Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron–hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor–acceptor interaction and ET properties can be described by the Newns–Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Kamat PV, Tvrdy K, Baker DR, Radich JG. 1.  2010. Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 110:6664–88 [Google Scholar]
  2. Sargent EH. 2.  2012. Colloidal quantum dot solar cells. Nat. Photonics 6:133–35 [Google Scholar]
  3. Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J. 3.  et al. 2006. Ultrasensitive solution-cast quantum dot photodetectors. Nature 442:180–83 [Google Scholar]
  4. Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M. 4.  et al. 2012. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7:363–68 [Google Scholar]
  5. Sun LF, Choi JJ, Stachnik D, Bartnik AC, Hyun BR. 5.  et al. 2012. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat. Nanotechnol. 7:369–73 [Google Scholar]
  6. Dai X, Zhang Z, Jin Y, Niu Y, Cao H. 6.  et al. 2014. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515:96–99 [Google Scholar]
  7. Han Z, Qiu F, Eisenberg R, Holland PL, Krauss TD. 7.  2012. Robust photogeneration of H2 in water using semiconductor nanocrystals and a nickel catalyst. Science 338:1321–24 [Google Scholar]
  8. Brown KA, Dayal S, Ai X, Rumbles G, King PW. 8.  2010. Controlled assembly of hydrogenase–CdTe nanocrystal hybrids for solar hydrogen production. J. Am. Chem. Soc. 132:9672–80 [Google Scholar]
  9. Wilker MB, Schnitzenbaumer KJ, Dukovic G. 9.  2012. Recent progress in photocatalysis mediated by colloidal II–VI nanocrystals. Isr. J. Chem. 52:1002–15 [Google Scholar]
  10. Knowles KE, Peterson MD, McPhail MR, Weiss EA. 10.  2013. Exciton dissociation within quantum dot–organic complexes: mechanisms, use as a probe of interfacial structure, and applications. J. Phys. Chem. C 117:10229–43 [Google Scholar]
  11. Zhu H, Lian T. 11.  2012. Wavefunction engineering in quantum confined semiconductor nanoheterostructures for efficient charge separation and solar energy conversion. Energy Environ. Sci. 5:9406–18 [Google Scholar]
  12. Wu K, Zhu H, Lian T. 12.  2015. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Acc. Chem. Res. 48:851–59 [Google Scholar]
  13. Wu K, Li Q, Du Y, Chen Z, Lian T. 13.  2015. Ultrafast exciton quenching by energy and electron transfer in colloidal CdSe nanosheet–Pt heterostructures. Chem. Sci. 6:1049–54 [Google Scholar]
  14. Steigerwald ML, Brus LE. 14.  1989. Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters. Annu. Rev. Mater. Sci. 19:471–95 [Google Scholar]
  15. Bawendi MG, Steigerwald ML, Brus LE. 15.  1990. The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41:477–96 [Google Scholar]
  16. Steigerwald ML, Brus LE. 16.  1990. Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 23:183–88 [Google Scholar]
  17. Brus LE. 17.  1984. Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80:4403–9 [Google Scholar]
  18. Brus L. 18.  2014. Size, dimensionality, and strong electron correlation in nanoscience. Acc. Chem. Res. 47:2951–59 [Google Scholar]
  19. Kambhampati P. 19.  2011. Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Acc. Chem. Res. 44:1–13 [Google Scholar]
  20. Efros AL, Kharchenko VA, Rosen M. 20.  1995. Breaking the phonon bottleneck in nanometer quantum dots: role of Auger-like processes. Solid State Commun. 93:281–84 [Google Scholar]
