-adapted perturbation theory calculations and from supermolecular data. J. Chem. Phys. 127:124303 [Google Scholar]
  88. Korona T, Williams HL, Bukowski R, Jeziorski B, Szalewicz K. 88.  1997. Helium dimer potential from symmetry-adapted perturbation theory calculations using large Gaussian geminal and orbital basis sets. J. Chem. Phys. 106:5109–22 [Google Scholar]
  89. Williams HL, Korona T, Bukowski R, Jeziorski B, Szalewicz K. 89.  1996. Helium dimer potential from symmetry-adapted perturbation theory. Chem. Phys. Lett. 262:431–36 [Google Scholar]
  90. Aziz RA. 90.  1993. A highly accurate interatomic potential for argon. J. Chem. Phys. 99:4518–25 [Google Scholar]
  91. Mas EM, Lotrich VF, Szalewicz K. 91.  1999. Third virial coefficient of argon. J. Chem. Phys. 110:6694–701 [Google Scholar]
  92. Groenenboom GC, Wormer PES, van der Avoird A, Mas EM, Bukowski R, Szalewicz K. 92.  2000. Water pair potential of near spectroscopic accuracy. II. Vibration-rotation-tunneling levels of the water dimer. J. Chem. Phys. 113:6702–15 [Google Scholar]
  93. Mas EM, Bukowski R, Szalewicz K. 93.  2003. Ab initio three-body interactions for water. I. Potential and structure of water trimer. J. Chem. Phys. 118:4386–403 [Google Scholar]
  94. Mas EM, Bukowski R, Szalewicz K. 94.  2003. Ab initio three-body interactions for water. II. Effects on structure and energetics of liquid. J. Chem. Phys. 118:4404–13 [Google Scholar]
  95. Bukowski R, Szalewicz K, Groenenboom GC, van der Avoird A. 95.  2007. Predictions of the properties of water from first principles. Science 315:1249–52 [Google Scholar]
  96. Cencek W, Szalewicz K, Leforestier C, van Harrevelt R, van der Avoird A. 96.  2008. An accurate analytic representation of the water pair potential. Phys. Chem. Chem. Phys. 10:4716–31 [Google Scholar]
  97. Yu K, McDaniel JG, Schmidt JR. 97.  2011. Physically motivated, robust, ab initio force fields for CO2 and N2. J. Phys. Chem. B 115:10054–63 [Google Scholar]
  98. Hloucha M, Sum AK, Sandler SI. 98.  2000. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials. J. Chem. Phys. 113:5401–6 [Google Scholar]
  99. Sum AK, Sandler SI, Bukowski R, Szalewicz K. 99.  2002. Prediction of the phase behavior of acetonitrile and methanol with ab initio pair potentials. I. Pure components. J. Chem. Phys. 116:7627–36 [Google Scholar]
  100. Sum AK, Sandler SI, Bukowski R, Szalewicz K. 100.  2002. Prediction of the phase behavior of acetonitrile and methanol with ab initio pair potentials. II. The mixture. J. Chem. Phys. 116:7637–44 [Google Scholar]
  101. Sum AK, Sandler SI. 101.  2002. Ab initio pair potential and phase equilibria predictions for the refrigerant methyl fluoride. Mol. Phys. 100:2433–47 [Google Scholar]
  102. Sum AK, Sandler SI, Naicker PK. 102.  2002. Ab initio pair potentials and phase equilibria predictions of halogenated compounds. Fluid Phase Equilib. 199:5–13 [Google Scholar]
  103. Naicker PK, Sum AK, Sandler SI. 103.  2003. Ab initio pair potential and phase equilibria predictions for hydrogen chloride. J. Chem. Phys. 118:4086–93 [Google Scholar]
  104. Podeszwa R, Bukowski R, Rice BM, Szalewicz K. 104.  2007. Potential energy surface for cyclotrimethylene trinitramine dimer from symmetry-adapted perturbation theory. Phys. Chem. Chem. Phys. 9:5561–69 [Google Scholar]
  105. Podeszwa R, Rice BM, Szalewicz K. 105.  2008. Predicting structure of molecular crystals from first principles. Phys. Rev. Lett. 101:115503 [Google Scholar]
  106. Szalewicz K. 106.  2014. Determination of structure and properties of molecular crystals from first principles. Acc. Chem. Res. 47:3266–74 [Google Scholar]
  107. McDaniel JG, Yu K, Schmidt JR. 107.  2011. Ab initio, physically motivated force fields for CO2 adsorption in zeolitic imidazolate frameworks. J. Phys. Chem. C 116:1892–903 [Google Scholar]
  108. McDaniel JG, Schmidt JR. 108.  2012. Robust, transferable, and physically-motivated force fields for gas adsorption in functionalized zeolitic imidazolate frameworks. J. Phys. Chem. C 116:14031–39 [Google Scholar]
  109. McDaniel JG, Yu K, Schmidt JR. 109.  2013. Microscopic origins of enhanced gas adsorption and selectivity in mixed-linker metal-organic frameworks. J. Phys. Chem. C 117:17131–42 [Google Scholar]
  110. McDaniel JG, Li S, Tylianakis E, Snurr RQ, Schmidt JR. 110.  2015. Evaluation of force field performance for high-throughput screening of gas uptake in metal-organic frameworks. J. Phys. Chem. C 119:3143–52 [Google Scholar]
  111. Parrish RM, Sherrill CD. 111.  2014. Spatial assignment of symmetry adapted perturbation theory interaction energy components: the atomic SAPT partition. J. Chem. Phys 141:044115 [Google Scholar]
  112. Parrish RM, Parker TM, Sherrill CD. 112.  2014. Chemical assignment of symmetry-adapted perturbation theory interaction energy components: the functional-group SAPT partition. J. Chem. Theory Comput. 10:4417–31 [Google Scholar]
/content/journals/10.1146/annurev-physchem-040215-112047
Loading
/content/journals/10.1146/annurev-physchem-040215-112047
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error