  21. Klimov VI, McBranch DW. 21.  1998. Femtosecond 1P-to-1S electron relaxation in strongly confined semiconductor nanocrystals. Phys. Rev. Lett. 80:4028–31 [Google Scholar]
  22. McArthur EA, Morris-Cohen AJ, Knowles KE, Weiss EA. 22.  2010. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy. J. Phys. Chem. B 114:14514–20 [Google Scholar]
  23. Knowles KE, McArthur EA, Weiss EA. 23.  2011. A multi-timescale map of radiative and nonradiative decay pathways for excitons in CdSe quantum dots. ACS Nano 5:2026–35 [Google Scholar]
  24. Sagar DM, Cooney RR, Sewall SL, Kambhampati P. 24.  2008. State-resolved exciton–phonon couplings in CdSe semiconductor quantum dots. J. Phys. Chem. C 112:9124–27 [Google Scholar]
  25. Salvador MR, Graham MW, Scholes GD. 25.  2006. Exciton–phonon coupling and disorder in the excited states of CdSe colloidal quantum dots. J. Chem. Phys. 125:184709 [Google Scholar]
  26. Klimov VI, Mikhailovsky AA, McBranch DW, Leatherdale CA, Bawendi MG. 26.  2000. Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 287:1011–13 [Google Scholar]
  27. Klimov VI. 27.  2007. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 58:635–73 [Google Scholar]
  28. Beard MC, Luther JM, Semonin OE, Nozik AJ. 28.  2013. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc. Chem. Res. 46:1252–60 [Google Scholar]
  29. Shabaev A, Hellberg CS, Efros AL. 29.  2013. Efficiency of multiexciton generation in colloidal nanostructures. Acc. Chem. Res. 46:1242–51 [Google Scholar]
  30. Klimov VI. 30.  2014. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication. Annu. Rev. Condens. Matter Phys. 5:285–316 [Google Scholar]
  31. Rossetti R, Beck SM, Brus LE. 31.  1984. Direct observation of charge-transfer reactions across semiconductor:aqueous solution interfaces using transient Raman spectroscopy. J. Am. Chem. Soc. 106:980–84 [Google Scholar]
  32. Rossetti R, Brus LE. 32.  1986. Picosecond resonance Raman scattering study of methylviologen reduction on the surface of photoexcited colloidal CdS crystallites. J. Phys. Chem. 90:558–60 [Google Scholar]
  33. Ramsden JJ, Gratzel M. 33.  1986. Formation and decay of methylviologen radical cation dimers on the surface of colloidal CdS: separation of two- and three-dimensional relaxation. Chem. Phys. Lett. 132:269–272 [Google Scholar]
  34. Logunov S, Green T, Marguet S, El-Sayed MA. 34.  1998. Interfacial carriers dynamics of CdS nanoparticles. J. Phys. Chem. A 102:5652–58 [Google Scholar]
  35. Burda C, Green TC, Link S, El-Sayed MA. 35.  1999. Electron shuttling across the interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy. J. Phys. Chem. B 103:1783–88 [Google Scholar]
  36. Kamat PV, Dimitrijevic NM, Fessenden RW. 36.  1987. Photoelectrochemistry in particulate systems. 6. Electron-transfer reactions of small CdS colloids in acetonitrile. J. Phys. Chem. 91:396–401 [Google Scholar]
  37. Sharma SN, Pillai ZS, Kamat PV. 37.  2003. Photoinduced charge transfer between CdSe quantum dots and p-phenylenediamine. J. Phys. Chem. B 107:10088–93 [Google Scholar]
  38. Landes CF, Burda C, Braun M, El-Sayed Mostafa A. 38.  2001. Photoluminescence of CdSe nanoparticles in the presence of a hole acceptor: n-butylamine. J. Phys. Chem. B 105:2981–86 [Google Scholar]
  39. Landes CF, Braun M, El-Sayed MA. 39.  2001. On the nanoparticle to molecular size transition: fluorescence quenching studies. J. Phys. Chem. B 105:10554–58 [Google Scholar]
  40. Sykora M, Petruska MA, Alstrum-Acevedo J, Bezel I, Meyer TJ, Klimov VI. 40.  2006. Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru–polypyridine complexes. J. Am. Chem. Soc. 128:9984–85 [Google Scholar]
  41. Vogel R, Hoyer P, Weller H. 41.  1994. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98:3183–88 [Google Scholar]
  42. Blackburn JL, Selmarten DC, Nozik AJ. 42.  2003. Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition. J. Phys. Chem. B 107:14154–57 [Google Scholar]
  43. Robel I, Kuno M, Kamat PV. 43.  2007. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 129:4136–37 [Google Scholar]
  44. Robel I, Subramanian V, Kuno M, Kamat PV. 44.  2006. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 128:2385–93 [Google Scholar]
  45. Spanhel L, Weller H, Henglein A. 45.  1987. Photochemistry of semiconductor colloids. 22. Electron injection from illuminated CdS into attached TiO2 and ZnO particles. J. Am. Chem. Soc. 109:6632–35 [Google Scholar]
  46. Blackburn JL, Selmarten DC, Ellingson RJ, Jones M, Micic O, Nozik AJ. 46.  2005. Electron and hole transfer from indium phosphide quantum dots. J. Phys. Chem. B 109:2625–31 [Google Scholar]
  47. Boulesbaa A, Issac A, Stockwell D, Huang Z, Huang J. 47.  et al. 2007. Ultrafast charge separation at CdS quantum dot/rhodamine B molecule interface. J. Am. Chem. Soc. 129:15132–33 [Google Scholar]
  48. Huang J, Stockwell D, Huang Z, Mohler DL, Lian T. 48.  2008. Photoinduced ultrafast electron transfer from CdSe quantum dots to Re–bipyridyl complexes. J. Am. Chem. Soc. 130:5632–33 [Google Scholar]
  49. Brus LE. 49.  1983. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 79:5566–71 [Google Scholar]
  50. Henglein A. 50.  1989. Small-particle research: physicochemical properties of extremely small collodial metal and semiconductor particles. Chem. Rev. 89:1861–73 [Google Scholar]
  51. Kamat PV. 51.  1993. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 93:267–300 [Google Scholar]
  52. Kamat PV. 52.  1994. Interfacial charge transfer processes in colloidal semiconductor systems. Prog. React. Kinet. 19:277–316 [Google Scholar]
  53. Gratzel M. 53.  1983. Energy Resources Through Photochemistry and Catalysis New York: Academic [Google Scholar]
  54. El-Sayed MA. 54.  2004. Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 37:326–33 [Google Scholar]
  55. Adams DM, Brus L, Chidsey CED, Creager S, Creutz C. 55.  et al. 2003. Charge transfer on the nanoscale: current status. J. Phys. Chem. B 107:6668–97 [Google Scholar]
  56. Kamat PV. 56.  2007. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111:2834–60 [Google Scholar]
  57. Tisdale WA, Williams KJ, Timp BA, Norris DJ, Aydil ES, Zhu X-Y. 57.  2010. Hot-electron transfer from semiconductor nanocrystals. Science 328:1543–47 [Google Scholar]
  58. Zhu H, Yang Y, Lian T. 58.  2013. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals. Acc. Chem. Res. 46:1270–79 [Google Scholar]
  59. Yang Y, Rodríguez-Córdoba W, Lian T. 59.  2012. Multiple exciton generation and dissociation in PbS quantum dot–electron acceptor complexes. Nano Lett. 12:4235–41 [Google Scholar]
  60. Jin S, Lian T. 60.  2009. Electron transfer dynamics from single CdSe/ZnS quantum dots to TiO2 nanoparticles. Nano Lett. 9:2448–54 [Google Scholar]
  61. Hyun BR, Bartnik AC, Lee JK, Imoto H, Sun L. 61.  et al. 2010. Role of solvent dielectric properties on charge transfer from PbS nanocrystals to molecules. Nano Lett. 10:318–23 [Google Scholar]
  62. Ding TX, Olshansky JH, Leone SR, Alivisatos AP. 62.  2015. Efficiency of hole transfer from photoexcited quantum dots to covalently linked molecular species. J. Am. Chem. Soc. 137:2021–29 [Google Scholar]
  63. Tvrdy K, Frantsuzov PA, Kamat PV. 63.  2011. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. PNAS 108:29–34 [Google Scholar]
  64. Yang Y, Rodríguez-Córdoba W, Lian T. 64.  2011. Ultrafast charge separation and recombination dynamics in lead sulfide quantum dot–methylene blue complexes probed by electron and hole intraband transitions. J. Am. Chem. Soc. 133:9246–49 [Google Scholar]
  65. Morris-Cohen AJ, Peterson MD, Frederick MT, Kamm JM, Weiss EA. 65.  2012. Evidence for a through-space pathway for electron transfer from quantum dots to carboxylate-functionalized viologens. J. Phys. Chem. Lett. 3:2840–44 [Google Scholar]
  66. Zhu H, Yang Y, Hyeon-Deuk K, Califano M, Song N. 66.  et al. 2014. Auger-assisted electron transfer from photoexcited semiconductor quantum dots. Nano Lett. 14:1263–69 [Google Scholar]
  67. Baxter JB, Richter C, Schmuttenmaer CA. 67.  2014. Ultrafast carrier dynamics in nanostructures for solar fuels. Annu. Rev. Phys. Chem. 65:423–47 [Google Scholar]
  68. Schmuttenmaer CA. 68.  2004. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 104:1759–79 [Google Scholar]
  69. Žídek K, Zheng K, Ponseca CS, Messing ME, Wallenberg LR. 69.  et al. 2012. Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study. J. Am. Chem. Soc. 134:12110–17 [Google Scholar]
  70. Wang H, McNellis ER, Kinge S, Bonn M, Canovas E. 70.  2013. Tuning electron transfer rates through molecular bridges in quantum dot sensitized oxides. Nano Lett. 13:5311–15 [Google Scholar]
  71. Ellis JL, Hickstein DD, Schnitzenbaumer KJ, Wilker MB, Palm BB. 71.  et al. 2015. Solvents effects on charge transfer from quantum dots. J. Am. Chem. Soc. 137:3759–62 [Google Scholar]
  72. Issac A, Jin S, Lian T. 72.  2008. Intermittent electron transfer activity from single CdSe/ZnS quantum dots. J. Am. Chem. Soc. 130:11280–81 [Google Scholar]
  73. Shim M, Guyot-Sionnest P. 73.  2000. n-Type colloidal semiconductor nanocrystals. Nature 407:981–83 [Google Scholar]
  74. Wang C, Shim M, Guyot-Sionnest P. 74.  2001. Electrochromic nanocrystal quantum dots. Science 291:2390–92 [Google Scholar]
  75. Huang J, Stockwell D, Huang Z, Mohler DL, Lian T. 75.  2008. Photoinduced ultrafast electron transfer from CdSe quantum dots to Re–bipyridyl complexes. J. Am. Chem. Soc. 130:5632–33 [Google Scholar]
  76. Wehrenberg BL, Guyot-Sionnest P. 76.  2003. Electron and hole injection in PbSe quantum dot films. J. Am. Chem. Soc. 125:7806–7 [Google Scholar]
  77. Yang Y, Rodríguez-Córdoba W, Xiang X, Lian T. 77.  2012. Strong electronic coupling and ultrafast electron transfer between PbS quantum dots and TiO2 nanocrystalline films. Nano Lett. 12:303–9 [Google Scholar]
  78. Boulesbaa A, Huang Z, Wu D, Lian T. 78.  2010. Competition between energy and electron transfer from CdSe QDs to adsorbed rhodamine B. J. Phys. Chem. C 114:962–69 [Google Scholar]
  79. Huang J, Huang Z, Jin S, Lian T. 79.  2008. Exciton dissociation in CdSe quantum dots by hole transfer to phenothiazine. J. Phys. Chem. C 112:19734–38 [Google Scholar]
  80. Sykora M, Petruska MA, Alstrum-Acevedo J, Bezel I, Meyer TJ, Klimov VI. 80.  2006. Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru–polypyridine complexes. J. Am. Chem. Soc. 128:9984–85 [Google Scholar]
  81. Huang J, Huang Z, Yang Y, Zhu H, Lian T. 81.  2010. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J. Am. Chem. Soc. 132:4858–64 [Google Scholar]
  82. Zhu H, Song N, Lian T. 82.  2010. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 132:15038–45 [Google Scholar]
  83. Morris-Cohen AJ, Frederick MT, Cass LC, Weiss EA. 83.  2011. Simultaneous determination of the adsorption constant and the photoinduced electron transfer rate for a CdS quantum dot-viologen complex. J. Am. Chem. Soc. 133:10146–54 [Google Scholar]
  84. Wu K, Song N, Liu Z, Zhu H, Rodríguez-Córdoba W, Lian T. 84.  2013. Interfacial charge separation and recombination in InP and quasi–type II InP/CdS core/shell quantum dot–molecular acceptor complexes. J. Phys. Chem. A 117:7561–70 [Google Scholar]
  85. Wu K, Liu Z, Zhu H, Lian T. 85.  2013. Exciton annihilation and dissociation dynamics in group II-V Cd3P2 quantum dots. J. Phys. Chem. A 117:6362–72 [Google Scholar]
  86. Kang I, Wise FW. 86.  1997. Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B 14:1632–46 [Google Scholar]
  87. Wise FW. 87.  2000. Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res. 33:773–80 [Google Scholar]
  88. El-Ballouli AO, Alarousu E, Bernardi M, Aly SM, Lagrow AP. 88.  et al. 2014. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C61-butyric acid methyl ester interface. J. Am. Chem. Soc. 136:6952–59 [Google Scholar]
  89. Zhu H, Song N, Lian T. 89.  2011. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. J. Am. Chem. Soc. 133:8762–71 [Google Scholar]
  90. Zhu H, Chen Z, Wu K, Lian T. 90.  2014. Wavelength dependent efficient photoreduction of redox mediators using type II ZnSe/CdS nanorod heterostructures. Chem. Sci. 5:3905–14 [Google Scholar]
  91. McArthur EA, Morris-Cohen AJ, Knowles KE, Weiss EA. 91.  2010. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy. J. Phys. Chem. B 114:14514–20 [Google Scholar]
  92. Zhu H, Song N, Rodríguez-Córdoba W, Lian T. 92.  2012. Wave function engineering for efficient extraction of up to nineteen electrons from one CdSe/CdS quasi–type II quantum dot. J. Am. Chem. Soc. 134:4250–57 [Google Scholar]
  93. Wu K, Zhu H, Liu Z, Rodríguez-Córdoba W, Lian T. 93.  2012. Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures. J. Am. Chem. Soc. 134:10337–40 [Google Scholar]
  94. Pijpers JJH, Koole R, Evers WH, Houtepen AJ, Boehme S. 94.  et al. 2010. Spectroscopic studies of electron injection in quantum dot sensitized mesoporous oxide films. J. Phys. Chem. C 114:18866–73 [Google Scholar]
  95. Cánovas E, Moll P, Jensen SA, Gao Y, Houtepen AJ. 95.  et al. 2011. Size-dependent electron transfer from PbSe quantum dots to SnO2 monitored by picosecond terahertz spectroscopy. Nano Lett. 11:5234–39 [Google Scholar]
  96. Tisdale WA, Zhu X-Y. 96.  2011. Artificial atoms on semiconductor surfaces. PNAS 108:965–70 [Google Scholar]
  97. Miaja-Avila L, Tritsch JR, Wolcott A, Chan WL, Nelson CA, Zhu XY. 97.  2012. Direct mapping of hot-electron relaxation and multiplication dynamics in PbSe quantum dots. Nano Lett. 12:1588–91 [Google Scholar]
  98. Song N, Zhu H, Jin S, Lian T. 98.  2011. Hole transfer from single quantum dots. ACS Nano 5:8750–59 [Google Scholar]
  99. Song N, Zhu H, Jin S, Zhan W, Lian T. 99.  2011. Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules. ACS Nano 5:613–21 [Google Scholar]
  100. Tachiya M. 100.  1975. Application of a generating function to reaction kinetics in micelles. Kinetics of quenching of luminescent probes in micelles. Chem. Phys. Lett. 33:289–92 [Google Scholar]
  101. Rogers MAJ, Da Silva MF, Wheeler E. 101.  1978. Quenching of fluorescence from pyrene in micellar solutions by cationic quenchers. Chem. Phys. Lett. 53:165–59 [Google Scholar]
  102. Yu WW, Qu LH, Guo WZ, Peng XG. 102.  2003. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15:2854–60 [Google Scholar]
  103. Jasieniak J, Smith L, Embden JV, Mulvaney P, Califano M. 103.  2009. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 113:19468–74 [Google Scholar]
  104. Cademartiri L, Montanari E, Calestani G, Migliori A, Guagliardi A, Ozin GA. 104.  2006. Size-dependent extinction coefficients of PbS quantum dots. J. Am. Chem. Soc. 128:10337–46 [Google Scholar]
  105. Marcus RA. 105.  1964. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15:155–196 [Google Scholar]
  106. Marcus R, Sutin N. 106.  1985. Electron transfers in chemistry and biology. Biochim. Biophys. Acta 811:265–322 [Google Scholar]
  107. Kaledin AL, Lian T, Hill CL, Musaev DG. 107.  2015. A hybrid quantum mechanical approach: intimate details of electron transfer between type-I CdSe/ZnS quantum dots and an anthraquinone molecule. J. Phys. Chem. B 119:7651–58 [Google Scholar]
  108. Marcus RA. 108.  1965. On theory of electron-transfer reactions. 6. Unified treatment for homogeneous and electrode reactions. J. Chem. Phys. 43:679–701 [Google Scholar]
  109. Klimkāns A, Larsson S. 109.  1994. Reorganization energies in benzene, naphthalene, and anthracene. Chem. Phys. 189:25–31 [Google Scholar]
  110. Amashukeli X, Winkler JR, Gray HB, Gruhn NE, Lichtenberger DL. 110.  2002. Electron-transfer reorganization energies of isolated organic molecules. J. Phys. Chem. A 106:7593–98 [Google Scholar]
  111. Cui S-C, Tachikawa T, Fujitsuka M, Majima T. 111.  2009. Solvent-polarity dependence of electron-transfer kinetics in a CdSe/ZnS quantum dot–pyromellitimide conjugate. J. Phys. Chem. C 114:1217–25 [Google Scholar]
  112. Hyun BR, Bartnik AC, Sun L, Hanrath T, Wise FW. 112.  2011. Control of electron transfer from lead–salt nanocrystals to TiO2. Nano Lett. 11:2126–32 [Google Scholar]
  113. Newton MD. 113.  1991. Quantum chemical probes of electron-transfer kinetics: the nature of donor–acceptor interactions. Chem. Rev. 91:767–92 [Google Scholar]
  114. Benniston AC, Harriman A. 114.  2006. Charge on the move: how electron-transfer dynamics depend on molecular conformation. Chem. Soc. Rev. 35:169–79 [Google Scholar]
  115. Dworak L, Matylitsky VV, Breus VV, Braun M, Basché T, Wachtveitl J. 115.  2011. Ultrafast charge separation at the CdSe/CdS core/shell quantum dot/methylviologen interface: implications for nanocrystal solar cells. J. Phys. Chem. C 115:3949–55 [Google Scholar]
  116. Xu Z, Hine CR, Maye MM, Meng Q, Cotlet M. 116.  2012. Shell thickness dependent photoinduced hole transfer in hybrid conjugated polymer/quantum dot nanocomposites: from ensemble to single hybrid level. ACS Nano 6:4984–92 [Google Scholar]
  117. Jiang Z-J, Kelley DF. 117.  2012. Effects of inhomogeneous shell thickness in the charge transfer dynamics of ZnTe/CdSe nanocrystals. J. Phys. Chem. C 116:12958–68 [Google Scholar]
  118. Anderson NA, Lian T. 118.  2004. Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coord. Chem. Rev. 248:1231–46 [Google Scholar]
  119. Xu Z, Cotlet M. 119.  2011. Quantum dot-bridge-fullerene heterodimers with controlled photoinduced electron transfer. Angew. Chem. Int. Ed. Engl. 50:6079–83 [Google Scholar]
  120. Tagliazucchi M, Tice DB, Sweeney CM, Morris-Cohen AJ, Weiss EA. 120.  2011. Ligand-controlled rates of photoinduced electron transfer in hybrid CdSe nanocrystal/poly(viologen) films. ACS Nano 5:9907–17 [Google Scholar]
  121. Dibbell RS, Watson DF. 121.  2009. Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles. J. Phys. Chem. C 113:3139–49 [Google Scholar]
  122. Xu B, Tao NJ. 122.  2003. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–23 [Google Scholar]
  123. Nitzan A, Ratner MA. 123.  2003. Electron transport in molecular wire junctions. Science 300:1384–89 [Google Scholar]
  124. Dibbell RS, Youker DG, Watson DF. 124.  2009. Excited-state electron transfer from CdS quantum dots to TiO2 nanoparticles via molecular linkers with phenylene bridges. J. Phys. Chem. C 113:18643–51 [Google Scholar]
  125. Morris-Cohen AJ, Aruda KO, Rasmussen AM, Canzi G, Seideman T. 125.  et al. 2012. Controlling the rate of electron transfer between a quantum dot and a tri-ruthenium molecular cluster by tuning the chemistry of the interface. Phys. Chem. Chem. Phys. 14:13794–801 [Google Scholar]
  126. Kamisaka H, Kilina SV, Yamashita K, Prezhdo OV. 126.  2008. Ab initio study of temperature and pressure dependence of energy and phonon-induced dephasing of electronic excitations in CdSe and PbSe quantum dots. J. Phys. Chem. C 112:7800–8 [Google Scholar]
  127. Tarafder K, Surendranath Y, Olshansky JH, Alivisatos AP, Wang L-W. 127.  2014. Hole transfer dynamics from a CdSe/CdS quantum rod to a tethered ferrocene derivative. J. Am. Chem. Soc. 136:5121–31 [Google Scholar]
  128. Inamdar SN, Ingole PP, Haram SK. 128.  2008. Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry. ChemPhysChem 9:2574–79 [Google Scholar]
  129. Hyun B-R, Zhong Y-W, Bartnik AC, Sun L, Abruña HD. 129.  et al. 2008. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2:2206–12 [Google Scholar]
  130. Haram SK, Kshirsagar A, Gujarathi YD, Ingole PP, Nene OA. 130.  et al. 2011. Quantum confinement in CdTe quantum dots: investigation through cyclic voltammetry supported by density functional theory (DFT). J. Phys. Chem. C 115:6243–49 [Google Scholar]
  131. Ogawa S, Hu K, Fan F-RF, Bard AJ. 131.  1997. Photoelectrochemistry of films of quantum size lead sulfide particles incorporated in self-assembled monolayers on gold. J. Phys. Chem. B 1015707–11 [Google Scholar]
  132. Haram SK, Quinn BM, Bard AJ. 132.  2001. Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 123:8860–61 [Google Scholar]
  133. Jasieniak J, Califano M, Watkins SE. 133.  2011. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5:5888–902 [Google Scholar]
  134. Efros AL, Rosen M. 134.  2000. The electronic structure of semiconductor nanocrystals. Ann. Rev. Mater. Sci. 30:475–521 [Google Scholar]
  135. Miller JR, Calcaterra LT, Closs GL. 135.  1984. Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106:3047–49 [Google Scholar]
  136. Gocalińska A, Saba M, Quochi F, Marceddu M, Szendrei K. 136.  et al. 2010. Size-dependent electron transfer from colloidal PbS nanocrystals to fullerene. J. Phys. Chem. Lett. 1:1149–54 [Google Scholar]
  137. Scholz F, Dworak L, Matylitsky VV, Wachtveitl J. 137.  2011. Ultrafast electron transfer from photoexcited CdSe quantum dots to methylviologen. ChemPhysChem 12:2255–59 [Google Scholar]
  138. Robel I, Kuno M, Kamat PV. 138.  2007. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. J. Am. Chem. Soc. 129:4136–37 [Google Scholar]
  139. Hyeon-Deuk K, Kim J, Prezhdo OV. 139.  2015. Ab initio analysis of Auger-assisted electron transfer. J. Phys. Chem. Lett. 6:244–49 [Google Scholar]
  140. Sakata T, Hashimoto K, Hiramoto M. 140.  1990. New aspects of electron transfer on semiconductor surface: dye-sensitization system. J. Phys. Chem. 94:3040–45 [Google Scholar]
  141. She CX, Anderson NA, Guo JC, Liu F, Goh WH. 141.  et al. 2005. pH-dependent electron transfer from Re–bipyridyl complexes to metal oxide nanocrystalline thin films. J. Phys. Chem. B 109:19345–55 [Google Scholar]
  142. Gao YQ, Marcus RA. 142.  2000. On the theory of electron transfer reactions at semiconductor/liquid interfaces. II. A free electron model. J. Chem. Phys. 113:6151–60 [Google Scholar]
  143. Asbury JB, Hao E, Wang YQ, Ghosh HN, Lian TQ. 143.  2001. Ultrafast electron transfer dynamics from molecular adsorbates to semiconductor nanocrystalline thin films. J. Phys. Chem. B 105:4545–57 [Google Scholar]
  144. Anderson PW. 144.  1961. Localized magnetic states in metals. Phys. Rev. 124:41–53 [Google Scholar]
  145. Newns DM. 145.  1969. Self-consistent model of hydrogen chemisorption. Phys. Rev. 178:1123–35 [Google Scholar]
  146. Long R, Prezhdo OV. 146.  2011. Ab initio nonadiabatic molecular dynamics of the ultrafast electron injection from a PbSe quantum dot into the TiO2 surface. J. Am. Chem. Soc. 133:19240–49 [Google Scholar]
  147. Zhu H, Song N, Lv H, Hill CL, Lian T. 147.  2012. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 134:11701–8 [Google Scholar]
  148. Sukhovatkin V, Hinds S, Brzozowski L, Sargent EH. 148.  2009. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324:1542–44 [Google Scholar]
  149. Sambur JB, Novet T, Parkinson BA. 149.  2010. Multiple exciton collection in a sensitized photovoltaic system. Science 330:63–66 [Google Scholar]
  150. Semonin OE, Luther JM, Choi S, Chen H-Y, Gao J. 150.  et al. 2011. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334:1530–33 [Google Scholar]
  151. Žídek K, Zheng K, Abdellah M, Lenngren N, Chabera P, Pullerits T. 151.  2012. Ultrafast dynamics of multiple exciton harvesting in the CdSe–ZnO system: electron injection versus Auger recombination. Nano Lett. 12:6393–99 [Google Scholar]
  152. Matylitsky VV, Dworak L, Breus VV, Basche T, Wachtveitl J. 152.  2009. Ultrafast charge separation in multiexcited CdSe quantum dots mediated by adsorbed electron acceptors. J. Am. Chem. Soc. 131:2424–25 [Google Scholar]
  153. Zhu H, Lian T. 153.  2012. Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape. J. Am. Chem. Soc. 134:11289–97 [Google Scholar]
  154. Milliron DJ, Hughes SM, Cui Y, Manna L, Li J. 154.  et al. 2004. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430:190–95 [Google Scholar]
  155. Li H, Kanaras AG, Manna L. 155.  2013. Colloidal branched semiconductor nanocrystals: state of the art and perspectives. Accounts Chem. Res. 46:1387–96 [Google Scholar]
  156. Son JS, Yu JH, Kwon SG, Lee J, Joo J, Hyeon T. 156.  2011. Colloidal synthesis of ultrathin two-dimensional semiconductor nanocrystals. Adv. Mater. 23:3214–19 [Google Scholar]
  157. Bouet C, Mahler B, Nadal B, Abecassis B, Tessier MD. 157.  et al. 2013. Two-dimensional growth of CdSe nanocrystals, from nanoplatelets to nanosheets. Chem. Mater. 25:639–45 [Google Scholar]
  158. Ithurria S, Tessier MD, Mahler B, Lobo RPSM, Dubertret B, Efros A. 158.  2011. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10:936–41 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error